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Abstract

A non-coding RNA molecule functionality depends on its structure, which
in turn, is determined by the specific arrangement of its nucleotides. The
inverse folding of an RNA refers to the problem of designing an RNA se-
quence which will fold into a desired structure. This is a computationally
complex problem. Algorithms which solve this problem take different ap-
proaches, but they share the following attitude: They start from an initial
sequence or population and try to move it towards a desired product by
performing normal or optimized search methods. RNA inverse folding pro-
grams are given different constraints such as GC-content ranges or basepair
or nucleotide configurations. The output is normally one or more sequences
which fold to the target structure.
This work introduces a basic system that given a set of sample RNA sec-
ondary structures, produces models which generate structures similar to the
sample set. The objectives and constraints are automatically extracted from
samples. For doing this, a system is designed which generates models by per-
forming learning on families of RNA sequences. This system consists of two
subsystems: one responsible for decomposing secondary structures of sample
RNAs into structural features and building a structural features corpus. It
also extracts neighborhood connectivity models of structural features in the
form of N-grams. The other subsystem is a reinforcement learning frame-
work which uses the corpus and connectivity rules to produce models for
generating structures which are similar to the samples.
Results in this work show that the current system is able to produce models
from RNA families which have a symmetric shape. To make the system
capable of dealing with a broader range of RNA families and producing
structures with functionalities identical to the sample structures, a refined
feature extraction module has been added to the system. This module ex-
tracts the GC-content, size and local information of structural features and
builds a refined feature corpus. This can provide the basis for a new set of
experiments and a start point for producing models with practical applica-
tions.
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Kurzfassung

Die Funktionalität eines RNA Moleküls hängt von seiner Struktur ab, die
wiederum durch seine spezifische Anordnung seiner Nukleotide bestimmt
wird.Inverse RNA-Faltung bezeichnet das Problem eine RNA-Sequenz zu
gestalten, die sich in eine gewünschte Struktur falten wird. Es ist ein Prob-
lem mit hoher Rechenkomplexität.Algorithmen, die dieses Problem lösen,
benutzen verschiedene Ansätze, aber sie teilen einen Grundansatz: Sie be-
ginnen mit einer Initialsequenz oder Initialpopulation und versuchen diese
zu einer gewünschten Sequenz oder Population zu transformieren, indem sie
normale oder optimierte Suchmethoden benutzen.RNA inverse Faltungsal-
gorithmen können ihren Suchraum zum Beispiel durch bestimmte GC-
Gehälter oder durch strukturelle und sequenzielle Randbedingungen ein-
grenzen.Die Ausgabe ist normalerweise eine oder mehrere Sequenzen welche
in die gewünschte bestimmten Struktur falten.
Diese Arbeit stellt einen Algorithmus vor, der basierend auf Beispiel RNA
sekundär Strukturen Modelle erstellt,welche gleichartige Strukturen gener-
ieren können.Die Ziele und Beschränkungen des Algorithmus werden au-
tomatisch extrahiert aus einer Menge von RNA Beispielsequenzen. Um dies
zu erreichen, gestalten wir ein System, das Modelle generiert, indem es auf
funktionalen Familien von RNA Sequenzen lernt.Der Algorithmus besteht
aus zwei Teilsystemen. Das erste Teilsystem zerlegt die gegeben sekundär
Strukturen in ihre strukturellen Merkmale und formt daher den strukturellen
Merkmalskorpus.Es extrahiert Nachbaraschafts-Zusammenhangs-Modelle der
strukturellen Merkmale in der Form von

”
N-grams“.Das zweite Teilsystem

bildet der Reinforcement Learning Rahmen. Hier werden die Informatio-
nen des Merkmalskorpus und die Zusammenhangregeln zur Generierung des
Modells genutzt, welche gleichartige Strukturen erstellt.
Ergebnisse diese Arbeite zeigen, dass der Algorithmus in der Lage ist Mod-
elle basierend auf RNA Familien mit symmetrischen Struktur zu gener-
ieren.Des weiteren wurde der Algorithmus mit einem verfeinert Merkmals-
Extraktions-Model ausgestattet um mit einer größeren Anzahl von RNA
Familien umzugehen und sicherzustellen, dass die generierten Sequenzen
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die gleichen Funktion wie ihre Beispiel Strukturen besitzt. Dieses Modell
extrahiert den GC-Gehalt, Größen- und Ortsinformation der strukturellen
Merkmale und formt den verfeinerten Merkmalskorpus. Es kann als Aus-
gangspunk für neue Experimente genutzt werden um Modelle mit spezifis-
chen Anwendungen zu produzieren.
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Chapter 1
Introduction

An RNA molecule functionality depends on its structure, which in turn,

is determined by the specific arrangement of the nucleotides in the RNA

molecule. The inverse folding of an RNA refers to the problem of designing

a RNA sequence which will fold into a desired structure. This is a compu-

tationally complex problem.

Algorithms which solve this problem take different approaches, but they

share the following attitude: They start from an initial sequence or pop-

ulation and try to move it towards a desired sequence or population by

performing normal or enhanced search methods.

These algorithms mainly use the following approaches for solving the prob-

lem: dynamic programming, genetic algorithms, and constraint satisfaction

methods. Many of RNA inverse folding programs accept various explicit

constraints which define the characteristics of the desired target structure.

These constraints are in the form of GC-content ranges, basepair or nu-

cleotide conservations etc. The final product is normally one or more se-

quences which have a specific structure and hence, a desired functionality.

In this work we introduce a system for producing models that generate

structures similar to the representative structure of a given RNA family.

The objectives and constraints are automatically extracted from the sample

set. This system has been designed and implemeted in two phases:First a

standalone system for decomposing RNA structures into structural features

have been built. A second system, a reinforcement learning framework, has

1



1.1. Non-coding RNAs

been then built and integrated with the first system. We have called it RL-

RNA.

Results from the first set of experiments show that this system is able to

capture the coarse shape of simple structures. In order to provide the system

with fine-grained information of sample structures, another module has been

added to the system. It extracts GC-content and size and relative location

information of structural features in a given secondary structure. The fea-

ture extraction mechanism is not limited to the three measures mentioned

above. Other measures could be introduced and incorporated to this module.

1.1 Non-coding RNAs

1.1.1 Biological view

RNA

Ribonucleic acid (RNA) is a macro molecule which plays an important role in

protein synthesis in biological cells. RNAs consist of long chains of chemical

building blocks called nucleotides which are compounds containing a sugar,

phosphate groups, and a nitrogenous base. The four nitrogenous bases in

nucleotides are adenine, guanine, cytosine, and uracil which are identified

by A, G, C, and U letters respectively.

ncRNA

Non-coding RNA is any RNA sequence which does not encode a protein.

There are different groups of ncRNAs with various roles in cellular processes.

Recent advancements in genomics have shown that in complex biological

organisms, a major part of the genetic information is copied into none-coding

RNAs.[16] This has brought a lot of attention to the study of structure and

functions of different types of non-coding RNAs.

RNA secondary structure

RNA molecules fold into complex structures by forming bonds between pairs

of G and C, A and U, and A and G bases. These are called secondary struc-

tures which convey the functionality and purpose of the RNA. Structurally

2



1.1. Non-coding RNAs

related RNA sequences belong to the same family. There are two main prob-

lems which are related to the secondary structure: RNA folding and inverse

folding.

Secondary structure features

RNA secondary structure is assembled from a number of structural features.

These basic building blocks are repeating in different numbers and combi-

nations to form the unique structural and functional characteristics of the

sequence. These features are as follows:

• stack (stem)

• internal loop

• multiloop

• hairpin loop

• bulge

• dangling end

Figure 1.1: RNA secondary structure features

3



1.2. Synthetic biology and RNA inverse folding

1.1.2 Computational aspects

RNA secondary structure prediction

Also known as RNA folding prediction is one of the classical problems in

computational biology which deals with predicting the most likely secondary

structure given an RNA sequence. There are many different methods for

solving this problem which boil down into comparative, thermodynamic,

and probabilistic approaches.

Multiple sequence alignment

Is the multiple alignment of two or more biological sequences to capture their

common motifs and conserved regions. The results of alignments are very

useful in structure prediction and optimized searches in genomics databases.

[25]

Consensus secondary structure

Is the representative structure for a group of related biological sequences.

In the case of RNA, the consensus secondary structure of a family mainly

deals with basepair conservations.

Covariance model

Is a probabilistic model that can generate representative members of an

RNA family. It captures characteristics of a multiple sequence alignment

in both nucleotide and pairwise consensus structure aspects. CMs are gen-

eralizations of Hidden Markov Models and are produced from annotated

representative members (seeds) of a family. They can automatically anno-

tate single sequences to decide if they are related to the family. In this case

a covariance score is calculated for the given sequence. [6]

1.2 Synthetic biology and RNA inverse folding

Here we give an introduction to synthetic biology as one of the computational

fields in biology and we will talk about RNA inverse folding, one of the most

4



1.2. Synthetic biology and RNA inverse folding

famous problems in this field. We will give an overview on the computational

complexity of this problem and state-of-the-art algorithms for solving this

problem.

1.2.1 Synthetic biology and its applications

Synthetic biology is a broad interdisciplinary field of science which combines

several disciplines such as biotechnology, systems biology, and computer sci-

ence and is highly related to genetic engineering.[8] Synthetic biology in-

volves the engineering and synthesis of biological systems with functions

which do not already exist in nature. These systems might range from a

single molecule to an entire organism. This field of study is rapidly growing

and offers a very diverse spectrum of research projects. There are several

important application areas into which, synthetic biology will bring along

promising changes, some of which are:

• Biomedicine

• Synthesis of biopharmaceuticals

• Sustainable chemical industry

• Environment and energy

• Production of smart materials and biomaterials

1.2.2 The RNA Inverse Folding Problem

RNA inverse folding is the problem of finding one or more sequences which

will fold into a specific secondary structure. This problem, which belongs to

the field of synthetic biology, has several application areas: Designing non-

coding RNAs, which are involved in gene regulation, chromosome replica-

tion, and RNA modification. Construct ribozymes and riboswitches, which

may be used as drugs and therapeutic agents in research. Building self-

assembling structures from small RNA molecules, which is used in nano-

biotechnology. [9]

5



1.3. Algorithms for RNA inverse folding

1.2.3 Hardness of the Problem

The problem of designing RNA sequences can be reformulated into a Hidden

Markov Model (or a Stochastic Context-free Grammar) using the probabilis-

tic formalism. It is then proved to be NP-hard. [22]

This means that finding a global solution would require exponential time. In

addition, many of the existing RNA inverse folding methods use some fold-

ing algorithm at some point. Given that the folding problem is NP-complete

[2] , the complexity of the real problem is even higher. Introducing efficient

heuristics to break down this complexity drives many researchers to look for

new approaches to solve this problem.

1.3 Algorithms for RNA inverse folding

There are several algorithms for solving the problem of inverse folding. They

take different approaches and accept various constraints and use some heuris-

tics. Here we introduce some of the most known algorithms and make a brief

explanation about how they work.

The first three algorithms use the folding function of Vienna RNA Pack-

age as the folding problem solver. Frnakenstein and ERD also use RNAfold.

Modena can use different problem solvers such as RNAfold and CentoidFold.

RNAInverse (1994)

Uses dynamic programming. Uses base pairing matrices of the partition

function as heuristics. [11]

RNA-SSD (2004)

Uses constraint satisfaction method. Uses probabilistic sequence initializa-

tion heuristics. [1]

Info-RNA (2006)

Is a two-step algorithm which uses dynamic programming as the initial step

and stochastic local search as heuristics. [3]

6



1.3. Algorithms for RNA inverse folding

Modena (2011)

Uses a genetic algorithm in combination with multi-objective optimization

and outputs several optimal solutions per run. It accepts multiple objective

functions as constraints. [24]

Frnakenstein (2012)

Uses genetic algorithms and utilizes local search (adaptive walk) as heuris-

tics. It can find multiple target structures. [15]

incaRNAtion (2013)

. Uses a probabilistic model (weighted sampling) and fixed constraints. Has

low space and time complexity in comparison to other methods. [20]

RNAiFold (2013)

Uses a non-heuristic constraint satisfaction method and outputs the whole

target space. [10]

ERD (2013)

Takes the genetic approach in combination with hierarchical decomposition

of secondary structures as heuristics. [7]

RNAdesign (2013)

Uses graph coloring in combination with local optimization and outputs

multiple target sequences. [12]

antaRNA (2015)

Applies ant colony optimization technique on multi-objective constraint dec-

larations, it introduces multiple target GC specifications and fuzzy structure

constraints. [13]

7



1.4. Machine learning in bioinformatics

1.4 Machine learning in bioinformatics

One of most promising branches of artificial intelligence in research and

industry is machine learning. Its applications span over computer vision,

object recognition, robotics, data mining, and many other practical fields.

In this section, we talk about the applications of machine learning in bioin-

formatics.

1.4.1 Artificial Intelligence and Machine Learning

Artificial intelligence is the art of making intelligent machines which can

be used in tasks that require cognitive abilities. Knowledge plays a central

role in artificial intelligence, and designing systems that can acquire new

knowledge from data is one of the main goals of artificial intelligence. [21]

Machine learning is the study of designing computer algorithms which can

automatically improve their performance by learning from experience data.

It is one of the most practiced subfields of artificial intelligence and its usage

in different industrial and research areas is growing fast. [17]

1.4.2 Types of machine learning

Machine learning techniques are categorized into three major fields: super-

vised learning, unsupervised learning, and reinforcement learning. Here a

brief introduction is given to the two first fields and in the following section,

we introduce reinforcement learning in more detail.

Supervised learning

In supervised learning, the system is introduced to some labeled data. The

task of the system is then to learn the hypothesis which best represents

the correlations between the data and labels. It can then predict the la-

bels of new data which were not seen before. Supervised learning can be

applied to predicting discrete labels (classification) as well as continuous

ranges (regression). There are also more advanced methods which combine

both approaches.

8



1.4. Machine learning in bioinformatics

Unsupervised learning

The most famous example of unsupervised learning is clustering. Given a

non-annotated data set, a clustering method tries to find similarities and

recurring patterns among the members of the set and group the data based

on these similarities.

1.4.3 Biological data revolution

Biological data has two major characteristics: it is complex and huge. This

body of data has a fast pace of growing. This has caused many traditional

computational techniques to fail to analyze and manage the big data. The

need for adaptive systems which are capable of dealing with large data sets

gave rise to machine learning techniques which are now vastly used in dif-

ferent biological application areas.

1.4.4 Machine learning applications in bioinformatics

There are several domains of biology which benefit the most from machine

learning methods. Genomics, proteomics, system biology, evolutionary biol-

ogy, synthetic biology and biological data management are some examples.

[14]

Classification

Supervised learning has different applications in bioinformatics, here we

mention some:

• predicting protein secondary structure with Artificial Neural Networks

• RNA gene finding using Support Vector Machines

• identifying genes using classification trees

• predicting RNA secondary structure with KNN classifiers

Clustering

Clustering methods are vastly used in microArray analysis.

9



1.5. Reinforcement learning

1.5 Reinforcement learning

In this chapter a theoretical introduction to reinforcement learning is given.

The mathematical foundation of reinforcement learning is briefly presented

at first. In the rest of the chapter, one of the most popular and flexible

approaches of reinforcement learning called Q-learning is introduced.

1.5.1 Classical reinforcement learning

Reinforcement learning is learning by experience. In this sense, it is differ-

ent from the other two fundamental approaches of supervised learning and

unsupervised learning.

In reinforcement learning, an agent learns to achieve an objective while in-

teracting with an environment. The environment is the embodiment of a

specific learning problem. It consists of a set of different states S and a set

of actions A.

The agent selects an action at each state, is transferred into a new state

and gets a reinforcement signal in the form of a reward or punishment. The

transition from one state to another might be a one-to-one mapping (deter-

ministic) or a one-to-many mapping (stochastic). In the second case, we use

probabilistic transition functions. [23]

Agent

Environment

action
state

reward

Figure 1.2: Agent-environment interaction in reinforcement learning

10



1.5. Reinforcement learning

1.5.2 Markov Decision Processes

A state is said to have Markov property if it retains all the necessary in-

formation about past experiences so that the agent does not need to know

about the history of its actions. A reinforcement learning task with Markov

states, can be fully represented by the current state, current action, and

the reward to this action. In this case, we call the task a Markov decision

process or for short a MDP.

A finite MDP is a MDP with finite state and action sets. The transition

probabilities of any given state s and action a for possible next states ś in a

finite MDP are calculated by the following formula.

Figure 1.3: Markov decision process transition function (figure from [23])

1.5.3 Reinforcement learning elements

Agent

A learning agent interacts with the environment in discrete time steps. At

each step it selects an action which causes a transition to the next state and

brings back a reward. Through time, the agent will learn to select actions

which maximize the accumulated reward . Depending on the system archi-

tecture, the learning and decision making mechanism could be implemented

in the same or different structures. Actor-critic methods fall into the second

group.

Environment

Environment defines the characteristics of each specific task which is to

be formulate as a reinforcement learning problem. A well defined problem

which can guarantee success needs to capture all the relevant features of the

task at hand and reformulate them into environment dynamics which are

usually the transitions between states and the objective function.

11



1.5. Reinforcement learning

Policy

Policy is the mapping from states to actions. A policy π enables the agent to

decide which action to pick at a certain time step and in a certain state. The

learning process is all about finding the optimal policy in the policy space

of a problem. An optimal policy is the policy which achieves the maximum

long term payback. The optimal policy might or might not be unique.

Objective function

The goal of a agent during each step of learning is to maximize an objective

function. This objective function normally consists of two parts: an imme-

diate reward r that the agent receives at each time step by selecting actions

and making transitions to other states, and a state value v which specifies

the amount of expected accumulated reward when the agent continues from

the next selected state. Value and reward functions are two main directives

for guiding an agent towards the best course of action.

Figure 1.4 shows the value function for a Markov decision process in a given

state s, if the agent starts from this state and follows a policy π.

Figure 1.4: Value function for state s (figure from [23])

Delayed reward

In many real world situations, such as games or control problems, it is not

possible to credit each time step with an immediate reward. In such cases

the system uses delayed rewards which is a final total credit at the end of

each experience trial. The step-wise rewards are then formed through time

by the final credit being back-propagated through the whole state sequence.

Exploration vs. exploitation

In order to avoid local maxima in the search for the best state value, the

agent has to make a balance between following the current policy (exploita-

12



1.5. Reinforcement learning

tion) and trying actions which will lead to unvisited states (exploration).

One of the common approaches to this problem is ε-greedy action selection

method. This approach will choose the best action with probability 1− ε or

a random action with probability ε.

1.5.4 Model-Based vs. model-free Learning

A model of an environment is the mapping from current state and the action

taken at that state to the next state and the reward returned for this tran-

sition. Since in many real world problems the model is not known, classical

methods which need a model to operate would fail. In such cases model-free

approaches are used.

A model-free learning algorithm uses sample sequences of states. These

samples might be produced by experience or through simulation. Monte

Carlo and temporal difference learning methods are the two main classes of

model-free learning approaches. Q-learning is a popular yet simple tempo-

ral difference algorithm which is used as the main learning algorithm in this

thesis. Here we give an introduction to this algorithm and present its formal

notation.

Q-learning

Q-learning has a vast application in real-life situations in which, not all

of the necessary assumptions for the theoretical approach are fulfilled. In

many practical applications where transition functions of the environment

are unknown or hard to capture, we can use Q-learning.

As a model-free approach, Q-learning uses action-value function instead of

the usual value function.

Action-value function estimation

Given a policy π, an action-value q of an action a in a state s specifies the

expected reward of choosing a at s and continuing by following π from the

next state. Figure 1.5 demonstrates the iterative formula for updating the

action-value function Q.
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It is a one-step update, meaning that action-values at each states are influ-

enced by the values of the immediate next states.

Figure 1.5: One-step Q-learning action-value function estimation (figure

from [23])

Algorithm

Q-learning starts with random guesses about action-values of states and

iteratively updates these values by going through learning episodes. If all

action-values converge, the learning finishes and the mapping from states to

their respective action-values is returned as the policy.

Figure 1.6: One-step Q-learning algorithm (figure from [23])

1.6 Thesis contribution

This work contains the design and implementation of a new system which

generates RNA structural feature databases in one hand and learns models

capable of producing similar RNA structures using these features on the

other hand. Two versions of the systems are introduced here: the first ver-

sion is able to learn coarse shape of RNA structures. The main focus of the

experiments is on this version. The second version is an improvement de-

signed to automatically extract detailed information from structural features

14



1.6. Thesis contribution

in the database and incorporate that information to the learning process.

Experiments on the second version are a subject of future work.

In the next chapter we provide the reader with information about design

and implementation of both versions of the system. In chapter 3 we give

all experimental setups necessary for reproducing the experiments and show

the results of our experiments. In chapter 4 we discuss results and make

suggestions for improving the system to turn it to a production tool in real

applications; future work is inspired by these suggestions.

15



Chapter 2
Method

2.1 Formulation

2.1.1 Definition

We want to produce RNA secondary structures which follow the structural

rules same to the members of a sample RNA family. Our proposed approach

is to identify and obtain meaningful substructures in sample RNAs. We

train a learning model to recombine these substructures to produce new

structures. The synthesized structures should have same shape and similar

substructures as what is observed in the sample set.

2.1.2 Encoding

We use a decomposition scheme which is based on identifying structural

features in the secondary structure of a sequence. We use a procedure to

decompose all the sequences in the target family and build a structural fea-

ture base.

A tool suit for connecting structural features and producing valid combi-

nations has been designed and implemented. Decomposition and recombi-

nation operations involve graph representations of secondary structures of

RNA sequences. A set of rules are inferred from the consensus models of

each family which govern combination operations (grammar). The extracted

database and grammar are then used in a learning system to learn policies

for generating combinations which comply with the family grammar.
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2.1. Formulation

2.1.3 System outline

To build a system which can solve this problem, two main sub-systems are

implemented:

• A system for generating the structural feature base and maintaining

the grammar

• A learning system

Figure 2.1: A schematic view of the system outline

2.1.4 Technical notes

For implementing the system and running the experiments, we use the fol-

lowing programs and data sources:

Programming language

Python programming language is used for implementation.

RNA structure representation

To present RNA secondary structures and structural features in the form of

graphs, networkx module in python is used. EdeN tool suit is used to down-
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2.2. RNA coarse shape learning

load sample datasets in the form of fasta files, pre-process fasta sequences

and generate mfe RNA secondary structures in the form of networkx graphs,

and visualize intermediate and end results. [5]

Experimental data

Experimental data are RNA families from the Rfam database. [18] Each

family in Rfam database is set of non-coding RNA sequences which is repre-

sented by manually curated alignments and consensus nucleotide-wise, pair-

wise, and structure-wise models of the family.

2.2 RNA coarse shape learning

The aim of this part of the methodology is to test if a reinforcement learning

system can correctly learn the most typical shape of the secondary struc-

ture of an RNA family. The system learns to combine secondary structure

features and build up structures which look like the “consensus secondary

structure” of an Rfam group.

2.2.1 Problem encoding

Given a graph which represents the secondary structure of an RNA sequence,

a series of operations is done to analyze and decompose the graph.

18



2.2. RNA coarse shape learning

2.2.2 RNA secondary structure decomposition

Finding break points

A break point in the graph is the attaching point of a stem to another

structural feature. Spotting break points in a secondary structure is highly

dependent on the representation of the structure. Here we use networkx

graphs, so a break point is detected whenever there is a change in the type

of connections between nodes from backbones to basepairs or vice versa.

These pairs are tagged then to be further processed.

Figure 2.2: Break points in a sample secondary structure

Cutting the graph

The graph is then cut at break points. This yields a set of disconnected

components which should be identified and prepared for the next level of

operations. The logic implies that all non-stem structures already have a

special marking at cut points. We call these magnetic ends which are the

attach points at the combination stage. Each magnetic end is basically a

base pair in the original graph. During the decomposition process, magnetic

ends are marked with a different edge label.
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2.2. RNA coarse shape learning

Figure 2.3: Secondary structure cut at break points

Identifying and tagging stems

At this stage, stems are identified and their magnetic ends are detected and

marked.

Figure 2.4: Identifying stems

Identifying other structural features

From this point, identification of the rest of the features is straight forward.

The current version of the program is capable of identifying internal loops,
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2.2. RNA coarse shape learning

bulges, multi loops with 3, 4, and 5 entries, dangling ends, and hairpin loops.

It is also possible to identify compound structures such as the combination

of a bulge and a hairpin loop, but decomposing compound structures is still

not a part of the system. Therefore all compound structures are eliminated

from the final structure pool.

Figure 2.5: Identifying loops and dangling ends

2.2.3 Combining RNA structural features

The aim of this group of operations is to provide the system with a correct

way of recombining structural features into bigger structures which may

ultimately look and act like a RNA secondary structure. Here we explain

the mechanism and talk about some considerations.

Combining two structural features

In our current implementation, we simply create a pair of edges each con-

necting one node in a magnetic end of a component to a node in the magnetic

end of the other component.

A structural feature might have more than one magnetic end (e.g. multi

loop with 4 entries). For combination, our program does not consider any

priority on choosing one of these ends and throughout the whole set of ex-

periences, the selection is done by randomly picking one of the ends of the

component.
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2.2. RNA coarse shape learning

Combination order

When dealing with the shape of a secondary structure, the order of the nu-

cleotides in a structural component has no importance. But if we have a

focus on the functionality of the resulting combined graph, the order be-

comes important.

We added a code snippet to our combination function which orders the

two nodes in a magnetic end based on their 5-prime order in the original

sequence. The combination function then uses this information to connect

the nodes with the same order ranking from the two magnetic ends together.

Resetting the magnetic ends

When two features are connected to each other, those magnetic ends which

are now connected get reset : their edge labels are changed back to base-

pair; thereafter no more combinations are possible at these ends and we can

consider the final RNA sequence to be end-to-end connected at these points.

2.2.4 Structural representation and bigrams

Every machine learning algorithm needs some assumptions or “heuristics”

which are domain specific and which make the algorithm specifically effi-

cient and successful in finding an optimal solution model for the problem.

Reinforcement learning algorithms are no exception. For learning the coarse

shape of RNA families, we used the concept of N-grams as heuristics.[4]

N-grams

N-gram is a definition which comes from computational linguistics. A N-

gram is a slice of size N from a larger sequence of symbols or characters.

In language processing, N-grams have a wide usage in statistical analysis of

sentences in a language in order to derive grammatical rules and generate

valid sentences or phrases of the language. They have use cases in other

fields such as bioinformatics.
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2.2. RNA coarse shape learning

Unigrams and bigrams

Unigrams are N-grams of size one and bigrams are N-grams of size two.

2.2.5 Bigram representation of RNA secondary structure

To represent the secondary structure of an RNA sequence as bigrams, we

need to find all two-component phrases which can be derived from the graph

representation of the structure. Here we bring an example:

In a structure with three hairpin loops, there are naturally three phrases of

the form ”stem - hairpin loop” which show the bigram constellation related

to these loops in this graph. Note that there is a distinction between “stem

- hairpin loop ” and “hairpin loop - stem ” bigrams.

In our system, this distinction is cultivated to emphasize on the order of the

combination of structural components. In this sense, “hairpin loop - stem ”

is an impossible pair since a hairpin loop is a closing point in the graph and

does not allow further combinations.

Table 2.1: Bigram representation of figure 2.2

Bigram Occurrence rate

dangling end – stem 1

stem – internal loop 3

internal loop – stem 3

stem – hairpin loop 2

stem – multi loop 1

multi loop – stem 2

2.2.6 Structural feature database

As stated in section 2.1.4, the first stage of the experiment involves decom-

posing RNA secondary structure graphs to build up a collection of catego-

rized subgraphs. Decomposition stage is a prerequisite for initializing the

learning subsystem. There are two main steps at this stage:
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2.2. RNA coarse shape learning

Extracting structural features

In RNA coarse shape learning, we use the 8 basic structural features intro-

duced in 1.1.4 to decompose each folded RNA sequence in the family into

its features and build a small dictionary with keys as feature names and

values as lists containing the actual subgraphs of type “feature”. Figure

2.6 and figure 2.7 show a sample RNA secondary structure before and after

decomposition into its structural features.

Figure 2.6: Secondary structure of a sample tRNA

Figure 2.7: Decomposed sample tRNA
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2.2. RNA coarse shape learning

Structural feature corpus - RNA family corpus

At this step, all dictionaries are merged into one general dictionary with the

same structure and same keys. We will call it the feature corpus. Feature

corpus is used to setup the learning system. It is also used during learning

trials.

In coarse shape learning, we refer to the feature corpus as family corpus. It

is a dictionary which keeps all the basic structural features found in a RNA

family in distinctive chapters. Family corpus is the base of many feature

and rule extraction operations. Figure 2.8 shows a graphical demonstration

of three different chapters of family corpus of the tRNA.

Figure 2.8: tRNA family corpus
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2.2. RNA coarse shape learning

2.2.7 Grammar

In order to prepare the system for learning, some basic rules must be inferred

from the sample set. Bigram representation of RNA secondary structures is

the main context for defining basic rules on what and how to combine. For

RNA coarse shape learning, two sets of operations have been used:

Extracting bigram set of consensus secondary structure

The system extracts the building bigrams of the consensus secondary struc-

ture. This bigram representation is used in the learning subsystem as a

prototype for producing new structures. Figure 2.9 and table 2.2 show a

sample consensus structure and its bigram representation respectively.

Figure 2.9: Cobalamin riboswitch family consensus secondary structure

Table 2.2: Bigram representation of figure 2.9

Bigram Occurrence rate

dangling end – stem 1

stem – internal loop 2

internal loop – stem 2

stem – hairpin loop 4

stem – multi loop3 1

multi loop3 - stem 2

stem – multi loop4 1

multi loop4 - stem 3

stem - bulge 1

bulge - stem 1
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2.2. RNA coarse shape learning

Defining family-specific rules for producing bigrams

Is defining the set of all possible pairs of structural features which might be

found in the sample secondary structures. For coarse shape learning, the

following explicit rules build this set:

• Any type of loop is followed by a stem.

• Any type of loop except for hairpin loop follows a stem.

There are no explicit rules for dangling ends. They might or might not ap-

pear in a combination and for the current experiment, they do not have an

impact on the calculation of objective function. The following is the list of

valid bigrams for RF00174 family in python code. This is the basic grammar

for analyzing sample RNA structures and the main reference for producing

new ones. The vector representation of the consensus structure is generated

based on this grammar.

Listing 2.1: basic grammar and consunsus bigram vector of RF00174

1 biGrams = [(’dangling end’, ’stem’) , (’multiloop3’, ’stem’) ,

2 (’stem’,’multiloop3’) , (’multiloop4’ , ’stem’) ,

3 (’stem’, ’multiloop4’) , (’bulge’, ’stem’) ,

4 (’stem’,’bulge’) , (’internal loop’, ’stem’) ,

5 (’stem’,’internal loop’) , (’stem’ , ’hairpinloop’) ]

6

7 consensusBigram = (1, 2, 1, 3, 1, 1, 1, 2, 2, 4)
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2.2. RNA coarse shape learning

2.2.8 Reinforcement learning setup

In this section we explain the setup of the learning system we have used for

the first set of experiments. We also talk about the important implementa-

tion facets of the system in python language.

The environment

Our simulation environment is called Block Inverse Folding. Block Inverse

Folding combines the structural features resulted from decomposition of the

set of secondary structures which belong to a Rfam family and outputs the

new combinations. At each time step, one structural feature is selected from

feature corpus and is added to the combination graph. Q-learning is used

as the learning method, so no model of the environment is needed.The only

environment dynamic used is the objective function.

Block Inverse Folding is an example of a domain-specific environment which

we will refer to as plant. The modular structure of the code makes it possible

to switch plants and solve another reinforcement learning problem.

The agent

The agent’s functionality is split and implemented in two parts, action se-

lection and learning, and interacting with the environment. In this system,

there is no explicit entity as an agent, rather these functionalities are in-

tegrated in the plant and another class called the controller. Controller

also contains the implementation of the learning algorithm used (here Q-

learning). Here call it QController. It operates in two different modes:

• Training Here the learning is turned on, so the controller combines ex-

ploration with exploitation and as the result, outputs a final policy in

the form of a Q-table.

• Synthesis Here no learning takes place. The controller loads a policy

and starts to synthesize structures according to the utilized policy.

Episodic learning task

Learning is done in episodes. Each episode starts with an empty structure

graph and is carried through by selecting a structural feature from the fea-
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ture corpus and adding it to the state graph at each time step. At the end of

each episode a final reward is calculated and given to the final state-action

pair. An episode ends when:

• there are no open ends in the state graph or

• there are no more possible actions for the current structure or

• the number of structure bigrams is greater than the number of con-

sensus structure bigram

Defining the state space

State is a part of the plant and contains several components:

• State graph: the graph which is the result of combination operation

at each time step

• State vector: an ordered vector of integers as place-holders for state

graph bigrams

Technically speaking, the state graph is not directly taking part in the learn-

ing operations. It is actually an aspect of the simulation environment which

influences the state vector, learning trajectories, and the objective function.

The state vector is the formal state representation which shapes the actual

state space S.

Defining the action space

The action sequence in the learning environment is the sequence of structural

features selected at each time step during a trial episode. Since the state

vector is a bigram representation of the resulting graph, actions are also

defined on a bigram basis. An action of the form “X – Y” indicates that a

structural component of type “X” is already present in the state graph and

has some open ends. The system then retrieves a structural component of

type “Y” from the pool and attaches it to one of the open ends of X in the

graph.

The system is designed to automatically build up the action set based on the

structural features defined in the setup. Since some actions are impossible
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to do, the program is designed to filter them in the action space definition

phase.

Observations

Observations are all the information that the environment feeds back to the

actor-critic system. Normally they are a full or partial observation of the

state. In our setting, the state vector is the feed back to the controller.

The objective function

In our first set of experiments and for the sake of simplicity, we have defined

an objective in the form of the bigram representation of the consensus sec-

ondary structure of the given Rfam family and we call it consensus bigram

representation. This representation is formatted exactly as the state vector

of the plant.

The reward function is then defined based on the differences between the

state vector and consensus vector. To conduct the learning agent towards

more promising structures, we designed the following reward calculation

scheme:

• Bigrams which are present in both the consensus bigram representation

and the state vector get a positive reward.

• Bigrams which exist in the state vector but do not have a counterpart

in consensus bigram representation receive a negative reward.

• The final reward is a waited combination of these two.

Listing below shows the code of the reward function.

Listing 2.2: Reward function used in coarse shape learning

1 def get reward(∗∗opts):
2 consensus dist=consensus distance(flip=False,∗∗opts)
3 consensus diff=consensus distance(flip=True,∗∗opts)
4 plant=opts[’plant’]

5 default reward=opts[’default reward’]

6
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7 if plant.is terminal(opts):

8 reward=(5/exp(sum(consensus dist[1:])))

9 −(.2∗exp(.2∗sum(consensus diff[1:])))
10 return reward

11 else:

12 return default reward

Reinforcement learning setup summary

In short, our first reinforcement learning setup has the following specifica-

tions:

• Q-learning

• Episodic

• Discrete finite state space

• Discrete finite action space

• ε-greedy action selection method

• Delayed reward

2.2.9 System architecture

The system is called RLRNA and has a modular architecture both in design

and implementation. It consists of two subsystems, the first one produces

the feature corpus and maintains all the related operations. The second one

is a reinforcement learning framework which carries out the actual learning.

Here we talk about them briefly.

RNA decomposition subsystem

The RNA decomposition subsystem is a set of python packages which con-

tain functions for carrying out all the operations related to decomposition,

combination, visualization and storing of RNA structures. The main pack-

ages in this subsystem are:
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2.2. RNA coarse shape learning

• RNA decomposition for decomposition and combination operations

• Graph for special graph and graph statistics operations

• workSuit for general operations such as special file input/output and

general probabilistic operations

Reinforcement learning framework

Is an Object Oriented framework in which, all the important learning ele-

ments are classes. Each class is written in an individual package and has

generic interface for interacting with other classes. Therefore, it is possible

to replace any part of the learning system in order to change its behavior.

The main classes in the system are:

• plant is the actual simulation environment, here it is called Block

Inverse Folding.

• controller is the actor-critic system which is responsible for selecting

actions and learning. Here we use a QController which is performing

Q-learning.

• reward is responsible for calculating the rewards.

• Grammar is domain-specific and contains the feature corpus database

and provides other systems with data access operation.

• Params is a public container in order to provide an information-sharing

mechanism between other objects.

• main is the kernel which initializes and orchestrates all other modules

and runs the actual experiments.
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Figure 2.10: RLRNA system architecture

2.3 Refining RNA structure learning

The aim of this part of experiments is to train a model which can build

combinations of secondary structure features with the same functionality as

the sample RNA family. The measure which we use here is different from

the previous section. There, we used the similarity between the produced

combination and the consensus secondary structure of a family. In successful

cases, this means that our synthesized product is an end-to-end sequence of

nucleotides which are connected via backbone bonds.

Though when we use a folding algorithm to predict the secondary structure

of the produced sequence, the same secondary structure is not predicted.

This result is expected, since our features, and hence our states, do not

contain enough information for the learning system to guide it towards an

expected functionality.

In this chapter we introduce a mechanism for extracting refined information

from the structural features. We integrate this mechanism into the old

system and start a new set of learning experiments with a refined state

space and action space definition. The measure here is a mixture of the old

measure and the covariance score of the synthesized sequence.
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2.3.1 Refined structural features and grammar

In the previous experiment we used 8 basic secondary structure feature

names to generate a feature corpus. These feature names carry no further

information about the actual subgraph except for its type. So it is neces-

sary to add to the amount of information that each subgraph carries. This

results to introducing new structural features which are built upon the basic

structural features.

Forming the new feature space

The grammar module is still responsible for extracting structural features.

Once the family corpus is built, the system can calculate statistical measures.

In these series of experiments we add three groups of information:

• Relative GC-content

• Relative size

• Relative location in the original sequence

First we explain what we mean by relative location in the original sequence.

If we divide an RNA sequence into k sections of size m, we can define the

relative location of a structural feature in the graph as follows: A subset of

the set {1, 2, . . . ,k } which presents all the sections to which the structural

feature partially or completely belongs .

We have designed the system in a way that any number of other feature

extraction functions could be added to the existing collection. In order to

form the feature database, the system goes through the following steps:

• Calculating statistics This step is carried out by a special class called

FeatureExtractor. This class takes the family corpus and calculates

size and GC-content statistics in the form of percentiles. The number

of percentiles is variant and is defined by a parameter. This informa-

tion is used in the next step. Relative location statistics are derived

differently, the FeatureExtractor makes a mapping between individual

RNA sequences and their respective section dividers. This mapping is

then used in the classification phase.
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• Extracting classification data We use a discrete classifier with one

feature which is a number. This classifier is ordinal and needs clas-

sification boundaries in the form of a ordered list of numbers. Given

a number which is the GC-content or size, the classifier checks the

boundaries between which the number falls and outputs a label. At

this step the percentiles from the last step are used to define classifi-

cation boundaries.

• Producing new structural features Here the system classifies all the

structural features in the family corpus based on their GC-content and

size and relative location and creates new features which their names

are a combination of classification results and the basic feature type.

Concurrent to these operations, a new feature corpus is formed which con-

tains all the new feature types as keys and all the subgraphs which are of

the same type as a value list. Figure 2.11 shows chapter names in a refined

feature corpus.

Figure 2.11: Refined feature corpus

In the following, we present the actual code snippets which are responsible

for carrying out the operations we already described.
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Listing 2.3: calculating structural feature size classification boundaries

1

2 def size percentiles(q = None,iterable = None):

3 iterable = [nx.number of nodes(graph) for graph in iterable]

4 filtered = []

5 for item in iterable:

6 if not(item in filtered):

7 filtered.append(item)

8 plist = create percentile list(q)

9 result = np.percentile(filtered,plist)

10 return result

11

12 def size discriminants(q = 3,iterable = None):

13 p = size percentiles(q=q,iterable=iterable)

14 return discriminants from percentiles(percentiles=p)

Listing 2.4: calculating sequence section boundaries

1 def section discriminants( k = 15,graph = None ):

2 nodes = nx.number of nodes(graph)

3 partition size = int( nodes/k )

4 discriminants = [i for i in range(0 ,nodes ,k)]

5 return discriminants

Listing 2.5: finding the relative location of a given structural feature

1 def section discriminants( k = 15,graph = None ):

2 nodes = nx.number of nodes(graph)

3 partition size = int( nodes/k )

4 discriminants = [i for i in range(0 ,nodes ,k)]

5 return discriminants
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Automatic extraction of RNA sequence bigram representation

This functionality is added to the system to derive the bigram representation

of a single given sequence. Each bigram consists of pairs of new structural

features. This can be used to collect statistics and to infer and form a certain

grammar. For now and in this series of experiments, we use this function to

form a prototype which the learning uses as a part of its objective function.

2.3.2 Reinforcement learning setup

Here we use the same reinforcement learning system specifications. The

architecture of the implementation allows changes to the plant and reward

modules while the controller and kernel stay untouched. For operations that

we introduce to the system, a new module is added.

Automatic action-set extraction

Actions have the same format as in coarse shape learning. They are in the

form of pairs with the first element being an existing structural feature in

the state graph and the second one being a structural feature which will

get connected to that. An automatic action extraction procedure has been

designed. Given the set of structural features, generates the entire action

space as a list bigrams. Figure 2.12 shows a part of the action set extracted

from RF00005 family.

Figure 2.12: Refined action space

37



2.3. Refining RNA structure learning

Filtering the action-set

There are several groups of connection operations which are impossible to

carry out in practice. All the pairs whose first element is a ’hairpin loop’

are an example. In order to filter out ’impossible’ operations, we set several

rules which are extracted manually. Actions are explicitly generated by

these rules. These rules are as follows :

• A ’dangling end’ is always followed by a ’stem’.

• A ’hairpin’ loop always follows a ’stem’.

• All other loop types can either follow or be followed by a ’stem’.

Fine-grained state representation

The state space of our learning problem has the following components:

• A state graph

• A state sparse vector

Considering the huge size of the action space, we switched to a sparse repre-

sentation of the state graph. In the following , we present the code for state

vector operations.

Listing 2.6: updating the state sparse vector given a set of new bigrams

1 def update sparse vector(global model=None,sparse vector=None,

2 new biGrams= None,value=1,increase=True):

3 if not(increase):

4 value = −value
5 for index, item in enumerate(global model):

6 if item in new biGrams:

7 if not(index in sparse vector.keys()):

8 sparse vector.update({index:0})
9 sparse vector[index] = sparse vector[index] + value

10 return sparse vector
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Listing 2.7: converting state sparse vector to tuple

1 def sparse vector to tuple(sparse vector=None):

2 vector to list = []

3 for key in sorted(sparse vector.keys()):

4 vector to list.append((key,sparse vector[key]))

5 return tuple(vector to list)

Listing 2.8: converting state tuple to sparse vector

1 def tuple to sparse vector(sparse tuple = None):

2 sparse vector = {}
3 for index, item in sparse tuple:

4 if not(index in sparse vector.keys()):

5 sparse vector.update({index:0})
6 sparse vector[index] = sparse vector[index] + item

7 return sparse vector

Refined reward function

The reward scheme suggested here is different from previous design. Since

learning is concentrated in two main objectives rather than one, the reward

should reflect them in a way which persuades the agent to achieve these

objectives without being confused:

• learning the structure (coarse shape)

• learning the arrangement of nucleotides in a structure (functionality)

In the beginning of learning, the agent should concentrate on construct-

ing structures with a specific shape. It learns to choose proper combinations

of structural features. As the learning goes on, it narrows down its choices

to those combinations which a specific arrangement of nucleotides which

guarantee to pass in a certain scoring system. The suggested scoring is the

covariance score. A program like Infernal [19] can be used to calculate this

score. The following pseudo code shows how these two objectives could be

put together.
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2.3. Refining RNA structure learning

Listing 2.9: Reward function used in refined strucutre learning

1 def get reward( ∗∗opts ):
2

3 #calcu late a time dependent discount facotr gamma

4 gamma = 1 / t

5 #calcu late the coarse shape reward ( other reward functions could be used)

6 coarse reward=(a/exp(sum(consensus dist[1:])))

7 −(b∗exp(c∗sum(consensus diff[1:])))
8

9 #calcu late the covariance score of the sequence

10 cov score=score from infernal

11 #calcu late the actual reward

12 reward = gamma∗coarse reward + (1−gamma)∗cov score
13 return reward

2.3.3 System architecture

The architecture of the system does not vary from the previous version.

The only difference is the addition of FeatureExtrator which is shown in

figure 2.13.
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Figure 2.13: Refined RLRNA system architecture
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Chapter 3
Experimental setup

In this chapter, actual experiments, their setup, and the results are dis-

cussed. Three groups of experiments of coarse shape learning are conducted

on three different families of non-coding RNAs: RF00005, RF01685, and

RF00174.

3.1 System parameters

All experiments use parameter settings which specify how the system learns

and produces results. There are three main parameter groups, the first two

groups are used in coarse shape learning and refined structure learning. The

third group is just used in refined structure learning.

3.1.1 Learning parameters

These parameters control the behavior of the learning system.

episodes

number of episodes in each experiment run

epsilon

probability of performing exploration during learning ε
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3.1. System parameters

alpha

the learning rate factor α

default reward

the first-visit reward of state-action pairs

initial q value

the value for initializing Q-table items

training

boolean option for switching between learning and synthesizing modes

3.1.2 General system parameters

These parameters specify the way the system outputs results or uses previ-

ously produced results.

save

boolean option for saving the model

qt save path

operating system path in which the trained model is saved

qt save frequency

frequency in number of episodes with which the model is saved on disk

load

boolean option for loading an existing model

visualize

boolean option for showing the state graph at the end of each episode
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3.1. System parameters

3.1.3 Feature extraction parameters

These parameters control the level of granularity for defining new structural

features. There are three parameters in this group:

size partition

Depicts the number of dividing boundaries between size categories for clas-

sifying a structural feature. This can be interpreted as : relatively small,

medium, and large structural feature size.

gc partition

Depicts the number of dividing boundaries between GC-content categories

for classifying a structural feature.

section size

Depicts the size of sections based on sequence length. By sequence length

we mean the number of nucleotides in the sequence.
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3.2. Experiments

3.2 Experiments

Experiments are run in RLRNA simulation environment. Each experiment

consists of a batch of episodes of online Q-learning. The end result of each

experiment is a Q-table in case the system is learning or a list of synthesized

structures in networkx graph format in case the system is in synthesis mode.

3.2.1 Parameter setup

Learning and general parameter settings for this experiment are listed below:

Table 3.1: Learning parameter setting for coarse shape learning

Parameter Value

epsilon 0.5

alpha 1.0

gamma 1.0

default reward 0.0

initial q value 0.0

training True

episodes 10000

Table 3.2: Training mode parameter setup

Parameter Value

visualize False

save True

Table 3.3: Synthesis mode parameter setup

Parameter Value

visualize True

load True
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3.2. Experiments

3.2.2 Experiment1: tRNA

tRNA family (RF00005) has 954 representative (seed) sequences. This fam-

ily has a symmetric consensus secondary structure. The system successfully

learned the coarse shape after 80000 episodes, though it was not resemble

the only bulge which is seen in the consensus structure.

Figure 3.1: tRNA consensus secondary structure1.

Learning the above structure converged in 70000 episodes. In the follow-

ing, a report of the learning process, some sample structures produced by

the learned model, and the learning curve are demonstrated.

Table 3.4: tRNA coarse shape learning report

correct structures (%) Episodes Time elapsed

5 20000 400 seconds

24 30000 600 seconds

34 50000 1000 seconds

100 70000 1400 seconds

1Available under http://rfam.xfam.org/, seen on 24.08.2015.
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3.2. Experiments

Figure 3.2: Sample structures after 10000 learning episodes

Figure 3.3: Sample structures after 30000 learning episodes
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3.2. Experiments

Figure 3.4: Sample structures after 70000 learning episodes
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Figure 3.5: tRNA coarse shape learning curve
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3.2. Experiments

3.2.3 Experiment2: 6S-Flavo

6S-Flavo (RF01685)family has 82 representative members2. The consensus

secondary structure of this family has a relatively simple shape.

Figure 3.6: 6S-Flavo consensus secondary structure

Learning the above structure converged in 80000 episodes. In the following,

a report of the learning process, some sample structures produced by the

learned model, and the learning curve are demonstrated.

Table 3.5: 6S-Flavo coarse shape learning report

correct structures (%) Episodes Time elapsed

29 20000 180 seconds

35 30000 300 seconds

56 50000 500 seconds

100 80000 830 seconds

2Available under http://rfam.xfam.org/, seen on 24.08.2015.
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3.2. Experiments

Figure 3.7: Sample structures after 20000 learning episodes

Figure 3.8: Sample structures after 80000 learning episodes

49



3.2. Experiments

Figure 3.9: RF01685 coarse shape learning curve

3.2.4 Experiment3: Cobalamin riboswitch

Cobalamin riboswitch (RF00174) with 430 representative members has a

more complicated, non-symmetric shape. The system failed to converge in

this case and with the current parameter settings.

Figure 3.10: Cobalamin riboswitch consensus secondary structure
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Chapter 4
Discussion and future work

Experiments in the previous chapter showed that the system is capable of

learning simple or symmetric structures with a default parameter setting

and in linear time. More complicated structures need to be studied further.

Possible courses of action in this regard are:

• Running the experiments with different groups of parameter settings

• Designing and testing other reward functions

• Using higher orders of connectivity for structure analysis and synthesis

• Testing and completing the refined learning system

In fact the refined learning scheme can implicitly use a higher order of neigh-

borhood distance in a simplified way, since it encodes the locale information

of substructures as one of their attributes. There are also some suggested

refinements to RNA decomposition system. The recombination operations

are designed to connect substructures by taking their sequence direction

into consideration, though there is no check in the flipping of a stem. Here a

mechanism is suggested to also tag the stems with a primary and secondary

end to solve this problem. It is also highly suggested that RNA decomposi-

tion system is tested upon many different Rfam groups and outside of the

learning context.

51



To lead the current work towards a robust production system, there are

several notes which are discussed here:

• The refined learning scheme has passed the design stage and also the

first implementation phase. Future results from refined shape learning

experiments should make a big step to benchmark and improve the

system.

• Once the systems are stable, parameter optimization should be applied

to them.

• Grammar inference rules are user-defined, the next implementation

could embrace a probabilistic inference system for producing grammar.

• The current learning system uses a Q-table which could be replaced

by a function approximation mechanism in future versions.

Future awaits!
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