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Abstract

Despite continued advances in whole genome sequencing techniques and the devel-
opment of powerful assembly algorithms, newly sequenced genomes still often suffer
from contaminations during the sequencing process. The most common sources of
contamination are accessory DNAs deliberately attached to the DNA/RNA under
investigation, including vectors, adapters, linkers and PCR primers. However, there
are also unintended events, e.g. caused by transposon activity or simply impuri-
ties, leading to contaminated genomic sequences. These may then result in mis-
sassemblies of genomic sequences, meaningless analyses and potentially erroneous
conclusions. However, no one knows to which extent publicly available genomes are
contaminated.

To encompass this unsatisfying situation we therefore plan to develop a compara-
tive genomics approach to broadly identify contaminations in available genomic se-
quences. However there exist some tools those can find contaminations from adapters
or from vectors alone. Here we present an approach based on machine learning to
distinguish between contaminated and non-contaminated sequences instead of find-
ing vector contaminations or adapter contaminations alone. As for now no such tool
available, our approach would be foremost and showed promising results on different
datasets.
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Introduction

Here, we explain what is contamination, consequences of contamina-
tions and our approach to distinguish contaminated sequences from non-
contaminated sequences. A genome contamination is a subsequence(s) on the
genome of a species which does not represent the actual genetic information
relevant to that species. So contaminations are foreign sequences. Mostly, con-
taminations are from vectors, adapters primers and linkers. While sequencing
genomes people deliberately use these vectors, adapters etc. for cloning and
liking of sequences and leave them unintentionally in final genome assemblies
and contaminate them.

Contamination sources

Fig.1 explains one of the generic scenario of such contamination source.
While sequencing genomes chromosomes are split into small DNA fragments.
Then these DNA fragments are placed into vectors. To clone DNA these vec-
tors are then shocked into bacteria. These bacterias multiply, which in turn
makes copies of the vectors holding DNA fragments. Then these cloned vectors
are recovered from the bacteria. Primers are attached itself to a complemen-
tary sequence on the vector to build new strands of DNA. In this process
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Fig. 1. To clone DNA, DNA fragments are combined with cloning vectors and then shocked into bacteria.
Then bacteria reproduce several copies of itself and also vectors. All vectors are recovered from bacteria and
continue to sequence whole genome. After this, unable to find and remove the vectors or other sequencing
artifacts lead to contaminated genomes.

incorrect placement of restriction enzyme or recheck and removal of vector
content in the final assembly or some other artifacts result in contaminations.

Consequences

There are several consequences of genome contaminations
• Now a days, number of public sequence databases available on the web be-

came the main sources of information for analysts. Depositing contaminated
sequences on public databases can be literally polluting the databases.

• Working with data containing obscure contaminations can be precarious.
One may draw erroneous conclusions about the biological significance of
the sequence. Hence time and effort wasted on meaningless analysis.

• Identification and removal of vectors and preprocessing of sequences before
submitting to databases is essential. But this causes delay in release of
sequences.

People worked before on identification and removal of contaminations,
but their approaches are dependent on type/source of contamination. For
example tools have been developed to find the vector (1; 2) or adapter (3)
contaminations. The theme of our project is to make a model that can recog-
nize contaminated and non-contaminated sequences irrespective of sources of
contaminations. To develop such a tool, machine learning approaches are used
to train a model that can discriminate contaminated from non-contaminated
sequences.
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Materials and Methods

We acquired the genome assemblies of 58 different metazoans from
UCSC Genome Browser (4) and a total of 4696 unique vector sequences from
NCBI UniVec (5) and Stanford’s Vectordb (6) databases. The final model
should be made out of contaminated and non-contaminated sets of sequences
and should be able to distinguish between the two sets. The idea of ob-
taining these two sets of sequence is straight forward. Align vectors against
genomes, then all aligned sub sequences on the genomes can be contaminated
as they represent genetic information of vectors and remaining can be valid
non-contaminated. To make these two sets more consistent, we want to choose
these sets from highly conserved regions between the genomes. Because as said
before contaminations are caused by vectors that are failed to remove and se-
quenced into final genome assembly. If it is done with same vector multiple
times in different genomes, then we can recover it by blast nearly perfectly
and also this ensures the consistency of the contaminated data set. Now on
when we use the word vector, it is not only vectors but also adapters, linkers,
plasmids etc.

Aligning genomes of all metazoans against all is time expensive. So we
chose genomes from species containing more vector content. To know which
species contains more vector content, alignment of vectors against all genomes
is done. Out of all alignment results, top 8 species with highest vector content
have been chosen. The following steps from aligning genomes to create a model
are shown in Fig.2. Now having 8 species at hand, aligning all 8 against 8 is
about 56 whole genome alignments, which is also somehow time expensive.
So to make it simple, we chose first 2 species and aligned them against other
next 6 species and vice versa, which count to 26 alignments. For alignment we
used ‘megablast’ with an E-value ‘1e-5’ and identity at least 90%. Then each
blast hit is a highly conserved region between the two selected genomes. In the
next step, we took each conserved region and aligned it with all vectors. Here
we also used megablast with same parameters as before. The resulting hits
are conserved regions between the genomes with vector content. These are the
sub regions on the genomes initially which we considered as contaminated se-
quences set. But after a manual observation of these sequences, we found that
few of them are found to be in the protein coding genes which we are not sure
to claim as contaminations. The reason behind this can be, while experiment-
ing people attach CDS to vectors for cloning purposes. In vector databases,
sometimes these vectors with CDS are listed. So to make this set more consis-
tent, we aligned the sequences of the set against the ‘exons’. All these exons
are extracted from UCSC table browser (7) and are from RefSeq or Ensembl
or Genscan databases. Sequences which are not at all aligned with the exons
are finally considered as contaminated sequences. Valid non-contaminated se-
quences were randomly chosen from the highly conserved regions which lack
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any blast hits with vectors. To cluster similar sequences in both sets, we used
‘blastclust’ program with default options which are length coverage of 0.9 and
score coverage threshold 1.75.
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Fig. 2. Generation of a model that classifies contaminated and non-contaminated sequences

Having sets of contaminated and valid non-contaminated sequences, we
had to find features that distinguish both sets. We worked on th e following
features:
• k-mer count: number of k-mers per sequence
• k-mer distance: average distance between each of all k-mers in the sequence
• k-mer existence: existence of a k-mer as a binary value. If a k-mer exists,

then value is 1 otherwise 0.
• k-mer mismatch scores: split the sequence into windows of size k. Then

each k-mer and for each window count number of matched nucleotides. If
all nucleotides matches score it to k. If there is one mismatch score to k-1
and so on. For each k-mer take the average of all such scores.

• GC content
• Stop codons: TTA, TAG, TGA
• Start codons: ATG, CTG, GTG, TTG
Here k is 1-3. After generating features, we had to train support vector ma-
chine and create a model out of features. Taking 80% of whole data sets
from both sets, treating contaminated as positive and non-contaminated as
negative data, we trained a model using Weka. We used Weka 3.7.3 (8) Se-
quential Minimal Optimization (SMO) scheme, polynomial kernel of degree 4
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for this purpose. After tweaking between several options we got good model
with these options. Here degree indicates, model with all combinations of 4
features worked together better that others. To check feasibility of the model,
we tested our model on other sequence sets which were randomly chosen from
ncRNAs, mRNAs, Rfam sequences and Human Watson strand UCRs with
other species.

Results

At very first glance at the blast hits of vectors against genomes gave a
nice prospect for vector contamination. Fig. 3 shows top 15 species containing
at least 2000 hits per species. some of the hits On the top are Gallus gallus and
Danio rerio which have 1072618 and 272003 hits respectively. Interestingly,
we found Homo Sapiens with 75347 hits. From a well sequenced species one
cannot expect these many hits. Most of the hits are actually subsequences
of protein coding genes. In order to select contaminated species, blasting all
blast hits (vectors against genomes) against exons has done.

All the steps done so far like blasting genomes against vectors in turn
blasting them against exons is done only for selecting the genomes to work
with. After all these steps, Danio rerio and Gallus gallus are prime candidates
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Fig. 3. BLAST hits vectors against genomes
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to search for contaminations. So we chose Gallus gallus and Danio rerio and
blasted against next top 6 species which are Callithrix jacchus, Caenorhab-
ditis briggsae, Gasterosteus aculeatus, Macaca mulatta, Mus musculus and
Pan troglodytes and vice versa. This yielded, 2852087 unique blast hits which
mapped to 642885 highly conserved regions on Danio rerio and Gallus gallus
together.

Blasting all these highly conserved regions against vectors lead to
10012 unique sequences. After excluding protein coding sequences (by BLAST
against exons) and clustering we got 786 sequences which are in the contami-
nated set. For non-contaminated 1000 sequences were randomly selected from
highly conserved regions which are not present in the blast hits against vec-
tors. Fig. 4 shows different steps and the intermediate results discussed so far.
Some stats on both sets of sequences are shown in Table 1.
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Fig. 4. Data sets extraction

Polynomial kernel of degree 4 with which the model is created says
that there are several dependencies among the features. Table 2 lists the results
of the classification on different test sets. Classification results also showed that
our approach is promising. With 97.48% correctly and only 2.52% incorrectly
classified instances, the initial cross validation demonstrated convincing clas-
sification performance of our model. For all other test sets the percentage
of correctly classified instance are at least 91%. For human mRNAs 978 out
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Contaminated Non-contaminated

Min. length 33 33

Max. length 528 683

Avg. length 91.01 105.11

Median 69.00 77.00

Standard deviation 55.07 86.07
Table 1
Stats of the contaminated and non-contaminated data sets

of 1000 sequences are classified as non-contaminated making a small error.
97.47% of human ncRNAs and 96.49% of watson strand human UCRs clas-
sified correctly. For ncRNAs the result varies for different species. For Danio
rerio, Mus musculus and emphGallus gallus results are very similar. Remem-
ber our model is actually made up of conserved regions from emphDanio rerio
and Gallus gallus. Still, from the results you can see our model classified bet-
ter on human mRNA and ncRNAs than those of chicken and zebrafish. So,
classification is in general not effected by model data,which is a requisite for a
good model. But there are some classification errors, which can be very easy
to see in case of cat ncRNA and Rfam sequences.

Test set Total Number of
Instances

Correctly Classified
Instances

Incorrectly Classified
Instances

Test set from existing data 357
Positives: 153
Negatives: 204

348(97.48%)
True positives: 146
True negatives: 202

9(2.52%)
False negatives: 7
False positives: 2

Danio rerio ncRNA 4431 4163
(93.96%)

268
(6.04%)

Felis catus ncRNA 738 677
(91.73%)

61
(8.27%)

Gallus gallus ncRNA 1102 1028
(93.29%)

74
(6.71%)

Homo sapiens ncRNA 2647 2580
(97.47%)

67
(2.53%)

Homo sapiens mRNA 1000 978
(97.80%)

22 (2.20%)

Mus musculus ncRNA 752 708
(94.15%)

44
(5.85%)

Rattus norvegicus ncRNA 757 704
(92.99%)

53
(7.01%)

Rfam sequences 786 718
(91.34%)

68
(8.66%)

Human UCRs Watson strand 2081 2008
(96.49%)

73
(3.51%)

Table 2
Classification results for different test sets

All ncRNAs from Ensembl ftp – http://www.ensembl.org/info/data/ftp/index.html

Human mRNA extracted from UCSC table browser – http://genome.ucsc.edu/cgi-bin/hgTables

Human Watson strand UCRs by Bejerano G – http://users.soe.ucsc.edu/ jill/ultra.html
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Discussion

Contaminations are hazardous when working with sequences that are
biologically significant. Care must be taken while analyzing such sequences,
otherwise doubtful conclusions would be made. But primarily even more care
should be taken while sequencing genomes. As sequencing the cleanest and
precise sequences is hard to achieve, a tool that is made up of our strategy
can be very advantageous to find the contaminations before working on some
data. To know what went wrong with incorrect predictions, investigating the
annotations on genes might also help.
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