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Abstract

In this paper we present an analysis of human long intergenic non-coding RNAs tran-
scripts (8195 transcripts of hgl19). The key problem of this kind of RNAs is that they
do not have common statistically significant features in their primary sequence (e.g.
open reading frames or codon bias). Therefore, the analysis was done by the tool
RNAz which could solve this problem by employing comparative genomics and mak-
ing use of two measurements: (1) The thermodynamic stability and (2) The structural
conservation of long non-coding RNAs. RNAz detected 2700 sequences (loci) of high
probability (>0.9) to have structural conserved structures and to be thermostatically
stable. 1823 (67.51 %) of them are located in introns. 867 are located in exons and 197
(7.29 %) span splice sites. Then, using the tool RNAclust.pl we detected the loci which
have common secondary structure motifs.



1 Introduction

Non-coding RNAs have a big spectrum of molecules which are heterogeneous in struc-
ture and function. While in general ncRNAs play important regulatory roles in the cell,
their functions are very miscellaneous, and in most cases are not yet discovered. Most
of them do not have the features which were exploited by efficient algorithms to predict
the coding genes. However, some classes of them such as the small ones (< 200 bp)
could be predicted using their secondary structure.

In this paper, we present an analysis of the class ”lincRNAs”. LincRNAs [9] stand for
long (> 200 bp) intergenic non-coding RNAs. The expression “intergenic” refers to
being transcribed from the non-coding DNA sequences. Non coding means this RNA
does not code a protein.

Detecting substructures of lincRNA depends on the assumption that their function is
defined by two main characteristics:

(1) Thermodynamic stability.

(2) Conservation of secondary structure.

The tool RNAz exploits these two features making use of comparative studies to achieve
the prediction. The classification is done by a support vector machine learning algo-
rithm (SVM) which is trained on a large set of well known ncRNAs.

General view of the analysis

We did the analysis by RNAz as the following: First, we aligned the transcripts. Then
we used them as input to RNAz after preparing them by the tool rnazWindow.pl. Next,
having applied RNAz with a probability class of more than 0.5, we got the hits which
are called windows (retrieved from rnazWindow.pl). We used this class probability
because the hits of probability more than 0.5 are considered as functional. Then we
clustered these resulting hits (overlapping windows) using the tool rnazCluster.pl to
loci. Before continuing, we measured the accuracy of the number of our hits. We did
this by estimating the false discovery rate (FDR).

To calculate FDR we randomized the alignments using the tool SISSIz and run RNAz
again on them. Comparing the resulting hits of this shuffled screen with the hits of the
original one we could calculate the FDR. As a last step we used the tool [|6] to detect
similar loci of different transcripts.

We worked on two screens (named screenl and screen2). The difference between them
was that screenl contains only exons and splice sites. But screen2 had contained exons,
splice sites and introns. We made this difference by using two different methods of
alignments. We used screen2 to make some comparisons with screenl. But we did not
complete the analysis of screen2 since it is the same as screenl except for the introns.
In the rest of this report: section 2 describes the data set, the tools and the methods used
in the analysis; Section 3 describes the work flow of the analysis; Section 4 presents
the results; Section 5 discusses the results.

2 Data set, Tools and Methods

2.1 Data set

The input is a BED-formatted file of 8195 human lincRNAs transcripts (hgl19) [9].
The BED format is described on the web page [/1]].



2.2 RNAz

RNAz [11] is a package of tools. The main tool of this package is RNAz. Its input is an
alignment and its output are the hits of some class probabilities. The class probability
is specified by the parameter (-p). The other tools pre-process the input of RNAz,
manipulate the output or perform other helpful functions.

2.3 SISSIz

The input of SISSIz [[7]] is an alignment. The output is a shuffled alignment. This
tool preserves the dinucleotide content. In our project, we applied this tool to create
a control screen. The control screen is needed for estimating the false discovery rate
which reflects the precision of the number of hits gotten by RNAz.

2.4 rnazWindow.pl

This tool [12] is one of the tools of RNAz. Its input are the non-processed alignments.
its output are windows. Windows represent an optimal input of RNAz. rnazWindow.pl
does the following:

1.Reduces the gaps and repeats.

2.Splices the big alignments into small windows.

Gaps and repeats distort the analysis. RNAz can not analyze alignments which are too
long. Additionally, we want to analyze local structure, not global ones.

2.5 FDR (False Discovery Rate)

FDR [4] measures the percentage of falsely expected elements of true elements of some
test. A high value is not good. The lower FDR value, the better. The general relation
of FDR is:

FDR = VLJFS ; where S is the number of true positives, and V is the number of false
positives.

In this project, FDR is defined by three equations:

FDR1= number of windows in the shuf fled screen
~ number of windows in the original screen

_ number of loci in the shuf fled screen
FDR2= numberof loci in the original screen

FDR3= length of locz‘m the shl{,f:fled screen
length of loci in the original screen

Locus (pl. loci) is the stretch over the overlapping windows which have a shared
hit from the first position of the first window to the last position of the last window.

2.6 RNAclust

The purpose of using this tool [6]] is to find the loci which have common secondary
structure motif. The input of this tool is a FASTA file of all sequences (here our loci
sequences). The final output of it is a hierarchical cluster-tree. The leaves represent
the input sequences. The internal nodes represent the clusters which share common
secondary structure motif.



2.7 iTOL

It is a free web server [3] for displaying and annotating phylogenetic trees. The input
of it is a tree file of text format gotten from the RNAclust tool. The output is a graphical
phylogenetic tree. We can color this tree according to categories we choose. Then we
can see whether our category contains phylogenetic relations.

2.8 Soupviewer

This tool [8]] gives a more comfortable way of analyzing the big trees which come from
RNAsoup resulting from RNAclust tool in our case.

Additional tools were used to achieve helping roles such as Galaxy [10] (free public
web server) to fetch the alignments we need, rnazCluster.pl to cluster the windows to
loci, rnazOutpotSort.pl to sort the output of RNAz, and rnazindex.pl to retrieve the
sequences of the loci,

3 The procedure

Fetch alignments

The first step is to align these transcripts, because the input of RNAz is an alignment.
To do this we used Galaxy as the following: First of all, we uploaded our BED file
to the Galaxy server using the tool Get Data without forgetting to choose the correct
Genome which is in our project Human Feb. 2009 (GRCh37/hgl9) (hgl9). Then we
used the tool Fetch Alignment which provides us with a variety of alignment meth-
ods. For our analysis we chose Stitch Gene blocks given a set of coding exon intervals
method for screenl, and Extract MAF blocks given a set of genomic intervals method
for screen2. We have done a complete analysis for screenl and used the screen2 to
give us a general understanding of the transcripts by comparing them. The method for
screenl does the following:

It finds MAF blocks that overlaps the coding regions, sorts MAF blocks by alignment
score, stitches blocks and resolves overlaps based on alignment score and finally out-
puts alignments in FASTA format [3]]. The tool offers to choose sequences among
many species to be aligned with our sequences. We chose all the species. Finally, we
downloaded the resulting FASTA file to our machine. The method for screen2 has a
similar effect except for that it does not ignore the intronic region as the first screen
does.

Prepare the alignment

The second step is to predict the secondary structures of these transcripts using the
alignments we have. We should pre-process the alignments before we use them as
input for the tool RNAz. Otherwise, it would be too difficult to continue with non-
processed alignments which may be too long, have a lot of gaps and repeats. The tool
rnazWindow.pl achieves the preprocessing. We can specify the length of a window
by passing it as a parameter to the tool. We took the default settings with window
length of 120 nt and a shift of 40 nt which are the default values (optimal behaviour).
rnazWindow.pl takes the resulting alignment file as input and returns the processed
alignments as output. Since the format of the input must be either MAF or CLUSTAL,



we had to change the FASTA format into one of those formats. We used the tool
ClustalW [2]] to change the FASTA format into ClustalW one.

Prediction (run RNAz)

At this point, the alignments are ready to be an ideal input for RNAz. We run RNAz on
the alignment windows passing the parameter -p 0.5. The option -p specifies the class
probability, i.e RNAz outputs the hits with just p>X (p>0.5). The hits of 0.5 probability
are classified as functional ones. later we will filter the hits of 0.9 probability in order
to study the most reliable hits.

Estimation of FDR

Now to estimate the precision of the number of our hits, we calculated the false dis-
covery rate (FDR) using the three equations. To do this, we generated a control screen
by shuffling the alignments. Then running RNAz again to get the hits of shuffled align-
ments at the same probability classes (0.5, 0.9). To shuffle the alignments preserving
its characteristics we used the tool SISSIz.

Clustering the overlapping windows to loci

Then, we clustered the hits of RNAz using the tool rnazCluster.pl. This tool takes the
(RNAz output) as input and combines the hits in overlapping windows to loci. The
input must be sorted according to the genomic locations of the reference sequence.

3.1 Retrieval of loci sequences

The output of the last step are the loci without their sequences. The tool rnazlndex.pl
was used to retrieve the sequence of the loci. At this point, we have the loci names and
sequences which are the input of the next step.

Clustering the loci sequences

Now, to identify the hits (loci sequences) which share a secondary structure motif, we
clustered them using RNAclust.pl 6] which gave us a hierarchical cluster-tree. Each
internal node of the tree represents a cluster of common secondary structure motif.
Each leaf represents one of the loci.

Tree Visualization

Then we used the tool Soupviewer and the tool iTOL to graphically show the tree and
easily identify the best clusters.

is a diagram of the work flow of the whole analysis starting by the data set
and ending by the visualization.
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Figure 1: The general work flow diagram of the Analysis using RNAz

4 Results

4.1 Statistics of both screens for comparison

Table [T] gives statistics for class probability higher than 0.5 which are classified as
functional, and Table [2] gives statistics for class probability higher than 0.9 which are
classified as functional of high reliability.




Table 1: several statistics of both screens at p>0.5

Statistics (0.5) screenl  screen2
number of loci 2279 8158
number of windows 3236 7559

total length of loci (nt) 325359 539198

Table 2: several statistics of both screens at p>0.9

Statistics (0.9) screenl  screen2
number of loci 877 2700
number of windows 1079 2554
total length of loci 115414 178849

Having compared the number of loci of both screens (0.5), we found that 2279
(27.93 %) of 8158 loci are located in exonic regions or splice sites, whereas the re-
maining 5879 loci (72.07%) are located in intronic regions.

And having compared the number of loci of both screens (0.9), we found that 1823
(67.51 %) of 2700 loci are located in intronic regions, 197 loci (7.29 %) span splice
sites and 680 (25.18%) loci are located in exons.

4.2 Statistics of transcripts of screenl

enables us to compare the resulting hits with the original transcripts using two
parameters: the length of the sequences and the number of transcripts. As we notice,
we lost a very large part of the sequences by aligning and windowing the transcripts.
Therefore, the total length of the loci is too small to consider the results sufficient one.

Table 3: The number and length of transcripts of all analysis stages

Statistics (transcripts) Number of transcripts ~ Length of transcripts (nt)

Original 8195 (100%) 426642903 (100%)

Alignments 8175 (99.75%) 133021650 (31.17%)

Windows 5426 (66.21%) 4043902 (0.94%)

Loci (0.5) 1276 (15.57%) 325359 (0.076%)

Loci (0.9) 638 (7.78%) 115414 (0.027%)
4.3 FDR

The next tables show the FDR values of both screens at the two probability classes 0.9
and 0.5.

As we see the FDR of screenl in [Table 4]and [Table 6]is optimistic, whereas the FDR
of screen?2 is pessimistic as we see in[Table 5]and[Table 7}




Table 4: FDR calculated on screenl of 1000 alignments p>0.9

FDR (all alignments) (0.9) normal shuffled FDR

number of loci 877 268 0.306
number of windows 1079 281 0.260
total length of loci 115414 34277  0.296

Table 5: FDR calculated on screen2 of 1000 alignments p>0.9

FDR (1000 alignments) (0.9) normal shuffled FDR

number of loci 25 14 0.560
number of windows 31 14 0.451
total length of loci 2078 1001 0.481

Table 6: FDR calculated on screenl of 1000 alignments p>0.5

FDR (all alignments) (0.5) normal shuffled FDR

number of loci 2279 706 0.309
number of windows 3236 945 0.292
total length of loci 325359 87846  0.269

Table 7: FDR calculated on screen2 of 1000 alignments p>0.5

FDR (1000 alignments) (0.5) normal shuffled FDR

number of loci 52 42 0.807
number of windows 66 44 0.666
total length of loci 4702 3248 0.690

We can notice that FDR value changes in each single screen and between both
screens. i.e. FDR of screen2 is higher than FDR of screenl, and in each single screen:
FDR of 0.9 class is lower than FDR of 0.5 class.

For a single screen, we can interpret the increase of FDR of class 0.5 in comparison to
class 0.9 by the high reliability of prediction (>0.9).

For both screens, the interpretation might depend on the fact that screen2 contains
introns while screenl does not, but this needs further analysis. Otherwise, the chance
could be the reason for this effect.

4.4 Statistics of screenl of class (0.9

We chose the hits (loci) of screenl of class probability 0.9 to continue the analysis
because of its high reliability. In this paragraph we present some statistics of this class.



Table [8] shows how many transcripts have a specific number of loci. One interesting
transcript is the one which has 13 hits. This transcript belongs to chromosome 5.

Table 8: The number of transcripts which have specific number of hits

Number of hits (loci) Number of transcripts
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To get further information of the 13 hits, we presented them using UCSC Genome
Broswer, see We can simply notice that the hits cluster themselves in groups
such as the first four and the next six hits. This fact could be of biological meaning, for
example they might share one function.
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Figure 2: The locations of the 13 hits

shows the number of hits per chromosome. We notice that chrl, chr2
and chr5 have more hits than others. Considering the number of transcripts of each of
the three (720, 768, 533 ), respectively, we see that chr5 has relatively more hits than
the others. However, considering a more reliable measurement: the total length of the
transcripts of each chromosome (50288230,20504623, 10647790) seems to be more
interesting, since chr5 is much smaller than chrl or chr2. Highlighting this information
might be helpful in further studies.




urmber of hits per chromosom

&0
]
fil
- i}
= 0
a0
[ 0
L ]
o I I
1
i) L]
1 2 34 8 0 TR SMDURBLVDHMIESIFIIROAR XY

Figure 3: Number of hits per chromosome

4.5 The similarity between the loci (screenl 0.9)

The tree retrieved fromRNAclust.pl enabled us to reveal clusters of the loci which share
secondary structure motifs. We chose the best clusters resulting from the tree according
to the minimum free energy (MFE) and the structural conservation index (SCI), taking
in consideration the number of sequences which effects both criteria, see table El The
best family is the first one: 14 loci belong to different transcripts and different locations.

Table 9: The best alignments of the loci (0.9) using their node ids of the resulting tree

Node ID Number of sequences MFE SCI
1284 14 -24.54  0.566277

1568 10 -42.29  0.573517
138 7 -39.15  0.774459
1056 5 -35.08 0.845261
144 4 -52.33  0.860691
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Figure 4: The secondary structures of the best five alignments presented by the tree

shows the secondary structures of the best chosen alignments. The best
family resulting from our analysis is the one consisting of 14 sequences (loci). Al-
though it has a relatively large number of sequences, the values of SCI and MFE are

relatively good.
presents the tree drawn by iTOL. We showed just the best alignments with its
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own secondary structures next to them.

Figure 5: The only chosen alignments are colored on the tree with its secondary structures

4.6 Similarity according to the relative locations of loci

We tried to discover similarity between the loci secondary structures according to their
locations at the transcripts. This way, we classified the loci locations to 9 sequential
classes starting from the smallest coordinate of the loci, see Then we gave
each class a unique color definition. Then we used iTOL to draw the tree resulting from
RNAclust, see We can easily notice that the colors are randomly distributed.
i.e. the sequences which locate in the same place of different transcripts do not share
secondary structure motifs. This means that we can not benefit from the classification
depending on locations to give it a biological meaning.
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Figure 6: A representative diagram of coordinating the loci according to its relative locations at
the transcripts

Figure 7: The tree colored according to the loci locations within their transcripts. cl indicates
class 1 which locates in the start segment of the loci, c2 indicates class 2 which locates in the
second segment of the transcripts, and so on.

5 Discussion
We worked on two screens of the same set of transcripts. We could, thus, enrich the
results by a comparison. From the one hand, the absence of the introns of screenl

helped detecting the hits in exons and splice sites. From the other hand, the existence
of the introns (in addition to exons and splice site) in screen2 helped detecting the hits
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in introns. Furthermore, we could calculate several values of FDR of both screens.

It is interesting that most loci are located in introns. Nevertheless, this might be inter-
preted by the fact the several classes of small RNAs (such as miRNAs and snoRNAs)
are hosted by IncRNA in intronic regions, and they are well detectable by RNAz. How-
ever, the interpretation of this fact might be addressed as a future work.

Remarkably, FDR calculated on screen2 was on average bigger than the one cal-
culated on screenl. Since the only difference between the screens is the existence or
absence of introns, only this fact may effect FDR. The effect of introns on RNAz or
SISSIz might be a topic of further research to study whether they are biased by the con-
tents of introns , because both tools are used to calculate FDR.

Unfortunately the length of the resulting loci was too small in comparison with the
length of the original transcripts. Thus, this analysis can not be considered as a com-
prehensive or final one, since we lost the vast majority of the transcripts by aligning
and windowing them. Nevertheless, the resulting loci contain some small families of
shared secondary structure motifs. A drawback of the analysis was the lack of well
known transcripts of such kind of ncRNAs which did not help us to make a compari-
son which might reveal the functions of our loci.

Finally we can say that the very big loss by aligning was the essential drawback (70%)
of this analysis. Therefore, a possible future work may be an attempt to create methods
which do not depend on the alignments.
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