
LatSeF - Manual

Martin Mann - University Freiburg

http://www.bioinf.uni-freiburg.de/

LatPack Tools Package
Version 1.6.4

1 Description

LatSeF implements a chain growth algorithm to simulate Sequential Folding
of lattice proteins (see [2]). It supports:

1. various lattices (see Sec. 3)

2. arbitrary energy functions (see Sec. 4)

3. side chain models

4. PDB (Protein Data Bank) output of the best structure found

5. check for extensibility of last appended monomer

6. symmetry exclusion via move string normalization

7. extension of all structures within a given energy interval above the minimal
energy reachable so far

2 Method

LatSeF implements a greedy heuristic of a chain-growth approach. The mono-
mers are placed successively on lattice positions such that the structure forms
a selfavoiding walk. For each length all possible structure extensions with one
monomer are generated and evaluated. The best structures are considered in
the next extension iteration. The process is described in more detail in Sec. 2.1

Due to the lattice restrictions and the selfavoidingness constraint, the proce-
dure may end in non-extensible structures during the iteration and fail. A fast
way to overcome this problem is to check the extensibility of the last monomer
after its placement. Only extensible structures are considered further and eval-
uated later. A cheap form of extensibility check is presented in Sec. 2.2.

1

A description what kind of energy functions are supported is given in Sec. 4.
Furthermore, the text file format for the different function types is specified to
allow for arbitrary energy functions by the user.

2.1 Chain Growth Algorithm - Backbone Model

Given:

S = S1, . . . , Sn : monomer sequence from alphabet A to fold
E(S, P) : energy function (see Sec. 4)

N : the neighboring vectors of the lattice model to use
∆E : energy interval above the minimal energy for this

iteration that are going to be extended in the next

Result:

L = L1, . . . , Ln : 3D coordinates of the energetically best sequential
placement of S in the lattice

Method:

The approximation follows a greedy structure-elongating chain-growth approach:

1: B ← {L1 = (0, 0, 0)} . best structures of last iteration
. initialized by placing the first monomer to (0, 0, 0)

2: C ← ∅ . structures generated in current iteration
3: for i = 2 . . . n do
4: for all L ∈ B do . L has length (i− 1)
5: for all ~v ∈ N do
6: if L(i−1) + ~v 6∈ {L1, . . . , L(i−1)} then . selfavoidingness
7: L′ ← (L1, . . . , L(i−1), L(i−1) + ~v)
8: C ← C ∪ {Normalize(L′)} . store normalized extension
9: end if

10: end for
11: end for
12: minE ← minimal energy of all elements in C
13: B ← {c | c ∈ C and E(S1...i, c) ≤ (minE + ∆E)} . copy all best
14: C ← ∅ . reset structure storage
15: end for
16: report best placement L ∈ B with minimal energy E(S, L)

Note: Due to the greedy storing of the energetically best structures only, it
may occure that none of the structures in B can be extended in a selfavoiding
way (Line 6 gives ’false’). Therefore, C, and in the following B, would get
empty and the procedure stops without finding a selfavoiding walk of the whole
sequence S. This problem can usually be solved either by increasing ∆E or by
adding an extensibility check in line 6. Both results in additional computations
and an increased runtime.

2

2.2 Extensibility Check

A first and cheap variant of extensibility check is to verify that the position of
the last appended monomer has at least one free neighbored. This ensures that
at least one additional monomer can be added.

But, this is not enough to ensure extensibility. Still it might be the case
that the current placement of the last monomer only allows a limited extension
of the chain, not sufficient to place all remaining monomers.

Nevertheless, this check seems to be sufficient in general and the described
scenario may only occure for long sequence lengths. The minimal length that
makes such a placement possible strongly depends on the lattice model and
the size of the corresponding neighborhood, i.e. number of neighboring vectors.
In the square lattice, the minimal length is 10. The corresponding structure is
given in Fig. 1. The last appended (red) monomer has a free neighbored position
(yellow), but this position has none and will not be extensible. This situation
cannot be determined using the simple check. Here, a full extensibility check
that validates if there is a free path out of the structure has to be done.

Figure 1: Non-extensible structure in the 2D-square lattice that is not rejected
by the simple extension check. Here the last position (red) can be extended
(yellow position). But afterwards no extension will be possible any more.

Given:

L = L1, . . . , Ln : 3D coordinates of a lattice protein structure
N : the neighboring vectors of the lattice model to use

Result:

true/false : whether or not position Ln has a free neighbored position

Method:

The approach performs a full check of all neighbored positions if necessary :

1: for all ~v ∈ N do

3

2: i← 1
3: isFree← TRUE
4: while i < n and isFree do
5: isFree← Li 6= (Ln + ~v) . check if occupied
6: i← i + 1
7: end while
8: if isFree = TRUE then
9: return TRUE . this neighbored position is free

10: end if
11: end for
12: return FALSE . no free neighbored position found

2.3 Symmetry exclusion via normalization

The normalization is done indirectly via a conversion of the 3D coordinates into
absolute move string representation. Here, a string is produced that represents
the neighboring vectors between successive monomer coordinates. The resulting
move string is normalized based on the neighboring and automorphism infor-
mation of the given lattice. This information is used to create move exchange
tables for each automorphism which is utilized to determine the lexicograph-
ically smallest symmetrical move string. The reconversion of this normalized
move string into 3D coordinates results in the unique symmetrical (normalized)
structure.

3 Available Lattices

Several lattice models can be used to fold a structure.

The currently supported lattice models and the corresponding neighboring
vectors are:

ID Name Neighborhood vectors #
SQR Square {±(1, 0, 0),±(0, 1, 0)} 4
CUB Cubic {±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)} 6
FCC Face Centered Cubic

{
±(1,1,0),±(1,0,1),±(0,1,1),

±(1,−1,0),±(1,0,−1),±(0,1,−1)

}
12

4 Energy Functions

LatSeF supports arbitrary energy functions that are based either on contacts
or on distance intervals. The specification of an energy function has to be given
in text format and defines the allowed sequence alphabet as well.

In general, the energy of a sequence S of length n with structure coordi-
nates P is determined by

E(S, P) =
∑

1≤i+1<j≤n

e(Si, Sj , Pi, Pj). (1)

4

Here, e(Si, Sj , Pi, Pj) is a placeholder for the specific evaluation function that
is given for the different types in the following.

4.1 Contact Based Energy Function

A contact based energy function for an alphabet A is defined by an energy table
Ec : |A| × |A| → R such that

ec(Si, Sj , Pi, Pj) =
{

Ec[Si, Sj] if Pi and Pj are neighbored
0 else (2)

For example, a function like this was used by Lau and Dill to define the
widely used HP-model [1].

Text File Encoding

The LatSeF text file enconding of a contact based energy function consists of
two parts: the alphabet elements and the energy table. A consecutive string of
the alphabet elements in the first line determines the allowed protein sequence
characters (the alphabet) and the dimensions of the energy table that is read
from the remaining file.

An example energy file for the HPNX-model is:

HPNX

-4.0 0.0 0.0 0.0

0.0 +1.0 -1.0 0.0

0.0 -1.0 +1.0 0.0

0.0 0.0 0.0 0.0

4.2 Distance Interval Based Energy Function

A distance insterval based energy function for an alphabet A is defined by a
consecutive set of k distance intervals with the upper bounds dup1...k and an
energy table Ei

1...k : |A| × |A| → R for each of them. Given the distance to
interval index function idx we define the evaluation function

ei(Si, Sj , Pi, Pj) = Ei
idx(Pi,Pj)

[Si, Sj] (3)

idx(Pi, Pj) = arg min
k

(|Pi − Pj | ≤ dupk) (4)

Text File Encoding

The LatSeF text file enconding of a distance interval based energy function
consists of three parts: the alphabet elements, the upper bounds of the intervals
and the energy tables for the interval. A consecutive string of the alphabet
elements in the first line determines the allowed protein sequence characters (the

5

alphabet) and the dimensions of the energy tables. The second line contains
a whitespace separated list of the upper interval bounds. Their number sets
the number of energy tables read from the remaining file. The interval bounds
are expected to be given in Ångstroems. For a correct scaling of the bounds
it is necessary to give the average distance of two consecutive Cα-atoms in the
underlying model to LatSeF (see input parameters in Sec. 5).

An example energy file that encodes the HPNX-model using a distance in-
terval based energy function is:

HPNX

3.7 3.9 999999

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-4.0 0.0 0.0 0.0

0.0 +1.0 -1.0 0.0

0.0 -1.0 +1.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

The number 999999 is used as a placeholder for +∞, i.e. the upper bound
of the last distance interval. It is important to know that the average Cα-
distance in the underlying model was 3.8 Å. Therefore, the resulting interval
energy function corresponds to the contact based energy function of the previous
section; only distances close to the average Cα-distance are taken into account.

5 Program Parameters

Input

-seq The sequence to fold co-translationally. It has to be conform to the alpha-
bet given by the energy file (see -energyFile).

-energyFile A file that encodes the used alphabet and the specific energy
function (see Sec. 4 for format details).

-energyForDist If present, the input of -energyFile will be interpreted as dis-
tance interval energy function. Otherwise a contact based energy functino
is expected.

-energyCalphaDist Specifies the average distance of two consecutive Cα-
atoms in the underlying model. This value is needed to scale the intervals

6

of a distance interval based energy function onto the Cα-distances of the
lattice model in use.

Lattice Settings

-lat The lattice model to use for the sequential folding. The available list of
lattice identifiers is given in Sec. 3.

Side Chain Settings

-sideChain If present, a representation of two monomers per amino acid is
done. One for the backbone atoms and one representing the side chain.

Chain Growth Parameters (see Method Sec. 2)

-deltaE Energy interval above the minimal energy found. Only structures with
an energy within this interval are extended in the next iteration.

-noExtCheck If present, no check for extensibility of the last monomer is done.
Otherwise, the last appended backbone monomer is checked to have at
least one free neighbored position.

-extMax The maximal number of structures that are going to be extended
in the next iteration. This parameter only influences the memory con-
sumption of LatSeF by restricting the size of the candidate set C of the
algorithm (see Sec. 2.1). If C exeeds the given size, the chain growth
is stopped. Note, both sets, B and C, can maximally contain the given
number of candidate structures.

Output

-print The number of final structures to print maximally in the end. The struc-
tures are given in absolute moves to reduce space consumption. The move
encoding is:

move neighbor vector
L (+1, 0, 0)
R (−1, 0, 0)
F (0, +1, 0)
B (0,−1, 0)
U (0, 0, +1)
D (0, 0,−1)

-printBest If present, only the structures with minimal energy are printed.

-best2PDB If present, it defines the file to that the best structure is written in
PDB-format. Here, all monomers are considered to be a Histidine amino
acid.

7

Miscellaneous

-v Give verbose output during computation.

-s Give only minimal output during computation.

-help Prints the available program parameters.

6 Contact

Martin Mann http://www.bioinf.uni-freiburg.de/
Bioinformatics Group
University Freiburg, Germany

References

[1] Kit Fun Lau and Ken A. Dill: A Lattice Statistical Mechanics Model
of the Conformational and Sequence Spaces of Proteins, Macro-
molecules 1989, 22(10):3986–3997

[2] Mann, M., Maticzka, D., Saunders, R., and Backofen, R.: Classifying
protein-like sequences in arbitrary lattice protein models using
LatPack, HFSP Journal 2008, 2(6), 396. Special issue on protein folding:
experimental and theoretical approaches

8

