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1 Introduction

Deoxyribonucleic acid (DNA) provides the instructions for building molecules in

organisms and is responsible for genetic expression by storing the instructions on how

to make proteins. To get a better understanding of the role DNA has, it is important

to have a look a the 3-D structure of the genome. It helps to understand interactions

on an inter-chromosomal(interactions of chromosomes with each other) level, e.g. for

Ribonucleic acid(RNA) secondary structure (compare [Tagami et al., 2010]), and how

the chromosomes arrange themselves inside the nucleus. It also shows interesting

features on an intra-chromosomal (chromosome regions interacting within the same

chromosome) level, like Topically Associating Domains (TAD) and A-B compartments.

One of the most common approach to investigate chromosomal structure nowadays

is the Hi-C-technique, extending previous methods like chromosome conformation

capture (3C, one vs. one), Chromosome conformation capture-on-chip (4C, one

vs. all) and Chromosome conformation capture carbon copy (5C, many vs. many).

Hi-C is considered an all-vs-all approach. Hi-C was proposed by Lieberman-Aiden

et al. [2009] and calculates a contact matrix for the loci of the whole genome, where

each entry denotes the count of contacts between the regions. The resulting matrix

is denoted as Hi-C matrix and is crucial to gain information on the structure of

chromosomes and their relation to each other and themselves. With the help of Hi-C

matrices, it is possible to detect A-B-compartments in the genome, where one (“A”

compartment) entails typically gene-rich regions where histones act as gene-enabling

whereas the “B” compartments’ histones tend to silence their genes. Usually the
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“A” compartments lie in the inner parts of the nucleus while the “B” compartment

make up the peripheral regions. Another interesting feature to be deduced by Hi-C

matrices are Topically Associating Domains (TAD), which represent regions where

loci tend to interact a lot with each other. These regions form triangles in the Hi-C

matrix where all of the contact pairs have high read values. That shows that loci

inside the TAD’s tend to interact more than on average. They represent loops in

the genome and the outer most loci define the region of the base pairs which are

located at the binding site. These loops are related to gene-regulatory functions

(compare [Lajoie, Dekker, Kaplan, 2015] ). Other experiments have shown that Hi-C

matrices can be used to determine chromosomal regions inside the nucleus and how

the whole genome is structured on an inter-chromosomal level(compare [Cristescu,

Borsos, Lygeros, Rodríguez Martínez and Rapsomaniki, 2018] ). Unfortunately, it

is expensive in terms of memory and time effort to calculate said Hi-C matrices.

Therefore it might be helpful to look out for new approaches to create or simulate

Hi-C matrices. One of them was suggested by Zhang, Chasman, Knaack and Roy

[2018] and uses protein data that is available for many cell lines and organisms and

not as complex to measure. Hi-C matrices are correlating with several proteins and

histones, especially at the boundaries of TAD’s, the supposed binding sites of loops in

the chromosomes. Therefore Zhang, Chasman, Knaack and Roy [2018] tried to predict

Hi-C contact reads by using Machine Learning algorithms. Machine Learning(ML)

can be helpful in this scenario, as many ML algorithm predict targets, using huge

input data, by searching for patterns and structures in the data. In this case, protein

and histone data were used as input data along with the genomic distance between

the loci. Since the idea and the first experiments showed to be promising, this project

aims to replicate their results and to possibly find new approaches to improve the

algorithm.

If it can be done to predict Hi-C matrices just by protein and histone levels at specific

loci it may help to drastically improve the availability of Hi-C matrices for research

purposes. Protein and histone levels can be easily calculated and are widely available,
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whereas the creation of Hi-C matrices is expensive in terms of computation time and

material costs. It is also prone to a lot of errors if the procedure is not undertaken

carefully. Even then Hi-C matrices might miss out on a lot of data since there will be

impure data and mistakes in the biological procedure.

Even though no prediction can truly replace real data it still is of great value to have

an approximation of Hi-C matrices easily available to conduct biological experiments

that can later be validated with real Hi-C matrices.

It might also help to improve the process of creating these Hi-C matrices in the long

term.
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2 Related Work

In the first part of this section, the process of creating a Hi-C matrix will be explained.

Then the role of proteins and histones in relation with the Hi-C matrix will be

discussed. Finally, the approach of Zhang, Chasman, Knaack and Roy [2018] that

motivates this project will be presented.

2.1 Hi-C

Hi-C as proposed by Lieberman-Aiden et al. [2009] aims at calculating contact

matrices for the whole genome by linking close regions together and processing the

resulting library. The contact matrix then denotes the amount of reads that have

been identified for each pair of regions. In a first step, spatially adjacent segments

of the DNA are cross-linked with the organic compound formaldehyde and then

cut into pieces with a restriction enzyme(compare Figure 1 [Lieberman-Aiden et al.,

2009]). The resulting ends are then filled with nucleotides. The ends are marked

with the vitamin biotin and the ends of each side are ligated between the cross-linked

fragments. The DNA is then purified and sheared into many pieces. The next step is

to filter out the ligated pieces that contain fragments of two fragments that were close

to each other in the nucleus. Since the protein streptavidin is attracted to biotin,

streptavidin beads serve as a selector, binding to the biotin. The resulting library is

then processed with massively parallel DNA sequencing. Each pair is then uniquely

aligned to a reference sequence to find out to which regions the two fragments of
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Figure 1: Example for Hi-C process

each pair belong. If there is no unique alignment for either one, the pair is dropped.

The contact matrix is then defined by setting the value mij to the number of ligation

pairs that have been identified as belonging to region i and region j. The matrix can

then be used for different procedures. Principal components, linearly uncorrelated

vectors, can be calculated to determine the compartments or the Hi-C matrix can be

visualized as a heat map.

Unfortunately there are a lot of limitations to the Hi-C approach. First, the procedure

requires abundant samples, since the efficiency of the steps is quite low, and it requires

a lot of replications to construct coherent results. Second, the approach requires

several steps that take a couple of hours resulting in complex and time-consuming

experiments to create a Hi-C matrix.

2.2 Proteins

Lan et al. [2012] have shown that some proteins are highly correlated with the

aforementioned Hi-C reads and should therefore be included when trying to predict

Hi-C matrices.
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CTCF might be one of the most important proteins for prediction since it is a binding

factor that binds segments of DNA to form loops. It is often observed when long-range

loops occur. Furthermore, it is important to include several histone proteins that act

in different ways related to the expression of genes. DNA is spooled around histones

as these give the DNA a frame for its structure. H3k27me3 and H3k9me3 play a role

in repressing genes whereas H3k36me3, H4k20me1, H3k79me2 relate to elongation

(producing several copies). H3k4me1 and H3k27ac serve as enhancer marks and

H3k9ac, H3k4me2, H3k4me3 are said to be related to active genes(compare [Karlić

et al., 2010]).

Besides the histones, some more proteins correlate to Hi-C reads. The cohesin

component RAD21 is important for chromosome segregation and DNA repair, the

general transcription factor TBP is also relevant to the binding of proteins. DNase

I is often observed in regions with active genes. Finally, we have SMC3, which is

important for the regulation and structure of the chromosomes, e.g. by holding sister

chromatids together during cell replication. All of these proteins are to be included

to use them for the prediction of Hi-C matrices. Since they all play a relevant role

in the structure of chromosomes they will help to deduce dependencies which can

predict the structure of a genome.

2.3 HiC-Reg

Zhang, Chasman, Knaack and Roy [2018] proposed an approach called Hi-C-Reg

that uses Random Forest Regression to predict Hi-C reads based on protein data.

Only contact pairs on a chromosome level are considered and only loci that are in a

certain range from each other. That is consistent with the observation that most of

the structures are recognizable when the loci are close to each other at up to 2 million

base pairs (mb). For each contact pair, a data entry is created. For each of the chosen

proteins and each of the two loci, the binned protein data for that region is stored, as

well as the genomic distance. To train the classification model it is also necessary to

6



store the target of the regression, which would be the entry of the Hi-C matrix for the

corresponding loci, the interaction read value. One suggestion of Zhang, Chasman,

Knaack and Roy [2018] was to include information about proteins that lay in between

the two loci so that the regressor has additional information about the protein levels

in the surrounding region. But there are two obstacles to this approach. First, there

might be a lot of values in between since the genomic distance can be up to 2mb.

Second, the amount of regions in between varies since it is necessary to predict values

for different genomic distances. But, as long as only a single regressor is used, the

data must have the same format. It is not possible to vary the length of the input

data to include all the values. Therefore the authors decided to take the mean of

all the proteins to normalize the procedure. This approach is called the “Window

approach” and resulted to be much more efficient than just considering the proteins

of the exact loci.

Experiments were conducted with 5 chromosomes (9,11,14,17,19) over 5 different

cell lines (Gm12878, K562, Huvek, Nhek, Hmek). One experiment investigated how

models trained by one cell line can predict chromosomes on other cell lines and there

was an indication that it works. But, generally the results were not conclusive and it

was just a tendency that was observed. It worked in some cases but also did poorly

in others.
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3 Methods

In the following the framework implemented during this project is to be presented.

The framework consists of many different steps to train a model that can predict

Hi-C-reads by using protein data as input. The protein data has to be binned to fit the

intervals of the Hi-C matrix and can be optionally altered. The training and test sets

have to be created with many options on how to do so. Then the training sets are used

to train a regression model, that can have some different parameters. In the current

version only Random Forests are supported. Finally, we can predict Hi-C-reads using

the regression model and there are several ways to evaluate the results or even to

plot the Hi-C-matrix. Each step will be explained in the following while pointing

out the different optional settings that were implemented for testing. For all of these

settings, experiments will be presented along with expectations on the effects. It is

worth mentioning that the framework in its current version only works with already

existing Hi-C matrices and is, therefore, a mere testing and experimenting framework

as a proof of concept, instead of being able to predict unknown genomes. For now, it

relies on the binning structure of existing Hi-C matrices even when predicting. Each

data set can, therefore, be used for training and testing, all of them contain the read

values as given by the Hi-C matrix. In the case of predictions, these read values are

cut from the test set and only the protein data is passed along.
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3.1 Protein Binning

Since the goal of the framework is to predict Hi-C reads by just using protein data

as an input, the protein must be binned and might be preprocessed in other ways

like normalization. First of all, a set of proteins and histones were chosen that are

correlated to Hi-C reads or have an important role in the binding of loops in the DNA.

In this experiment, as proposed by Zhang, Chasman, Knaack and Roy [2018], the

following proteins and histones were chosen: CTCF, RAD21, SMC3, H2az, H3k4me1,

H3k4me2, H3k4me3, H3k9ac, H3k9me3, H3k27ac, H3k27me3, H3k36me3, H3k79me2,

H4k20me1. Those proteins are easily available in the narrowpeak-format, assigning

protein peaks to specific positions in each chromosome. Since Hi-C matrices always

use binned data by grouping strands of a specific length (resolution or bin size) into

one region, the same procedure must be applied to the proteins. Corresponding

to the bins of the Hi-C matrix used for training and/or testing, the protein data

must be binned with the same positions to create coherent input data. The script

“createBaseFile” takes care of this part of the process. The specific cell line and the

resolution in kilo base pairs(kb) can be defined. Additionally, the user can set three

optional parameters.

• Normalize Protein Data to 0-1-Range

This approach should not have strong effects on the quality of training, but it

is important to ensure that protein data extracted from different experiments

have the same effects and normalization is an approach often used for Machine

Learning algorithms.

• Bin Operation

When binning the protein peaks there are several options to be chosen. The

maximum value of all of the peaks in the specific region can be chosen as

representative for this region or the average can be calculated. Other options

might be possible but so far these are the ones implemented in this project. In
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an earlier version there was also the option to use the sum of all peaks. But

since the bins have always the same size, there is no meaningful information

to be gained by doing so. The user can set the desired option. There could

be a considerable effect when changing this setting. Binning by using the

maximum would highlight big peaks as in an average scenario small peaks might

have a bigger influence on the resulting value. This might lead to the better

representation of high peak areas.

• Protein Peak Column

The user can opt to choose the column of the data format that is used to extract

the scores from provided protein files. The standard setting is 6 for the used

narrowPeak format (7 when not using zero-based indexing) since this column

denotes the signal value in standard narrowpeak file formats. In early intents

of predicting Hi-C matrices during this project a wrong column (4, score) has

been chosen, so this option enables the evaluation of the improvement gained

by choosing the correct column. It also allows to use other data formats like

broadPeak or gappedPeak if the user wishes to.

3.2 Creating datasets

The next step consists of creating the necessary data sets for training and testing.

To train and predict the whole Hi-C matrix it would be necessary to calculate one

row for each possible pair of regions. For n bins, n x n rows would have to be

calculated. This is not feasible because of the length of the genomes as it would result

in enormous data sets that would consume too much memory and runtime. But

the properties of the Hi-C-matrix and the special circumstances of this experiment

can be exploited to reduce runtime and memory consumption. First of all, only

the upper or lower triangular matrix has to be considered since it is symmetric.

Furthermore, the interesting areas of the matrix to recognize DNA loops are close
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to the diagonal. Therefore we can define a moving window approach considering

only the next m regions to combine with each region. That reduces runtime and

memory time drastically since the interesting area is about 2mb wide, which e.g. for

a resolution of 5kb ensures that only mxn with m = 400 rows have to be calculated.

An average chromosome has tens of thousands of bins for a resolution of 5kb, so

reducing that to only 400 basepairs is very impacting for memory and runtime. A

positive side-effect is that we do not use those parts of the matrix that are not as

relevant for loops as training input. This allows the regressor to concentrate its efforts

on the relevant parts. For each of these chosen pairs, a set with the following features

is calculated. The 14 proteins of the first binned region, the 14 proteins of the second

binned region, a representative value for each of the 14 proteins for all the regions

in between, and the genomic distance between the two regions. Furthermore, some

metadata is stored, the chromosome, the absolute position of the first region and the

cell line. The metadata is not used for training so far. Additionally, the Hi-C-value

at the specific position determined by the two regions is stored as a target in case of

the training sets and, if available, for the test sets.

The following options can be set for the creation of the data sets.

• Bin operation for in-between regions

Again there is a choice to be made on how to bin the protein data. In this

case, it is about the proteins of the regions between the two regions on focus.

This data has a lot of potential of great influence on the training since one

of the regions might be inside of a loop while the other one is outside of it.

The proteins can be binned by applying the average, the maximum or the sum

. Again the sum is redundant, since the average function together with the

distance between the regions gives us the same information. But it might be

that this relation is hard to detect for the regression algorithm, so it is going to

be included here, hopefully yielding the same results as the average function.

The maximum function, on the other hand, may give different results, similar
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to the previous binning case.

• Ignore Centromeres

Chromosomes usually have a centromere region that connects a pair of sister

chromatids. These regions are not interesting in terms of the Hi-C when

looking for loops or compartments as they feature the same value for the whole

centromere. Taking these regions out should help the regressor to improve

its predictions by focusing on the relevant data. Therefore it can be decided

to eliminate these regions from the data sets by providing a file that enlists

the centromere regions for each chromosome. Otherwise the default file of the

package is used. There is a distinction to be made between the different types

of centromeres a chromosome can have. Some of the chromosomes are classified

as metacentric(Chromosomes 1, 3, 16, 19, and 20), meaning that both arms are

equally long, some as submetacentric (Chromosomes 2, 4, 5, 6, 7, 8, 9, 10, 11,

12, 17 and 18) with arms of different sizes and finally acrocentric chromosomes

(Chromosomes 13, 14, 15, 21, 22) where one arm is barely detectable. It will be

interesting to see if this has any influence on the prediction.

• Equalize Proteins (deprecated)

This option was an approach to manually redesign the input data to fit our

knowledge about the situations in which loops can occur. As shown by Lan

et al. [2012] a loop is normally accompanied by protein peaks in both regions.

If just one of the regions or none of them shows a peak it entails that these

specific regions do not interact together to form a loop. When creating the

data entries for each possible interaction between regions, the idea is to set a

protein peak to 0 if there is no activity shown in the protein of the partner

region. This was supposed to be helpful since any of these interactions can not
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feature a loop correlated to the protein since they would have to be activated

in both proteins, as it works according to biological research. Unfortunately,

this approach resulted in worse results. One of the reasons might be that we

manually manipulate and falsify data instead of letting the algorithm figure

out this connection. Furthermore, we do not just try to predict loops but any

interaction value. Loops only make up a small fraction of the data entries and

with this framework, the intent is to predict the whole matrix, and therefore

a lot of regions, where not a lot of activity takes place. Especially the edges

of triangles in the visualized Hi-C matrices did suffer since a peak in one

region with no activity in the other region can be a hint for a loop that lies

inside or outside of the regions. Eliminating this information might disable the

regression algorithm to predict these interactions. Aside from the bad results, it

resulted that this approach could not be combined with the vectorized creation

of data sets in a newer version of this project, because each pairs would need

to be evaluated separately. Because of these reasons, it was taken out of the

framework.

3.3 Training

In the next step, the created training sets can be used to train models. The user

just has to pass the training set to the script and the model will be trained by

applying Random Forest (using the sklearn implementation of Random Forests)

regression and stored in a zip file (UNIX-compressed z). In an earlier version, it

was possible to combine several data sets of the same genome featuring different

chromosomes, but research has shown that there is a higher connection between the

same chromosome along different cell lines than there is between chromosomes on

the same cell line. Therefore this approach was taken out(compare [Nagano, Lubling,

Stevens, Schoenfelder, Yaffe, Dean, Laue, Tanay and Fraser, 2013]). Additionally, the

user can decide to set one more option.
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• Conversion method

As the read values of the interaction matrix range from rather small to large

values, the usual approach is to plot them after applying the log function. This

allows us to detect rather small differences in the lower ranges whereas the

differences in the high ranges are no that much accentuated. Because the

intensity of the interaction is also highly dependent on the genomic distance,

applying the log function helps to decrease that effect. In the same manner,

the user can decide to train on just the read values or to use the log values.

This is supposed to have a huge effect on the regressor’s performance. Without

applying the log function the regressor is supposed to focus much more on

interactions with a lower genomic distance since those have generally higher

read values. This is an effective way to reduce the error of the loss function

the model uses for its training. Training on log reads is supposed to cause an

improvement for the prediction of middle to long-range interactions while the

small range interactions might decrease in terms of prediction accuracy. Because

the log function changes higher values proportionally much more than smaller

values, the loss function will change its behavior and thereby the regressor its

focus.

3.4 Prediction

After training the model the framework can be used for the actual prediction. A

model file and a test set file must be chosen. It is optionally possible to provide a

path to a Comma Separated Values (CSV) file where some evaluation metrics and

parameter settings can be stored for each prediction. The script then passes the

test set to the model and predicts the interaction values for the test set. It then

converts the prediction back to an actual Hi-C matrix. Since only a subset of the
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Hi-C matrices is considered for testing according to the moving window approach, the

remaining entries are set to zero. In the last step, the necessary evaluation metrics

are calculated in comparison to the Hi-C values.

3.5 Evaluation Metrics

The following metrics are calculated to evaluate the accuracy of the prediction: R2

score, Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Squared

Log Error (MSLE). Furthermore, metrics will be used as proposed by Zhang, Chasman,

Knaack and Roy. The Pearson correlation stratified by genomic distance is computed,

that means that for each genomic distance the correlation of predicted and true values

is calculated separately. This relation can then be plotted to see how the prediction

accuracy changes when the genomic distance increases or decreases.

ρd = ρTrued,P redictedd

with Trued and Predictedd as the true and predicted values of the subset of pairs

that have the genomic distance d.

The calculated correlations can also be summarized by applying the Area under the

curve calculation to get a scalar value for each prediction. This metric is denoted as

Distance Stratified Pearson Correlation Area Under Curve (AUC) and was proposed

by Zhang, Chasman, Knaack and Roy.

AUC =

∫
ρd

Furthermore, a distance stratified average matrix is calculated that denotes for each

genomic distance the average read value of the original matrix. Correlation is then

also calculated for the comparison between each bilateral combination of these three
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matrices - the original, the predicted and the average matrix. Just as before Pearson

as well as Spearman correlation is calculated.

3.6 Visual Evaluation

Evaluation metrics can detect overall changes in the accuracy or correlation, and

compare methods to each other. But there has also to be a visual evaluation of the

actual plots. It is necessary to compare the prediction with the correct matrices on a

plot to compare recognizable structures. There are several approaches to do so. One

of them is to just put the plots next to each other. Another reasonable approach is

to subtract the predicted values from the correct values and plot the absolute values

as a Hi-C matrix, so differences (prediction error) can be highlighted. It might be

helpful to compare the resulting image to a similar approach where the average value

at the specific genomic distance is subtracted from the original matrix. The genomes

are very long and some structures like loops can not be seen well when displaying the

whole chromosome. Therefore only subplots will be displayed.
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4 Experiments

4.1 Default setting

The following setting is going to be used as a default setting. In both binning cases,

the mean is used as a representative value. Furthermore, the centromeres are taken

out, as this was helpful during the implementation phase. The binned protein peaks

are not normalized and not manually manipulated, as both approaches did not seem

to be helpful during earlier tests. The loss function will be Mean Squared Error and

the read values will not be logarithmized. The "Signal Value" peak column of the

narrowPeak format will be used.

4.2 Setup

The experiment will be conducted in the following way. Two cell lines of the human

genome will be used, Gm12878 and K562. The resolution will be 5mb in all the

experiments. The computational effort of creating the data sets, training on them

and predicting is high because of the length of the genomes and the high resolution.

Because of that, only the default setting will be used for the first part. With

this setting, the models will be trained for the whole genome on Gm12878 and

every model will be used to predict every chromosome, resulting in a total of 484

predictions. Afterwards, a subset of chromosomes (Chromosomes 7,9,14,18,19) will
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be used exclusively in the remaining experiments. The first step will be to show that

the evaluation metrics correlate with good and bad results on a visual basis and to

investigate the relations between the metrics so a focus can be laid onto the subsets

In the following, the effects of each parameter and if it behaves as expected will be

investigated. Finally, an experiment with two cell lines trying to predict the same

chromosome used for training, but on the other cell line, will be executed. By doing

so, it is expected to detect, which parameters might influence the predictions. The

aim is also to investigate the overall ability of the Random Forest regressor to predict

Hi-C matrices.

4.3 Default with all chromosomes

The first experiment is using the default setting and predicting all of the chromosomes

with each of the 22 models trained on each chromosome.

Figure 2 shows the results for the default setting. On the x-axis, the chromosomes

used for training the model are enlisted. On the y-axis the chromosomes that are

tested. The evaluation metric that was chosen for this graphic is Distance Stratified

Pearson Correlation AUC (just AUC in the following). The red values are indicating

that these predictions are good, but this is not surprising since they are all showcases

where the training and testing chromosome is the same. Since no training split was

used, these values are not informative. But there are other interesting patterns to be

seen. It is clear to see that some test chromosomes have tendencies of higher accuracy

values independent of the model that was used to predict them (Chromosomes 9, 13,

14, 15, 21, 22). This is interesting to see since all of the chromosomes with acrocentric

centromeres are part of this group. Chromosome 19, on the other hand, seems to be

hard to predict and that is telling since predictions by the model trained on 19 are

also really bad as well as these of chromosome 22. Models that do rather well have

been trained on chromosomes 5, 6, 7 and 11 among others. For the next experiments,
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Figure 2: AUC for all chromosome model-prediction combinations

Figure 3: Correlations between Metrics

when trying to measure the effects of different settings, only the chromosomes 7, 9, 14,

18 and 19 will be regarded as representatives. Since there are a lot of possible metrics,

it is necessary to compare them and to see which ones help and which are not apt to

describe the accuracy of the predictions. Therefore the correlation between all of the

metrics were calculated for this specific example. The metric used in Figure 2 (AUC)

was proposed by Zhang, Chasman, Knaack and Roy [2018] and was also used in

their analysis as the main indicator of a good prediction. Unfortunately, the model’s

built-in score function (R2 score, 0.12, compare Figure 3) and the metric used during

training (Mean Squared Error, -0.17) do not correlate with AUC. Mean Absolute
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Error (MAE, -0.63) and Mean Squared Log Error (MSLE, -0.54) show much more

correlation with the AUC metric. It might be interesting to change the loss function

of the model to MAE instead of MSE since MAE shows a much higher correlation

with AUC, a metric that is supposed to be indicative of the Hi-C predictions accuracy.

One advantage of AUC is that it is distance stratified computing the correlation for

each genomic distance. Thereby the high influence of the genomic distance is taken

into account when evaluating the prediction. AUC also correlates highly with the

Spearman correlation between the correct and the predicted values (0.88) but not

with the Pearson correlation of the same (0.09). Additionally, the difference between

the Pearson correlation of correct and predicted values and the Pearson correlation of

correct and mean values were calculated. This metric is denoted as Pearson difference

and its Spearman counterpart as Spearman difference. Both of these metrics show

the improvement of the model’s prediction in comparison to the simple average values.

Both of them do also correlate highly with AUC, the Pearson difference correlates

with 0.71 whereas the Spearman difference correlates with 0.77. This indicates that

AUC is indeed a good measurement since it shows higher values when the prediction

is better than the mere average. To show that the AUC metric is indicative of

good predictions, it is necessary to have a look at the visual presentation of the

predictions. Chromosome 7 will be used as an example. First of all the simple case of

a Hi-C matrix predicted by a model trained on the same chromosome (chromosome

7, AUC=0.912, compare Figure 4) will be presented and then a supposedly average

(model trained by chromosome 9, AUC=0.31, compare Figure 5) and a supposedly

bad (model trained by chromosome 19, AUC=0.196, compare Figure 6) prediction.

It is not surprising that the prediction made by training on the same chromosome

(Figure 4) is good. It is just a blurry version of the original and the difference matrix

confirms that the prediction is pretty close. But since that is testing on the training

set, there is not much insight. What is interesting though is that the diagonal seems to

be hard to predict even when predicting the same chromosome. And even some bigger

scale structures are hard to reproduce in this setting. But there are good arguments
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(a) Predicted Matrix

(b) Hi-C Matrix

(c) Difference between true and predicted values

Figure 4: Extract of Chromosome 7 Predicted with 7

21



(a) Predicted Matrix

(b) Hi-C Matrix

(c) Difference between true and predicted values

Figure 5: Extract of Chromosome 7 Predicted with 9
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(a) Predicted Matrix

(b) Hi-C Matrix

(c) Difference between average and predicted val-
ues

Figure 6: Extract of Chromosome 7 Predicted with 19
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to explain these observations. The closer the regions are in terms of genomic distance

and especially in the case of comparing one region to itself, the harder it is to explain

contacts by long-range loop structures, as many lower scale loops highly influence the

reads. But the approach, using protein data as input focuses on these loop structures.

Since the contacts in close regions have high numbers, there is also a lot of variance

that is hard to predict with regression. The discreet big structures, on the other

hand, suffer from the opposite. Those values are small and are hard to predict by any

algorithm. Minor changes can make a huge difference in the prediction, also because

of the logarithm that is applied to every value when plotting. The architecture of

the whole framework also complicates recognizing these structures, since it focuses

mainly on one specific point without taking the surrounding structures and values

into account. The window approach (using proteins of regions in between) tries to

account for that, but it seems that it is not enough and other ideas might need to

be implemented to help predicting better in terms of structures. When predicting

with models trained on other chromosomes (compare Figures 5 and 6)the prediction

becomes naturally much worse. There are still structures recognized but there is also

a lot of noise and structures where none are supposed to be. There is one repeating

feature in the prediction that draws the attention. There are a few blue rectangles

with a yellow frame like in Figure 7. This seems to happen when there are two regions

with high protein peaks but no loop presented. While it is good to see that the

regressor recognizes that there is no loop for most of the fields, it is still disturbing

that it is framed as a rectangle at the positions of the peak regions. This often

happens in the region between two TAD’s in situations where a loop could present

itself but is not there. But at least it can be shown that a higher AUC value indeed

results in a better prediction, not only in the trivial case of predicting on the same

chromosome but also in other cases. The prediction made by the model trained on

9 is much better and less noisy than the prediction made by a model trained on

chromosome 19, just as indicated by the AUC values. This is recognizable when

comparing the actual predictions, and even easier when comparing the difference
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Figure 7: Example for interesting framing behavior

matrices. In the case of chromosome 19, a lot of structures are highlighted in the

difference matrix, meaning that these structures have not been recognized by the

prediction whereas the difference matrix of chromosome 9 is much smoother. But

on the other hand, it still is not a good prediction and especially the areas close to

the diagonal in the difference matrix highlight this observation. In the next step

matrices with a higher AUC value will be compared. Chromosome 14 as predicted

by chromosome 9 (compare Figure 8) has an AUC value of 0.487 whereas the same

chromosome predicted by chromosome 19 (compare Figure 9) has an AUC value of

0.409. In general, all of the predictions of chromosome 14 have been good in terms of

AUC as has been shown above.

Again, by comparing the difference matrices it can be said that the higher AUC

for predictions by the model trained on chromosome 9 indicates a slightly better

prediction. But the predictions are bad in any case. It might, therefore, be hard

to compare the accuracy of predictions over different chromosomes. This prediction

is supposed to be much better than the first one. The differences in AUC between

different predicted chromosomes do not seem to entail a lot of meaning. Some
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(a) Predicted Matrix

(b) Hi-C Matrix

(c) Difference between true and predicted values

Figure 8: Extract of Chromosome 14 predicted with 9
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(a) Predicted Matrix

(b) Hi-C Matrix

(c) Difference between average and predicted val-
ues

Figure 9: Extract of Chromosome 14 Predicted with 19
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chromosomes might just be easier to predict, e.g. in terms of large non-loop regions

and hereby produce high AUC values. But it seems like the AUC is at least able to

compare the quality of predictions for the same chromosome. It is, therefore, possible

to use the AUC value as an indicator for quality when comparing different settings.

It also must be said and considered that it is not feasible to visually compare all of

the regions and that these examples are just are a tiny subset of the whole matrix. It

must be emphasized that comparing some of these samples visually can indicate a

tendency but is not a substantial metric to measure the prediction quality. In the

coming subsections, the effects of different settings will be measured.

4.4 Peak column

In an earlier version, the "Score" column of the narrowPeak format of the protein

files was chosen. The approach still worked, but once it was changed, an improvement

was noticed. To quantify this improvement all the AUC values for predictions based

on the score column and based on the default signal value column were calculated.

A subset of the aforementioned chromosomes is used. In 19 of 20 cases, the AUC

was higher for the signal value column, averaging a difference of 0.05. This shows

us that it is more efficient to use the signal value column that denotes the peak of

the proteins instead of the score column that denotes a value for visualization of the

peaks. Even though it is still a relevant value, using the actual peak is better(compare

Figure 10).

4.5 Cutting out centromeres

The next parameter concerns the centromeres. If set, the centromeres of the chromo-

somes will be excluded from the training set since they mainly appear as big blurry

regions in the visualization matrices. The same tests were conducted once with the
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Figure 10: Evaluation Metrics for Default Setting and Score Peak Column

centromeres excluded and once without any cutting. It turns out that the prediction

gets worse when cutting the centromeres, averaging a difference of 0.018, again in

19 of the 20 test cases. This is not what was expected to happen, even though the

difference is small. There is an aspect though that was not considered. Adding the

centromere regions leads also to a slightly bigger test set. It might then be that the

centromere regions, since they feature mostly the same values, are easily recognized

and predicted and boost the accuracy in that way. Therefore this experiment was

repeated with the same test sets to ensure the same conditions. That showed that

the parameter does not have an important influence on the outcome. The predictions

were on average slightly worse (0.002) when cutting the centromeres, but in 6 out of

the 20 cases, the AUC was lower, when using the whole chromosome. This shows that

the regressor can recognize the centromeres without harming its ability to predict

the remaining chromosome.The differences in AUC values were so small, that there is

no clear conclusion possible(compare Figure 11). The distance stratified plotting of
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Figure 11: Evaluation Metrics for Default Setting and Without Cutting
Centromere

the correlation values confirms that, as there is no difference between the plots of

the default setting and the ones where the centromere was included (compare Figure

12). Interesting is though, that for all the predictions made by the model trained on

chromosome 14, the AUC was slightly higher, indicating again that the type of the

centromeres influences the predictions.

4.6 Normalizing proteins

The next experiment was conducted with normalized proteins, which means that

the binned proteins peaks were arranged to a 0-1 range. It is a common approach

in Machine Learning to normalize the input data, and can have a big effect and it

indeed has. Again the average difference between the AUC’s was just 0.004 in favor of

the default setting and 10 out of 20 test cases were better when normalized. But the
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(a) Predictions by Chromosome 7 (b) Predictions by Chromosome 9

(c) Predictions by Chromosome 14 (d) Predictions by Chromosome 18

(e) Predictions by Chromosome 19

Figure 12: Comparison Distance Stratified Pearson Correlation between
Default and Including Centromere
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Figure 13: Evaluation Metrics for Default Setting and Normalizing Pro-
teins

margins on the particular predictions are huge with outliers in both directions. This

needs to be evaluated far more to make a coherent conclusion. Since it is a better

practice to use normalized proteins, that is the setting that is recommended for now,

but the AUC did not indicate which setting might be better overall (compare Figure

13). The distance stratified plotting of the correlation values confirms that, as there

are huge difference between the plots of the default setting and the ones where the

proteins were normalized was included (compare Figure 14), but there are both cases

of the normalized setting being much better and much worse.

4.7 Convert reads with logarithm

In this approach, the idea is to apply the logarithm to the read values to have

smoother target values. Since the entries close to the diagonal tend to be big whereas
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(a) Predictions by Chromosome 7 (b) Predictions by Chromosome 9

(c) Predictions by Chromosome 14 (d) Predictions by Chromosome 18

(e) Predictions by Chromosome 19

Figure 14: Comparison Distance Stratified Pearson Correlation between
Default and Log and Normalizing
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Figure 15: Evaluation Metrics for Default Setting and Log Conversion

values in the outer ranges are small, the algorithm would focus on predicting the

diagonal entries since much more can be gained by reducing the error in terms of the

loss function. Applying the logarithm is supposed to change that. This gets confirmed

as the average difference (0.01) shows that the log setting is slightly better (compare

Figure 15). The distance stratified plotting of the correlation values confirms this

finding, as there is again clear evidence that the plots of the default setting are slightly

worse than the ones where the reads were converted with the log function (compare

Figure 14).

4.8 Binning proteins with max function

In this part of the experiments, the effects of the max function as a binning function is

tested. Just as in some of the other cases before, it did not have a big influence on the

prediction accuracy and was slightly worse (average difference is 0.003). That might
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Figure 16: Evaluation Metrics for Default Setting and Max Binning

be especially true for small bins like in this particular experiment. With a resolution

of 5kb there is often just one protein peak or none at all. A max function would have

more effect for more populated bins in the case of higher resolutions (compare Figure

16). The distance stratified plotting of the correlation values confirms that, as there

is no difference between the plots of the default setting and binning with the max

function(compare Figure 18).

4.9 Window approach with sum function

The next part investigates the effects when using the sum function for the window

binning. This might help to emphasize relationships dependent on genomic distance,

but normally it should not have a big positive effect since the sum can be defined by

average and genomic distance, both features are given as input data in the default

setting. The results of the experiment show that the predictions get much worse
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Figure 17: Evaluation Metrics for Default Setting and Summed Window

when summing the protein peaks instead of taking the mean. It got worse for all of

the test cases with an average difference of 0.1 which shows that it is much better to

take the average (compare Figure 17). There might still be other approaches that

would be worth trying like the max function. The distance stratified plotting of the

correlation values confirms that the sum function has a negative effect, as these plots

are much worse than the ones of the default setting(compare Figure 18).

4.10 Cross cell line predictions

Research has shown that it is more promising to predict the same chromosome but

learn on another cell line. This approach is presented in this section. Again the

default setting was used. Each chromosome on cell line K562 was predicted by

models trained on the same chromosome of cell line Gm12878. Additionally, each

chromosome of K562 was predicted by models of all the other chromosomes, resulting
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(a) Predictions by Chromosome 7 (b) Predictions by Chromosome 9

(c) Predictions by Chromosome 14 (d) Predictions by Chromosome 18

(e) Predictions by Chromosome 19

Figure 18: Comparison Distance Stratified Pearson Correlation between
Default and Sum and Max Binning
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Figure 19: AUC for K562 Cross Cell Line Predictions

in 462 combinations. For each predicted chromosome the AUC of the worst and the

best prediction as well as the mean is shown along with the AUC of the prediction

made by the other cell line (Gm12878). The results show that the prediction across

cell lines is in many cases close to the best of the 21 predictions that were conducted

with chromosomes from the same cell line. This confirms that it is promising to learn

and predict the same chromosome across cell lines.
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5 Conclusion

Overall it can be said, that there are clear indications that predicting Hi-C matrices

is possible, but the predictions are just not good at the moment. They recognize

some structures, tend to have high values around the TAD’s but lack of consistency

and especially of showing the well-defined structures Hi-C matrices have.The different

settings and options that were used so far, do not have a great (positive) influence.

The best parameters only change the predictions by a small margin while most

alternative settings do not cause any noticeable change or even decrease the accuracy.

There are many different options on how to proceed. In a first step it might important

to create a coherent metric that has clear ability to recognize good predictions. That

might include a comparison of TAD’s and compartments. It might be a good idea to

focus on 2 chromosomes and try different approaches. During this project, it was

often hard to evaluate the results since the AUC value is just one value and not

necessarily the best metric. Comparing the images by visualizing them is helpful in

the beginning as the human eye is very good at comparing structures, but it is not

feasible in the long run due to the length of the chromosomes. Maybe it is possible

to develop a good mathematical metric and test it just on a small subset of the

chromosome and validate it by comparing the images. That will help in the long run

to make clear distinctions between the quality of the predictions and choosing good

parameters and settings with coherent and academic decision making.

A very promising result was the cross cell line prediction. It might not always be close

to the best prediction, but it is constantly good. There might be also be many ways to
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adapt the input data or general setup to apply better for cross cell line predictions, as

the current predictions might suffer because of that. It also enables more experiments

as one can focus on a single chromosome per cell line instead of several chromosomes.

This would make the experiments much easier and more settings could be explored.

One of the greatest problems when trying to predict Hi-C matrices is the amount

of data in general and the scarcity of input data for many entries. A lot of regions

do not have any peak for most of their proteins or sometimes even none at all.

Another problem is that most of the contacts are not caused by loops between the

two regions we look at but by surrounding structures of other pairs. These have a

high influence on the read values. The window approach tries to account for that by

calculating representative values for the regions in between. But it does not account

for surrounding and neighboring regions outside of the two regions. But these areas

might be especially interesting since the regions in the focus could lie in a bigger

loop. A straight forward approach to account for that behavior would be to extend

the window approach to neighboring areas. It might be hard to define a reasonable

area and just as with the window approach, another problem would be faced. Howis

it possible to account for different genomic distances when applying the window

approach? At the moment just one representative value is chosen. But it might be

helpful to make a distinction on how to summarize the regions in the middle, when

sometimes the distance is just 5kb and in other cases 2mb.

A new idea is to group the entries by genomic distance and train different models

for all of them, but that would lead to a lot of different models and it seems rather

unfeasible. But it is evident that the surrounding of the regions of interest are

important for the predictions and it should be helpful to think about ways how to

include more information.

Another approach heading into the same direction might be to predict from the top

to the bottom. It could be possible to start predicting the entries with the highest

genomic distance and use these predictions plus the proteins to predict the next level

and so on. This might help to account for the influence long-scale loops have to
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smaller range predictions. A similar approach would try to directly predict TAD’s and

compartments and possibly use this predicted information to have more information

as input data for the Hi-C read predictions. All of these ideas have one idea in

common, to exploit information of underlying structures and their influence for each

region pair in the matrix, instead of limiting the data to the two regions. Interestingly

that Zhang, Chasman, Knaack and Roy showed that the window approach improved

their results, even though it only takes into account regions in between, which means

that these regions can form no loop that frames the specific intersection of interest.

The impact of using information about structures outside of the two regions must be

even higher.

This might also help to deal with the general lack of structural prediction ability

of the current regressor. Whereas it mostly recognizes regions of interest, it fails

on displaying coherent and sharp structures. It is supposed that this is caused by

focusing on every single intersection without taking the bigger image into account.

A completely different approach to improve the results might be to try out hyper

parameter training or to use other regressors or even Neural Networks. This might

certainly help, but the bigger issues are supposed to be the ones mentioned before.

It is much more promising to focus on adding structural information to the input

data.

Concluding it can be said that there are many approaches that can be tried in the

future. The potential of predicting Hi-C matrices is certainly there, but new ways

must be found to unleash it.
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