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Abstract

Bioinformatics supports all different life science fields by providing automated tools and

methods. These techniques help handling problem instances in efficient ways. In general,

all different life science fields have one shared aim, which is having a better understanding

of all living entities. Different fields try to tackle common tasks from various perspectives.

Many tools and methods have been proposed that help in answering biological questions

for DNA, RNA, or proteins. For instance, some tools can do alignment, or secondary

structure prediction on the sequence or structure level. The importance of non-coding

RNAs is becoming increasingly evident. However, the discovery of many different kinds of

these RNAs requires the availability of complex and sophisticated analysis tools in order

to be able to handle this new abundance of data.

Within the context of this thesis, a novel approach was developed that can identify

and characterize aligned ncRNAs by using a machine learning method. Multiple Align-

ment Graph Generator MAGG is the presented tool by this work. It is a graph generating

tool based on ncRNAs sequence alignments. The principle idea behind MAGG is to encode

ncRNA alignments as graphs. These graphs can be efficiently evaluated using a machine

learning graph kernel based method. Graphs generated by MAGG can encode information

on the secondary structure prediction of the alignment. In addition, they can encode the

evolutionary conservation of sequences and structures. MAGG builts four different types of

graphs. Each graph can represent various types of information in different graph structures.

By applying MAGG, the machine learning graph kernel based method EDeN can perform func-

tional classification for ncRNA alignments.

The results of MAGG combined with EDeN achieved a ROC value of 70% when testing

on different types of graphs. However, some of the tested graphs are able to achieve a

ROC of 90%. The first results obtained by this method are promising . Fur the future, it

seems reasonable to assume that more improvement can be made in order achieve even

better predictive performance. Also, an adaption can be done allowing the tool to work

one different types of sequences like proteins for instances.
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Chapter 1

Introduction

In this chapter, we discusses the different biological knowledge necessary to understand

this work. Followed by an overview of the bioinformatics field and how does it evolved

solving biological problems in section 2. Section 3, is devoted to discuss alignment and

its types with a summary on currently available techniques. The application of machine

learning and its different approaches applicable in bioinformatics are discussed in section

4. The last section, Section 5, we describe and discuss the exact problem covered by this

thesis.

1.1 Biological background

Genetics is an important field in biology as well as in bioinformatics. The field studies

genes, the primary unit of inheritance in organisms. Today, it is well known that all organ-

isms share a common mechanism of coping DNA and transferring the information encoded

on the DNA into RNA and protiens. The field started to evolve, in 1868 when Friedrish

Miescher performed an experiment on leukocytes which led to the discovery of DNA, what

he called nuclein [5]. Nowadays, DNA refers to deoxyribonucleic acid. Years after, Mc-

Carty and MacLeod discovered that DNA is not protein as it was believed at that time(ref.

mccarthy32). By 1951 the discovery of the bases of DNA had taken place by Chargaff [6].

Couple of years after, James Watson and Francis Crick described the correct structure

of DNA [7]. All DNAs contain a double strand of biological information. Each strand

is composed of small molecules called nucleotides. It contains four different nucleotides:

Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). In DNA double helix, (A) can

form a so called base pair with (T), while (C) can pair with (G). DNA replication is the
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CHAPTER 1. INTRODUCTION

process where an identical copy from the current double stranded DNA is done creating a

set of DNA helix. Watson and Crick notion of DNA helix duplication as it “is, in effect a

pair of templates, each of which is complementary to the other. We imagine that prior to

duplication the hydrogen bonds are broken down and the two chains unwind and separate.

Each chain then acts as a template for the formation onto itself of new companion chain so

that eventually we shell have two pairs of chains, where we only have one before. Moreover,

the sequence of the pairs of bases will have been duplicated exactly” [8]. The statement of

Watson and Crick explains the DNA replication. Finally, DNA molecules relay inherited

information to RNA which in turn can either code for proteins or be non coding.

Ribonucleic acid known as RNA has been recognized at the same time as it reacts

differently than DNA with respect to alkaline. Based on DNA as a template (RNA) is

synthesized in a process called transcription. In this process, the RNA polymerase enzyme

copies a segment of the DNA and transcribes it into RNA. Therefore, RNA has comple-

mentary nucleotides when compared to its template DNA but it replaces Thymine (T)

by Uracil (U). Also, unlike DNA, RNA is single stranded and may fold on to itself. The

difference between DNA and RNA is illustrated in Figure 1.1. In the 1950s, the discovery

of RNA types started. Messenger RNA (mRNA) was the first to be discovered by Crick

alongside his Central Dogma of Molecular Biology which states that, information cannot

be transferred from protein to either protein or nucleic acid [9]. In other words, DNA

forms RNA, which can in turn encode proteins. From this statement, the light arise on the

functionality of RNA in synthesizing protein. The discovery of ribosomal RNA (rRNA) as

it also plays an important role in protein synthesizing, where amino acids are carried to

the ribosome to be linked together forming proteins [10]. Transfer RNA (tRNA) is another

type of ribonucleic acid that is also important in the protein translation, where it serves

as a connector between the nucleic acid of DNA or RNA and amino acid of protein [11].

As briefly hinted at earlier in the text, not all RNAs are translated into protein. There-

fore, they are called non-protein-coding RNA (npcRNA) and are as popular as non-coding

RNA. These RNA molecules encoded by genes in genome are functional but non-translated

into proteins called non-coding RNA (ncRNA). Alanine transfer RNA is the first discov-

ered ncRNA [12], followed by the ribosomal RNA (rRNA) and many more afterwards. It

is important to note that these ncRNAs have vital functions even though they are not

translated into proteins. Hence, some of them play a significant role in protein synthesis.

2



CHAPTER 1. INTRODUCTION

RNA
Ribonucleic acid

DNA
Deoxyribonucleic acid

Nucleobases

Base pair

Cytosine

Guanine

Adenine

ThymineUracil

Cytosine
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helix of
sugar-phosphates

Nucleobases
of RNA

Nucleobases
of DNA

Figure 1.1: Difference between DNA and RNA reproduced from [1]. The figure shows a
comparison of the double strand of the DNA (right side) and the single strand RNA (left
side). It also shows the chemical structure of each nucleobase.
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CHAPTER 1. INTRODUCTION

Prominent examples are, the transfer RNA (tRNA) which aids in translating the triplet

code on the mRNA into amino acids during translation. Furthermore, rRNA is a vital com-

ponent of ribosomes. YRNA is also a non-coding RNA necessary for DNA replication [13].

Furthermore, some of the non-coding RNAs play a big role in RNA processing and gene

regulation. Since abnormality in some ncRNA can cause some disease such as, cancer and

autism [14]. Over the years, many ncRNA functions have been discovered, and studies are

still running in order to validate the functions of the other thousands of newly identified

ncRNAs. The cis-regulatory elements are regions that function as binding motifs for the

transcription factors of near by genes.

Identifying RNA motifs is an impotent way to understand and find the functionality of

ncRNAs. RNA motifs are patterns that frequently occur in individual RNA molecules. In

other words, the motif of an RNA is a shared pattern occurs repeatedly in every sequence.

Such common motifs can be a hint at a shared function. Therefore, the analysis of motifs

is a critical matter in the study of RNA or other biological polymers. Several algorithms

are available to solve the problem of identifying the motif and their positions in aligned

sequences [15–17].

Proteins are important components in the cell, since they have many central functions.

Protein biosynthesis can be split into two subprocesses [18], transcription is the first step

before the actual protein synthesis begins. In transcription one strand of the DNA dou-

ble helix is used as a template by the RNA polymerase to synthesize a messenger RNA

(mRNA). The coding part of the mRNA sequence can be described as a unit of several

nucleotide triplicates called a codons. These codons are importent to translate the infor-

mation on the mRNA to amino acids during the second step of protein biosynthesis, which

is called translation. The translation step starts in the ribosome, where the it binds to

the mRNA at the start codon generated in the transcription step. The mRNA is decoded

in order to produce a specific amino acid chain, which is also called polypeptide. Then,

this polypeptide is going to be carried by the tRNA and be bind to the appropriate codon

in mRNA forming a complementary base pair with the tRNA anticodon. When the stop

codon is reached, the ribosome releases the created protein.
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CHAPTER 1. INTRODUCTION

1.2 Bioinformatics

As we pointed earlier, biology is the main field of life science that aims of studying all living

entities, human, animals, plants, and so on. This field has evolved over the years from one

field focusing on the biological aspect into more than one field with more complex point

of view. Bioinformatics is the most recent field that came into the life science area. This

field is interested in developing methods and tools to simulate and visualize biological data

and systems with the aim of better understanding them using other life science fields. It

involves a mix of biology, mathematics, statistics, engineering and of course computer sci-

ence. Beside bioinformatics we have biophysics, where the study of the interaction between

the different cell systems, for example, the interaction between DNA, RNA ,and protein,

is done in quantitatively manner. Biochemistry is another life science field that combines

chemistry with biology to get a field interested in studying the chemical process within an

organisms [19]. All of these different fields are interested in understanding life and living

entities.

The term of “bioinformatics” was used for the first time in the 1970s by Hogeweg and

Hesper to identify their research field. As they, Hogeweg and Hesper, have defined bioinfor-

matics as “the study of informatics process in biotic systems” [20]. Besides the biophysics

and biochemistry, bioinformatics works as a research field to process and analyze huge

amount of biological data discovered daily. Bioinformatics methods are very powerful in

the current life sciences area, where they are used in the investigation on not only protein

data with respect to its design and evolution but also DNA, as well as RNA. Different al-

gorithms and approaches are designed and used in the studies of nucleotides, amino acids,

and proteins with regard to their sequence and structure analysis, their alignments, and

their secondary structure predictions.

In practice, bioinformatics is used in the identification of genes and nucleotides in ad-

dition to nucleic acid and protein sequences. Therefore, bioinformatics has become a very

important field in the life science area, since it creates powerful tools to analyze biological

data. This field has evolved over the years by turning from theoretical point of view into

practical science field. It is an active researching field considering the different biological

instances (DNA, RNA, and protein), finding new algorithms and methods or adapting

existing ones. Beside the mathematical point of view, artificial intelligence, as a field of

computer science, has been involved more and more into the analysis. It started exploring
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new horizon as neural network model [21]. generating optimization algorithms (ref.3note),

which are very important in understanding biological systems as information processing

systems. Pattern or data analysis is also a significantly important field in bioinformatics,

where an analysis of variation of genetic patterns is considered as a first step, then a com-

parison between the outcomes models with the so called real data is done.

However, the overwhelming amount of new biological data discovered everyday arises

the necessity of having a method that can mange them without losing any kind of infor-

mation. Therefore, machine learning approaches, also as a computer science field, are very

useful in life since. Since, it offers a lot of methods that can be used in analyzing, process-

ing, optimizing complex data [2]. Models generated by these techniques can be used to

explore the functionality of the considered data [22]. McNaught and Ananiadou, pointed

the importance of text mining techniques in biology and biomedicine in (ref. textmin-

ing6note). Gene prediction is also another interesting branch in bioinformatics. In [23,24]

and [25] give an explanation of different approaches used in the identification of regions of

genomic DNA as well as RNA and protein that encodes genes.

As mentioned before, all of that has only one aim that is having a better understanding

of the biological process using some computational techniques like pattern recognition,

machine learning, and visualization.

1.3 Alignment

All biological cell encodes a lot of different information. This information is represented

as a sequence. A biological sequence is continuous molecule of nucleic or amino acid. In

different words, a sequence is a chain of subunits, such as amino acid in proteins or nucleic

acid in DNA or RNA molecules. In order to understand these sequences we need to analyze

them to find their similarity. Therefore, searching among a set of sequences in order to find

the maximal homology is a significant problem in molecular understanding and analysis.

In general, alignment is the process of adjusting parts so that they are in proper relative

position in order to find the their similarity. In bioinformatics, alignments measure the

similarity or dissimilarity between different sequences or structures in order to understand

and predict their function, for formal definition see Chapter 4. These sequences could be

from proteins, DNAs, or RNAs. A simple example illustrating the idea of alignment is

6
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given in Table 1.2.

A G U A A A
| | | − − −
A G U U G G

Figure 1.2: [A simple example illustrating the concept of alignment. Here two words are
aligned. A pipe indicates matching “word A and B agrees on the same latter” and dash
indicates a mismatch.

There are two kinds of alignments: sequence, where the alignment is done based on the

nucleotide level, and structure alignment, where the secondary structure of the sequences

is taken into account to apply the alignment. Both types can be done globally or locally.

In global alignment the similarity measure is done along all sequences [26], i.e, it is end to

end alignment, where a consideration of the whole of all sequences is done. However, in

local alignment a determination of similar subregions of nucleotides or protein sequences

is done [27]. The aim of the local alignment is to find the maximum score for aligning

sub-sequences of RNA or DNA instead of the whole sequence. Mostly, the use of local

alignment arises when the dissimilarity between the sequences to be aligned are more than

their similarity. In this case, the local alignment approach can find the most similar sub-

region by comparing all possible different segments of the sequence and try to optimize

the similarity measure. Such an algorithm was first proposed by Smith and Waterman in

1981 [27]. The field of sequence alignment started with Needleman and Wunsch [26], where

they represent the similarity between sequences in two-dimensional array. They defined the

maximum match as ‘the largest number of amino acids of one protein that can be matched

with those of another protein while allowing for all possible deletions [26]. Following this

work, several algorithms, like the one of Fitch 1966 and Dayhoff 1969, having the same

motivation. Seller [28] has also introduced an algorithm for finding regions of similarity

between different sequence regions based on the evolutionary distance. Often more than

two sequences need to be aligned. In this case, multiple alignment is used. Thus, many

algorithms and tools are developed solving this problem, such as BLAST [29]performing a

local alignment, FASTA [30], T-COFFEE [31]and others as a global alignment, and others.

An important benefit of alignment is that it helps in the prediction of protein function.

Gene coding is also another advantage of alignment, where a prediction of a particular gene

7
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production is done (ref. seq,genome30note). Nevertheless, it is the first step in analyzing

any sequences or structure.

1.4 Machine learning

Machine learning as a branch of computer science and artificial intelligence has very pow-

erful techniques that are useful in the field of biology and bioinformatics [32, 33]. As a

result of the exponential growth of biological data, cause the problem of handling this data

abundance and extracting the useful information. Therefore, there is a need for tools and

methods that help solving the problem of classifying this data, help in maintaining them,

and then extract useful information. To this end, a simplification of the problem is gen-

erated, which helps in obtaining a predictive system. Figure 1.3, illustrates the different

machine learning techniques applied in solving bioinformatics problems.

As a result of the increasing number of available genomic sequences discovered, an

automatic approach is necessary to handle this data. Firstly, different mechanisms are im-

plemented in order to solve the problem of identification of regulatory elements as in [34].

There a description of an implementation of a genetic algorithm that searches for an optimal

combination of transcription factor binding sites (TFBS) in a set of given sequences is pre-

sented. Bockhorst [35] used a Bayesian network approach to predict operons in prokaryotic

genomes. RNAs are also considered in the identification problem as in (ref. a computa-

tional13note). Proteins are very complex since they have a three dimensional structure,

hence, we need to predict the structure in order to foretell their function. Therefore,

the protein structure prediction is an important computational problem in bioinformatics.

Additionally, the number of possible structures for any type of sequence is huge, which

makes the problem of prediction even more complex. Thus, optimization techniques are

necessary [36]. Secondly, comes the analysis of the data, which is going to be an easier and

faster process after the optimization step.

Text mining and information retrieval are highly considered in computational biol-

ogy. This is the outcome of the growing amount of research done in bioinformatics which

also increases the amount of information available to search among. McNaught and Ana-

niadou [37] have pointed out the importance of text mining techniques in biology and

biomedicine. These technologies, text mining and information extraction, have an impor-
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Figure 1.3: Machine learning in Bioinformatics adapted [2]. The scheme is an illustration
of the different machine learning methods used in bioinformatics field. The authors have
classified biological problems by the application of the different ML methods. Genomics
and proteomics indicate the study of nucleotides and proteins respectively.
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tant role in integrating relevant information through literature analysis. Another reference

indicating to the use and the importance of text mining in bioinformatics is [38].

Classification is a very important process in machine learning and bioinformatics where

a categorizing of the data is carried out. In biology, the idea of classification is based on

the work of Linnaeus back in the 18th century. He was the first who started classifying

species according to shared physical characteristics [39]. His work has developed into the

modern classification system. Ernst Mayr defined biological classification as ‘The arrange-

ment of entities in hierarchical series of nested classes, in which similar or related classes

at one hierarchical level are combined comprehensively into more inclusive classes at the

next higher level [40]. He also defined the class as a: collection of similar entities [40]. In

the classification problem, a set of data or elements are given which need to be divided

into classes that could identify or demonstrate their relationship to each other in a better

way.

Most of the classification algorithms can give good results. Yet, finding the correct

feature to give to any algorithm is a critical issue. Therefore, the feature selection is an

important part of machine learning. The feature subset selection (FSS) can be described

as: given a set of candidate features, select the best subset under some learning algo-

rithm [2]. The problem can be viewed as a search problem, trying to find the best solution

with the required criteria. Several techniques exist solving this problem. All of them apply

different search techniques. Wrapper method, for instance, uses best first search as a base

strategy to find an optimal feature subset selection methods [41]. Filter method is also

another approach in feature selection. Kohavi R. and John G. in [42] have compared the

two different approaches. The problem with the previously mentioned methods is that

they can get trapped in local minima, which is solved by other techniques like genetic

algorithms [43] for instance.

In bioinformatics, classification trees, where the classification is represented as a tree,

are used for protein coding regions in human DNA [44]. In [44], Salzberg has used a deci-

sion tree technique in order to provide an accurate protein coding region classification. He

concluded that his algorithm is very efficient and provides more accurate classification than

older methods like linear discriminants and neural networks [45] and [46] respectivel., since

it uses a decision tree which can adapt to work with different sequence lengths. Mathe and

10
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others have compared all the different prediction methods available until the year 2002 (ref.

mathe24). Dynamic programming and evolutionary algorithms have been used and more

precisely, are preferred to be used in the prediction of RNA secondary structure, since they

can deal with exponentially large space [47–49].

One other approach used to analyze, and classify DNA, RNA, or proteins is kernel

method. Kernel is a support vector machines (SVM) method used to handle high dimen-

sional problems where the liner classification can not be applied. In other words, kernel

method allow the liner classifier to work on non-liner problems. The trick is the specifica-

tion of a function that can be used as a similarity function. Necessity for a method like

kernel arises due to the high dimensionality of the input space, which makes the linear clas-

sification methods impossible to function. Nevertheless, most of the available algorithms

and techniques in machine learning and statics are developed to work in linear space.

However, in practice, the real world data requires nonlinear classifiers in order to return

a successful prediction. Therefore, kernel method is used to transform this dimensional in

to a dimensional can such classifier work on. This transformation is done by the kernel

function. The new space introduced by it is called feature space [50]. Using this kernel

function any non-liner space can be turned into a liner space which is easier and cheaper to

be handled from a computational perspective. Graph kernel, is a type of kernel methods,

in which the problem is represented as a graph and the similarity between pairs of graphs

can be measured [50,51]. More details on this topic are given in Chapter 5.

1.5 Problem description

The explosion in the discovery of non-characterized ncRNAs raises the need for efficient

approaches that can deal with these data, where the analysis, the identification, the char-

acterization, and the classification is important. Here, bioinformatic methods play a big

role. Many strategies have been proposed concerning these problems. Some methods can

do the alignment while others take the alignment and predict the structure. However, the

classification problem of the functionality of ncRNA is sill not solved automatically and

is frequently done in a manual fashion. From the ncRNAs the identification of the cis-

regulatory regions of special interest, since they play an important role in the regulation

of gene transcription [52]. This makes the identification of these regions very important as

it can lead to a deeper understanding of gene regulation.
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Zasha Weinberg and his colleagues [53–55]strongly focused on the cis-regulatory in or-

der to discover and the identify these regions in ncRNA. They identified a big set of ncRNA

motifs [53–55]. However, because the lack of ncRNA analysis tools that can characterize

them by their functionality, they did the classification manually. Therefore, this thesis is

introducing an approach that attempts to carry out such classification automatically.

Precisely, The developed approach is a bioinformatics strategy based on machine learn-

ing method that can use the available transcribed ncRNAs and distinguish the functional,

that has known function, from the non-functional ones. The approach uses aligned ncRNA

sequences that have been generated by CMfinder method. These alignments are processed

to build a novel graph that encodes the alignments. A machine learning method known as

EDeN [56] is then used for the learning and the prediction step. The method was tested on

data provided by Z. Weinberg [54]. The aim is to find the best graph representation that

leads to the maximum discriminative power between functional and non-functional RNAs.

The experiment was carried out using different types of alignment information represented

in a graph structure. The graph encodes information on the secondary structure prediction

of the alignment as well as the evolutionary conservation of sequence and structure. We

have found that some information, like the conservation for instance, leads to accurate

classification. More details about our method and the results discussed in chapter 6 and

chapter 7 respectively.

This thesis is divided into nine chapters. The first chapter is an introduction to basic

background of the work presented here followed by the thesis problem description. In the

second chapter, the related work of the approach is discussed. Preliminaries is chapter

three, where some important definitions used in this thesis are given. Alignment defini-

tion, and types is discussed in chapter four. Nevertheless, the main alignment method

’CMfinder’ used to generate the data used in this thesis is described in details in the same

chapter. Chapter five, discusses the machine learning approach and the kernel method

used in this work. A theoretical description of the proposed approach is given in the sixth

chapter followed by the implementation details. The evaluation of this approach is dis-

cussed in chapter seven. Finally, in chapter eight draw the conclusions of this thesis.

12



Chapter 2

Related Work

A lot of researches are focusing and dealing with the problem of sequence and structure

alignment, which is a way of sorting the DNA, RNA or protein sequences in such a way to

find the similarity regions. These regions of similarity may lead to identify new functions,

structures or evolutionary relationship between these sequences.

The problem of identifying and classifying non-coding RNA is an active matter in both

biology and bioinformatics. Since, the recent discoveries of large amount of non-coding

RNA this problem became harder and harder. A lot of researches are focusing and dealing

with the problem of sequence and structure alignment, which is a way of sorting the DNA,

RNA or protein sequences in such a way to find the similarity regions. These regions

of similarity may lead to identify new functions, structures or evolutionary relationship

between these sequences. Therefore, a big need of having an automatic identification and

characterization tools has raised. However, all methods available can do the alignment

or-and then do the structure prediction. Then, because there is no available analysis

tool, the analysis of these alignments or the predicted structure is done manually, which is

insufficient and time consuming. As a consequence, Zasha and his group in [54] has used the

CMfinder [57] to do the alignments and the secondary structure prediction but then did the

analysis manually to identify the best candidates and characterize their possible function.

Therefore, we have integrated this idea of having a tool that can do the identification

of functional and non-functional non-coding RNAs. In this work, we have adapted an

automatic approach that could do the analysis automatically using a machine learning

technique proposed by F. Costa [56].

Yet, some approaches has used stochastic context-free grammars as a way of RNA

secondary structure prediction as Kundsen and Hein have done in [58]. Where they use
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prior information about the RNA structure in order to have a maximum a posteriori (MAP)

estimation of the aligned RNA secondary structure, where the alignment is structural

alignment.As a result of there approach a single secondary structure for the alignment

sequences. However, they have the drawback of that they need an initial alignment and

this alignment need to be a good one, otherwise the computation going to stuck on local

maxima in the likelihood function they are using for the alignment. Our approach based on

CMfinder [57] does not need any initial sequence or structure alignment, since it can start

with now alignment at all. Another approach has been proposed by Hofacker [59], where

he introduced a tool uses the combination of thermodynamic and phylogenetic information

to do the sequence alignment and then predict the structure. However, the method can

only predict conserved structure only if a sufficient large number of sequences are given,

otherwise purely prediction going to be generated. Hence, this method is not going to work

with datasets with low sequence similarity. Moreover, A. Coventry [60] has implemented

a tool that identifies conserved sequence alignment RNA motifs by considering reverse-

complementary regions. The tool could accurately predict the structure of small alignment

mutation. Note, all the previous approaches did the alignment as first step and then did the

folding in order to predict. Some other methods has considered the opposite techniques,

where they apply the folding first and then find the consensus secondary structure [61] .

Nonetheless, this approach is not accurate with single sequence prediction but with the

help of dynamic programming some other method had solved this problem as in [62] where

Eddy and Dowell have done the folding and the prediction simultaneously. Nevertheless,

it is computational expensive. Probability played a role solving this problem by using

expectation maximization (EM) algorithm for instance. Covariance model has been applied

in order to infer a pretty accurate prediction model. Moreover, this technique could start

with no alignment, which is an advantage, but it could not discover the the local motifs.

In our approach, CMfinder [57] could start with no alignment and uses the probabilistic

model to find the maximum consensus structure. It uses the covariance model (CM) [3] to

model the RNA motif and then extend this motif by the expectation maximization (EM)

algorithm [63,64].

Machine learning is a resent computational approach considered in the analysis of the

RNA sequences and structures alignments. Hidden Markov model (HMM) has been con-

sidered in the investigating in the bio-molecular sequences it also address the problem of

analyzing multiple sequence alignments [65]. Neural network and support vector machine

are also used in the extraction of shared features in set RNA sequences for the identifi-
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cation of new functional RNA in genomic sequences as what Carter did in [22]. Kernel

and graph kernel are a very active techniques in the analysis of biological instance, for

instance, the graph kernel is used in the extraction of protein-protein interaction, where

the problem is given a binary protein interaction to an extraction system , how would the

system distinguish between interaction from the non-interaction. This problem has been

addressed by A. Airola and his group in [66, 67] and [68]. Fast neighborhood sub-graph

pairwise distance kernel (FNSPDK) proposed by Costa [56] is a new approach than can

decompose any problem presented as a graph into sub-graphs or more precisely into all

pairs of neighbourhood sub-graphs and compare them in order to compute their similar-

ity. The NSPDK tool has proven its efficiency on the analysis and prediction of different

problems. In order to use the NSPDK the problem has to be presented as a graph which

allows it to learn and decompose it into small sub-graph, compare them in order to score

their similarity. It has gave a good result in the prediction of peptide recognition modules

(PRM), that can predict 0.73 area under the precision-recall curve [68].

In this thesis, we have used an already aligned structured RNA from bacteria and

archaea provided by Z. Weinberg [54] as experimental data. Then, We have introduced an

automatic tool that can build a graph out of these data. As a last step, we have used the

machine learning tool EDeNintroduced by Costa [56] as a comparative tool to measure the

similarity of these structures, characterize them in order to identify there functionality.
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Chapter 3

Preliminaries

In this chapter we provide some definitions and notations that are necessary for under-

standing our work.

We use the term graph in the following sense.

Definition 3.1 (Graph). A graph G is a tuple (N,E) where:

• N is a set of Nodes.

• E ∈ V × V is a set of edges connecting two nodes. We denote an edge (u, v) ∈ E by

uv, if there exists only one such edge.

• N is refer to by N(G) and to E by E(G).

• L : N ∪ E → L is a function mapping nodes and edges to labels from a label set L.

• A path is a sequence of edges (n0, n1), (n1, n2), ..., (nn−1, nn) ∈ E between two nodes

v0 and vn, where n is the length of the path. A node v is reachable from a node u if

there exists a path between u and v.

• The distance D(u, v) between two nodes u, v ∈ V is the length of a shortest path

between u and v or inifinity if there exists no path between them.

• G is a rooted graph, if there exists a nodes v such that all other nodes are reachable

from v. We call v root node and write Gv, if G is a rooted graph.

We denote the set of all graphs by G.

We apply a common definition of string concatenation.
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Definition 3.2 (String Concatenation). String concatenation is an operation concat(str0, str1),

that takes two strings str0 = a0...an, str1 = b0...bm and returns a0...anb0...bn. We may write

str0str1 or str0 · str1 instead of concat(str0, str1).

Furthermore, we talk about graph Isomorphism and refer to the following definition.

Definition 3.3 (Graph Isomorphism). Two graphs G1 = (V1, E1) and G2 = (V2, E2)

are isomorphic if there exists a bijection θ : V1 → V2 such that for all vertices u, v ∈ V1,

there is an edge (u, v) ∈ E1 iff there is an edge θ(u), θ(v) ∈ E2. We donate isomorphic

graphs by G1 ' G2.

Isomorphism invariant is a graph property that is identical for two isomorphic

graphs.

We also define the relation between any two instance as:

Definition 3.4 (Relation). A relation R is a subset of the cross product of a set of sets

A0, A1, ..., An:

R ⊆ A0 × A1 × ...× An

The inverse relation R−1 is a subset of An × An−1 × ...× A0.
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Chapter 4

Alignment

An alignment of any of the nucleotide, RNA or DNA, or protein is simply a comparison

of their structures or sequences. It is used to detect the similarity of subregions of these

sequences or structures. The similarity determination may leds to predict their function-

ality or evolutionary relationships. Since, there is different interest of understanding or

analyzing these biological instances, different approaches have been developed solving dif-

ferent matters. This chapter describing the different types of alignments and the different

approaches available. Then, an elaboration on the method used to create the data used in

the evaluation. For simplicity and because the work presented in this thesis is foucsed on

RNA, the explanations provided here only for RNA.

The first section gives formal definition of the alignment and its types. Section 2

discussing an overview and definition of RNA folding is given. The main part in this

chapter is section 4, where an extensive discussion of the CMfinder approach, since it is

the method producing the data of this thesis.

4.1 Alignments and alignments types

This section starts with a formal definition of the alignment then a discussion on the dif-

ferent types of alignment available is given. In order to do the alignment,an adjustment

to the sequences has to be done.The edit operation definition 4.1 define the operation that

can be applied on the sequences in order to align them.

Definition 4.1 (Edit Operations). Given a finite alphabet Σ with a gap symbol − ∈ Σ.

An edit operation is a pair (x, y) ∈ (Σ ∪ −)× (Σ ∪ −).
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A pair (x, y) is called:

• substitution, if x 6= − and y 6= −

• insertion, if x = − and y 6= −

• deletion, if x 6= − and y = −

We write a→(x,y) b, if b is generated from a by the replacement of x with y (substitution),

or by deletion of one x (deletion), or respectively insertion of one y (insertion).

After aligning the different sequences, one needs to find the alignment that has the

minimum edit distance. That means, the alignment that applies the minimum number of

insertion or deleting. This is defined in Definition 4.2.

Definition 4.2 (Alignment (general definition)). Given two words x, y ∈ Σ∗, an

alignment of (x, y) consists of two sequences x
′
, y
′ ∈ (Σ ∪ −)∗ such that:

•
∣∣x′∣∣ =

∣∣y′∣∣, i.e. x and y have the same strings length

• ∀ 1 ≤ i ≤
∣∣x′∣∣ : ¬(x

′
i = − = y

′
i), i.e. it is not possible to align a gab with a gab

• x′ |Σ= x and y
′ |Σ= y, i.e removing the gap from the alignment yields the original

sequences.

Then the alignment distance is: w(x
′
, y
′
) =

∑∣∣∣x′ ∣∣∣
i=1 w(x

′
i, y

′
i) The alignment distance of two

words x, y ∈ Σ∗

Dw(x, y) = min{w(x
′
, y
′
) | (x′ , y′) is alignment of (x, y)}

Where:

w(x, y) =

{
1 if insertion or deletion

0 match

Definition 4.3 (Alignment (general definition)). Given two words x, y ∈ Σ∗, an

alignment of (x, y) consists of two sequences x
′
, y
′ ∈ (Σ ∪ −)∗ such that:

•
∣∣x′∣∣ =

∣∣y′∣∣, i.e. x and y have the same strings length
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• ∀ 1 ≤ i ≤
∣∣x′∣∣ : ¬(x

′
i = − = y

′
i), i.e. it is not possible to align a gab with a gab

• x′ |Σ= x and y
′ |Σ= y, i.e removing the gap from the alignment yields the original

sequences.

4.1.1 Sequence alignment

In sequence alignment the focus is set on the primary structure, i.e. the sequence of the

RNA. It aim at finding similar sequences or sub sequences which may aid of homology and

hence functional prediction. In order to compare two or more sequences, gaps are inserted

so that all the sequences, in addition to the resulting alignment, have the same length. A

scoring function is needed in order to compute the similarity of the sequences and then get

the maximum similarity. Needleman and Wunsch [26] considered the matter of alignments

as a dynamic programming issue. There they solve subproblems of the entier problem first,

i.e, align sub sequence of the whole sequence, and then recursively solve larger one. For

instance, consider the following example:

Example

let A and B be two RNA sequencesthat need to be aligned, where A=GAATTCAGTTA

and B=GGATCGA. We have the scoring function as:

s(i, j) =

{
1 if i = j (match)

0 Otherwise

The final alignment is calculated by building a matrix of similarity by comparing every

ith position in sequence A and the jth position in the B sequence as shown in Figure ??

and then the final result is given in Figure 4.1.1.

The final sequence alignment is

4.1.2 Structure alignment

Beside the RNA sequence information, the structure plays a very big role in finding the sim-

ilarity of RNAs. The structure of RNA sequence provides more information which makes

the similarity measurement more accurate. In the structural alignment, a consideration of

the sequence structure is taken into account. Structure alignment plays a big role in the
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G A A T T C A G T T A
0 0 0 0 0 0 0 0 0 0 0 0

G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 1 2 2 2 2 2 2 2 2 3
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 4 4 5 5 5 5
A 0 1 2 2 3 3 4 5 5 5 5 6

Figure 4.1: The alignment matrix for two sequences generated using the Needleman and
Wunsch algorithm.

G - A A T T C A G T T A
| | | | | |
A G - A - T C - G - - A

Figure 4.2: The final sequence alignment with an alignment score of 6. A pipe indicates
matching “word A and B agrees on the same latter” and dash indicates a mismatch.

discovery of the function of ncRNA. Therefore, finding the similarity of these ncRNAs is

mostly based on the structure alignments.This is because, most functional RNA molecules

exhibit a characteristic secondary structure that is highly conserved in evolution. In [69],

David Hoksza and Daniel Svozil have found a method that can search for RNA structure

similarity. The developed tool uses a pairwise comparison method based on 3D similarity

of the generalized secondary structure units.

4.1.3 Local and global alignment

When the query sequences are more similar to each other the the global alignment is used in

order to give a high similarity measure. In the global alignment [26] the similarity measure

is calculated along the whole sequence. In different words, it is end to end alignment,

where a consideration of the entire of multiple sequences is done. On the other hand,

in the local alignment [27] a determination of the similarity is focused on locally similar

regions instead of the whole sequence of nucleotides. The aim of the local alignment is

to find the maximum score for aligning sub-sequences of RNA. Mostly, local alignment is

applied when the dissimilarity between the sequences to be aligned is bigger than their

similarity. Here, this approach can find the most similar region by comparing all possible

different segments of the sequence and try to maximize the similarity measure.
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4.1.4 Multiple alignment

When the alignment considers more than two sequences, then it is called multiple align-

ment. Multiple alignment can be done on sequence or structure level. Mostly the need for

of the multiple alignment arises when the identification of the conserved sequence regions

across a large group of sequences is needed. Several algorithms are available applying mul-

tiple alignments like BLAST [29], applying multiple-local alignment. On the other hand,

FASTA [70] is doing the multiple-global alignment.

4.2 RNA folding

After having the alignment, and in order to predict the function of an RNA, one needs to

fold this alignment to predict the structure. Different methods are available that execute

the folding for the aligned RNA sequences. For instance, alifold [71] is a method used to

predict the consensus secondary structure of a set of aligned sequences. The method does

the prediction by using dynamic programming taking the sequence covariation A.2 into

consideration.

4.3 CMfinder

Since cis-regulatory elements of mRNA and tRNA pointed to diversity of biological func-

tions for non-coding RNAs, such as replication, localization, and translation, very powerful

computational models are needed. The available identification techniques required not only

fluent of manual work but they also fail when the sequence conservation is too low, because

of the poor alignment, or too high owing to the lack of sequence covariation. Nevertheless,

some of the available methods do not cooperate with some RNA homology search tools.

For instance, fast genome-scale covariance model (CM) [3] search is a probabilistic model

that works with aligned as well as unaligned RNA sequences. It describes the secondary

structure of these sequences. However, it has the problem that it can not deal with large

size of RNA sequences but only between 150-200 nucleotides. The method also needs large

number of sequences in order to provide a good prediction model. As another example

for homology search we have Rfam database [72]. which is a database of ncRNAs families

generated by multiple sequence alignments and covariance models. This database aims

to provide an automatic system for analyzing and annotating sequences in order to find

homologies to the known structural RNA. Though, the database is acting very well on
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recognizing the non-coding RNA families, it has some limitation of recognizing some fam-

ilies such as microRNA and small nucleoar RNAs (snoRNA). Nevertheless, both of these

approaches, CM and Rfam, did not solve the many problem of identifying and charac-

terizing conserved secondary structure RNAs motif. However, CMfinder [57] is a motif

finding approach that considered solving these problems. It is an expectation maximiza-

tion algorithm that uses the covariance model in order to capture the secondary structure

of aligned RNA sequences. It does not suffer from the problem of dealing with large size

of RNA sequences, since it uses heuristics for choosing a set of candidate elements as an

initial step for the expectation maximization step. This way the problem of scalability has

been solved. This method also has the advantage of being applicable on unaligned and

unrelated input sequences. In addition, it provides not only a structural alignment but also

a statical model that can be used for homologous search. Having a structural alignment

model is a big advantage, since; the model can be extended and refined iteratively.

Basically, in order to address the problem of identifying conserved secondary structure

motifs, CMfinder works in two steps. Firstly, it uses the covariance model (CM) to model

an RNA motif that describe the primary sequences consensus and the secondary structure

of an RNA [3]. Secondly, an expectation maximization algorithm is considered to search the

motif space. In order to start the process, CMfinder needs to identify the motif location

and structure efficiently. Hence, firstly, a candidate selection is done by computing the

minimum free energy of every sub sequences for each input sequence [61]. Then, the top

ranking candidates are selected based on the minimum free energy, defined as 4.4 of the

sequence scaled by its length. In the second step, a comparison of the predicted secondary

structure is done. In order to consider the comparison on the structure beside the sequence,

the comparison of the candidates are done using covariance model algorithm produced by

Hofacker in [61] on the single base or base pair level. To improve the accuracy Yao and

his group [57] has aligned two candidate only if their local conserved regions found by

BLAST search [29] are compatible. At the end of this phase, an initialization of the

alignment is identified based on the covariance model by choosing one candidate from each

sequence. This initial alignment is the seed for the second phase where an expectation

maximization algorithm is used in order to be able to estimate the model and the motif

instances simultaneously.

Definition 4.4 (Minimum Free Energy adapted from [73]). Given RNA sequence

S, compute two possibly different energies for each subsequence sij such that: for all pairs

i, j satisfying 1 ≤ i ≤ j ≤ N , let w(i, j) and v(i, j) be the two minimum free energy of
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all possible admissible structure formed from sij in which si, sj are basepair. Then the

minimum free energy E is:

E = min{w(i, j), v(i, j)}.

If si, sj are not basepair then E=∞.

The expectation maximization (EM) algorithm is an unsupervised method that itera-

tively runs in order to find the maximum likelihood. It works in two essential steps: first,

the expectation step (E), where expectation function of the likelihood is estimated which

going to be fed to the second step: the maximization step (M). In the maximization step

computations of parameters that maximize the likelihood function from the expectation

step. These two steps are repeated iteratively until the maximum likelihood is found or

until the termination condition is met. MEME [63,64,74] is an extended algorithm of the

expectation maximization (EM) for identifying motifs in unaligned sequences where little

or no information is known about the motifs. This method allows multiple appearance of

a motif to occur in any sequence and ignores sequences that do not share it, which is a

good advantage for CMfinder for getting the maximum similarity of a motif.

In CMfinder the focus is to find the finite mixture model that gives the highest prob-

ability of containing a sequence the tested motif. Based on the first alignment, created

by the CM model, an estimation of the finite mixture model is created. Then, using the

expectation maximization algorithm, in both E-step and M-step, a refinement of the model

parameters is done. Hence, In the expectation step (E-step), a computation of an optimal

alignment is done of each candidate. The resulting probability from this step is the prob-

ability of that candidate with its suggested structural alignment being a motif instance.

Next, in the maximization step (M-step), an update of the CM motif, estimated by the

covariance model, and the mixture probability is done. After that, an adjustment to the

candidates is considered before the second EM iteration starts, by using the covariance

model to scan each sequence and pick the top hits and treat them as new candidates.

Iteratively, the EM runs until it find the best alignment. An illustration of this process is

shown in Figure 4.3.

Testing the CMfinder on selected 19 families from Rfam, which has a large collection

of multiple sequence alignments for non-coding RNAs, they have found that it has sig-

nificantly outperformed RNAalifold [59, 71], Pfold [58], Foldalign [75], and others. The

table in Figure 4.3 shows a summary of comparing CMfinder to some other methods. In

addition, it is proven that CMfinder could achieve better results than CM model [3] with
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unaligned sequences

multiple alignment covariance model

alignment

(EM)
parameter
reestimation

model construction
(structure prediction)

random
alignment

Figure 4.3: A flowchart summarize CMfinder process. Here the process goes in two steps:
Firstly, CMfinder uses the covariance model(CM) in order to model a RNA sequence.
Secondly, it uses the expectation maximization to search among the motif space in order
to maximize the similarity

respect to the base pairs prediction with average of 77%. However, the combination of

CMfinder with other available computational tools is used for the discovery of novel non-

coding RNA family. For instance, Footprinter [76], which is a comparative genomics tool.

An earlier version of it Blanchette was relying on multiple alignment [77], which is not

the case with its combination with CMfinder. Since, with CMfinder it can start with no

alignment at all. However, with the combination of Footprinter and CMfinder, Footprinter

uses the homologous input sequences resulting from CMfinder and identifies the regulatory

elements. CMfinder is also combined with RNA genome search tool [70] in order to speed

up the homologous search in Rfam database. Another use of CMfinder is in finding novel

ncRNAs as in [78].

In general, CMfinder produces a highly accurate model of conserved large cis-regluatory

RNA motifs in unaligned sequences. It is robust and computationally fast comparing with

other techniques. This model can expand and refine the discovered motifs iteratively.

Therefore, our evaluation data generated by Z.Weinberg and his group has been alignment

using CMfinder [54]. Since, it can produce very high homology model. Plus, it can infer

a secondary structure which make it easier for the homologies search. (more details in

chapter 7).
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1 Cobalamin RF00174 71 49 216 4 0.59 0.05 0.00 X - 0.00
2 ctRNA pGA1 RF00236 17 74 83 2 0.91 0.70 0.72 0.00 0.86 0.00
3 Entero CRE RF00048 56 81 61 1 0.89 0.74 0.22 0.00 - 0.00
4 Entero OriR RF00041 35 77 73 2 0.94 0.75 0.76 0.80 0.52 0.52
5 glmS RF00234 14 58 188 4 0.83 0.12 0.18 0.00 - 0.13
6 Histone3 RF00032 63 77 26 1 1.00 0.00 0.00 0.00 - 0.00
7 Intron gpII RF00029 75 55 92 2 0.80 0.30 0.00 0.00 - 0.00
8 IRE RF00037 30 68 30 1 0.77 0.22 0.00 0.00 0.38 0.00
9 let-7 RF00027 9 69 84 1 0.87 0.08 0.42 0.00 0.71 0.78
10 lin-4 RF00052 9 69 72 1 0.78 0.51 0.75 0.41 0.65 0.24
11 Lysine RF00168 48 48 183 4 0.77 0.24 0.00 X - 0.00
12 mir-10 RF00104 11 66 75 1 0.66 0.59 0.60 0.00 0.48 0.33
13 Purine RF00167 29 55 103 2 0.91 0.07 0.00 0.00 - 0.27
14 RFN RF00050 47 66 139 4 0.39 0.68 0.26 0.00 - 0.00
15 Rhino CRE RF00220 12 71 86 1 0.88 0.52 0.52 0.69 0.41 0.61
16 s2m RF00164 23 80 43 1 0.67 0.80 0.45 0.64 0.63 0.29
17 S box RF00162 64 66 112 3 0.72 0.11 0.00 0.00 - 0.00
18 SECIS RF00031 43 43 68 1 0.73 0.00 0.00 0.00 - 0.00
19 Tymo tRNA-like RF00233 22 72 86 4 0.81 0.33 0.36 0.30 0.80 0.48

Average accuracy: 0.79 0.36 0.28 0.17 0.60 0.19
Average specificity: 0.81 0.42 0.57 0.83 0.60 0.65
Average sensitivity: 0.77 0.36 0.23 0.13 0.61 0.17

Table 4.1: CMfinder performance comparison with other related tools.
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Chapter 5

Machine Learning

In this chapter an introduction to machine learning and the machine learning techniques

used in this work. Graph kernel is the essential is the core concept used in this thesis.

In the first section, section 1, a small introduction to the machine learning field is given.

Followed by the definition of kernel in section 2 . The graph kernel is introduced in details

in the third section. Section 3 present the fast neighborhood sub-graph pairwise distance

kernel (FNSPDK) as a type of graph kernel, as it is the graph kernel tool used for the

evaluation.

5.1 Support Vector Machine

Machine learning is a computational method for learning. It includes supervised, unsu-

pervised, as well as the semi-supervised learning. In supervised learning the algorithm

leans from giving example, which is not the case for the unsupervised learning. The semi-

supervised algorithm is the case in between the two previous cases.

Support vector machine (SVM) are one of the most powerful and effective methods in

machine learning. As SVM can be used in classifications and regression. As a conse-

quence of having kernel, the use of the support vector machine is possible with non-linear

classification problems. The next section define kernel and kernel trick.
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CHAPTER 5. MACHINE LEARNING

5.2 Kernel

Recently many kernel based algorithms have been developed in the machine learning area.

At first, they were used as a solution to binary classification problems. However, because of

the increasing number of the complex data, the need for methods solving those problems

in the cheapest, easiest way is needed. In general, kernel based algorithms are a linear

methods using the inner products known as kernel function as a transformation from the

original non-linear space into a linear space that allows the use of a linear classification

algorithm [51] Figure5.2 illustrates this concept. We define kernel as a continuous and

symmetric function (κ), that maps two arguments χ, χ′ to a real value that measures their

similarity.
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Figure 5.1: Kernel function illustration. Kernel function maps the original data space into
feature space, where the linear classifier can work.

5.3 Graph kernel

When we want to measure the similarity between high structural data using kernels, then

we need to present these data as a graph. Conveniently, graphs can represent a lot of

complex data such as biological sequence data and RNA structures. When dealing with

graphs we deal with discrete structure therefore we need to use the convolution kernel

introduced by Haussler [79]. Note that all notations and definitions in this section is taken

from Costa [56] and Haussler [79].

Before we give the definition of convolution kernel we need to define the kernel.
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Definition 5.1 (Kernel). Let X be a set. A kernel is a function K : X ×X → R, if K

is:

• symmetric: K(x, y) = K(y, x) for all x, y ∈ X.

• positive-semidefinite: for the matrix Kij = K(xi, xj), n > 1 and x1, ..., xn ∈ X the

sum
∑
ij

cicjKij ≥ 0 holds for all c1, ..., cn ∈ R.

Kernel method maps the input space into a new space called feature space where the

kernel function can be applied.

Definition 5.2 (Feature space). For a given kernel K over X×X that can be represented

as function K(x, y) =< θ(x), θ(y) > for any choice of θ , and X is countable set, then the

vector space induced by θ is called feature space.

For better understanding of the convolution kernel definition, we first give the definition

of the relation notation we are using.

Definition 5.3 (Relation Rr,d). Rr,d is a relation on G × G × G, where:

• G is the set of all graphs.

• Rr,d(A
u, Bv, G) is true for some graphs Au, Bv, G ∈ G iff Au, Bv ∈ {N v

r : v ∈ V (G)}.

• Au, Bv are isomorphic to some Nr.

• D(u, v) = d in G.

From all previous definitions we could define the convolution kernel.

Definition 5.4 (Convolution Kernel). A convolution kernen K is a valid kernel such

that:

K(x, y) =
∑

x1,...,xd∈R−1(x)
y1,...,yd∈R−1(y)

∏
Kd(xd, yd)

where:

• x1, ..., xd, y1, ..., yd ∈ X are parts of x, y ∈ X such that x = (x1, ..., xd), y = (y1, ..., yd).

We call x, y a composite dividable object.

• R is a relation on the set X1×...×Xd×X such that R(x1, ..., xd, x) is true iff x1, ..., xd

are the parts of x.
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5.4 The Neighborhood Subgraph Pairwise Distance

Kernel

In this section we define the neighborhood sub-graph pairwise distance kernel (NSPDK)

and discuss how dose it works. At the end we show how it helps us in the work of this

thesis. All notations and definitions in this section is taken from Costa [56].

The neighborhood sub-graph pairwise distance kernel is an instance of decomposition

graph kernel. Following, the definition of the NSPDK is given and then clarify the definition

with many definitions.

Definition 5.5 (Neighborhood Subgraph Pairwise Distance Kernel). The neigh-

borhood sub-graph pairwise distance kernel (NSPDK) is defined as:

K(G,G′) =
∑

r

∑
d κr,d(G,G

′)

Where κr,d over G×G is a convolution kernel on the relation Rr,d defined as:

κr,d(G,G
′) =

∑
Av ,Bu∈R−1

r,d(G)

Au′ ,Av′∈R−1
r,d(G′)

δ(Av, Au′)δ(Bu, Bv′)

where

δ(x, y) =

{
1 if x ' y (x,y are isomorphic graphs)

0 otherwise

The function κr,d counts how many identical pairs of neighboring graphs of radius r at

distance d between two graphs.

Definition 5.6 (Neighborhood Subgraph). The neighborhood Nr(v) of a vertex v ∈
V (G) and radius r is the set of vertices at maximal distance r from v:

Nr(v) = {u ∈ V (G) | D(u, v) ≤ r}

The neighborhood subgraph N v
r of vertex v and radius r is the graph induced by the neigh-

borhood Nr(v).
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5.4.1 EDeN

EDeN is the machine learning tool created by F. Costa [56]. It is used for the analisis of

the different graph structures generated by the method of this thesis. EDeN works based

on the NSPDK concept introduced above. The tool works in two steps:

1. It decomposes the graph into all its subgraphs by defining the relation R defined in

5.3.

2. It counts the number of identical pairs of neighboring subgraphs of radius r and

distance d between two graphs.

The last step is done by first using the decomposition kernel on the relation Rr,d as

defined in 5.5. Then, the counting of the identical subgraph pairs is done by summing up

all similar graph on the specified r, d.

Not to forget, that r is the upper bound of the radius and d is the upper bond of the

distance defined by the user. Figure 5.2 shows how EDeN applies the previously explained

steps on a graph.
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Figure 5.2: An illustration of pairs of neighborhood graphs. The subgraphs are generated
for radius r= 1,2,3 and distance d=5. The red circle indicates the root of the two subgraphs,
the green area, are considered in the comparison EDeN perform.
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Chapter 6

Multiple Alignment Graph Generator

This chapter provides the core of the approach of this thesis. The aim of this work is to

generate graphs that can explain ncRNA alignments while also considering their structure.

These graphs are then used as a seed for a machine learning tool for prediction. In the first

section a general description of the approach is provided with explanation of the different

types of graphs. The second section introduces a tool called MAGG developed by this work,

that generats these graphs.

6.1 A novel graph approach

The approach is focusing on building a graph out of ncRNA alignments. The input for

this approach are aligned ncRNAs sequences. These alignments were created by CMfinder,

which is a multiple sequence alignment method [57]. Each alignment data has multiple

information attached to it. These information encode more details about the alignment

A.2, for example, the secondary structure prediction of the alignment, the conservation of

the aligned column, the strength of the conservation, and the covariation of the alignment

base pair. Each information mentioned is used to build different graphs. More details on

these information is presented in Appendix A.2.

This work is considering two graph classes N and S . Figure 6.1 illustrates these classes

of graph.. Each containing differently structured graphs. The class N contains graphs

without stem information, while the S class does include them. Each of these classes are

divided in into two subclasses U and L . U contains graphs that encode the alignment

information in single node, while L contains those graphs using several nodes to encode
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GGG

NNN SSS

NUNUNU NLNLNL SLSLSLSUSUSU

Figure 6.1: The diagram shows that there are two different classes N and S . Each of
them are again subdivided into NU ,NL , SU , and SL .

the information. The two graph classes can have a single or a concatenation of multiple

alignment information as node labeling.

As an example for graphs in N , consider Figure 6.2. The left side of the figure shows

an instances of NU and the right side an instance of NL . The graph NL differs from NU in

away that it encodes extra information in individual node (green nodes).

In the second graph class S , new nodes providing additional information about the

sequence structure are added. These additional nodes represent stem and non-stem regions.

A Stem is a continuous region of base pairs in the ncRNA sequence. Any other secondary

structure as loops or hairpins are considered as non-stamp regions. This way, all nodes that

encode a stem are connected to an extra node labeled by the letter S, where nodes that do

not form a stem are connected to a node labeled by NS. These nodes are attached to other

nodes indicating some information about the stem or non-stem regions. Similarly to the

first graph class N , this class contains two subclasses SU and SL . Figure 6.3 illustrates

an instance of SU on the left side and an instance of SL on the right side.

6.2 Processing pipeline

Several steps are considered to process the alignment information in our approach. Two

tools are used . Both of them are organized in a tool chain and process a set of files. Figure

6.4 depicts these tools and the chain used in this work. The first tool in the toolchain is

called MAGG, which is presented in this thesis. As input MAGG takes a set of files encoding
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Figure 6.2: The left side shows an instance of a graph from NU encoding conservation
information in single nodes. The right side is an instance of a graph from NL encoding
covariation information in extra nodes (green colored).

A

A

A

A

A

C

C

C

G

G

G

G

G

U

U

U

AC
U

...

...

NS I

S I

A

A

A

A

A

C

C

C

G

G

G

G

G

U

U

U

AC
U

...

...

2

-

2

1

2

2

1

2

2

22

2

2

--

-

- -

-

...

...

NS I I

S I I

Figure 6.3: The left side shows an instance of a graph from SU encoding conservation
information in single nodes. The right side is an instance of a graph from SL encoding
covariation information in extra nodes (green colored). In both graphs, the stem regions
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InputFiles

MAGG

OutputFiles

EDeN

Results

Figure 6.4: The two tools, MAGG and EDeN, organized in a toolchain. MAGG processes a
set of files (upper level) encoding ncRNA sequence alingments and generates a set of files
encoding our graph structure. EDeN processes these files and outputs its results.

ncRNA sequence alignments and generates a set of files each encoding graphs that we

described earlier (see Section ??). Next, these files, which called class files, passed on to

EDeN. EDeN is a machine learning tool that we use for analyzing our graph structure. The

next sections provide some insight on these tools and describe how they work.

6.2.1 MAGG

Multiple Alignments Graph Generator referred to it as MAGG is the tool developed by this

work. This tool reads a set of files encoding ncRNA sequence alignments to generate a set

of files each encoding a graph structure (see Section ??). The set of input files is divided

into two subsets. For the structure of these files refer to Appendix A.2. These data will

be described in the following Chapter 7. The files returned by MAGG are then processed by

EDeN, that provides analysis results.

The developed tool can be customized to generate differently structured graphs based

on a given specification. This specification is called pattern. A pattern is a template for a

layer, i.e. a subgraph, of the generated graph. That is, the generated graph can be described

by a set of subgraphs all satisfying the same pattern. An example will be provided in order

to clarify this point. In more detail, a pattern consists of a set of node and edge templates

describing how these nodes are connected to each other. A node template is labeled by a

composition of labels. The set of available labels is {cons , conss , sscons , cov , entropy}, were
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each element represents alignment information, and all sequences have the same length.

MAGG processes this pattern by generating nodes connected according to the specified node

and edge templates, where each node is labeled by the i-th character of an alignment.

Definition 6.1 (Pattern). A pattern is a structure (S,E, I), where S ⊂ 2N is a subset

of nodes N , E ∈ N ×N is a set of edges connecting nodes and I ∈ N ×N ∪ {∅} is a set

of inter layer edge templates. An inter edge template (called inter edge) is a template for

an edge between two nodes of different layers.

Each node is labeled by concatenating the i-th character of each element of a subset

L′ of labels L = {cons , conss , sscons , cov , entropy}. Formally, for i and L′ the labeling is

info0 [i ] · info1 [i ] · ... · infon [i ], where info0 [i ] ∈ L′, infoj [i ] represents the i-th character of

infoj and · the string concatenation operation.

As an example consider the following pattern p. For simplicity we put the labeling of

a node after an equal sign.

p := (S,E, I)

S := N0 = cons, cov, N1 = cov, N2 = ent

E := (N0, N1), (N1, N2)

I := (N0, N0), (N1, N2)

When a node is labeled, then it follows the labeling described in the definition above

(Definition 6.1). Hence, a node is labeled by concatenating the i-th characters of each

element of a subset of labels. The example pattern defines three nodes N0, N1 and N2.

The first node, N0, is labeled by cons and cov, i.e. by cons[i] and cov[i]. The second node,

N1, is labeled only by cov and the last one, N2, is labeled by ent. These nodes are connected

as follows: N0 is connected to N1 and N1 to N2. The MAGG tool processes this pattern by

generating sub-graphs, or as called layers, which are isomorphic to the graph structure just

described. The first layer is generated from the 0-th character of each labeling information,

then the second is generated from the 1-th character, and so on. In total the generated

graph consists of n layers, where n is the number of a sequence information. Note that

all sequence information have the same length. An illustration of these layers is shown in

Figure 6.2.1.

Furthermore, these layers are connected by so called inter edges. An inter edge connects

two nodes of adjacent layers. In our example N0 from the currently generated layer is
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cons[0]cov[0] cov[0] ent[0]

cons[1]cov[1] cov[1] ent[1]

cons[2]cov[2] cov[2] ent[2]
...

...

...

Figure 6.5: This graph is according to pattern p. Solid edges represent instances of edge
templates and dashed edges represent instances of inter edge templates. We depict string
concatenation without the string concatenation operator ·, as in cons [1 ]cov [1 ] instead of
cons [1 ] · cov [1 ].
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connect to N0 of the next generated layer. Similarly, N1 is connected to N2 of the next

generated layer. We depict inter edges in Figure 6.2.1 by dashed edges. The next section

covers how such graphs are processed by EDeN.

With the help of the described patterns, many types of different graphs can be generate

encoding different types of alignment information. The most interesting patterns will be

evaluate in Chapter 7.
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Chapter 7

Evaluation

This chapter summarizes the evaluation results of the approach in this work. The first

section, Section ??, describes the input data for the evaluation. In section 2, the ROC

measurement is defined, since it is the measurement unit used in this work. In the last

section, Section 7.3, the results of this method are presented and discussed.

7.1 Data description

The experimental data was assembled by Zasha Weinberg and his group [53–55]. They

have generated a pipeline using different methods to generate the alignment and predict

the secondary structure but the functionality classification was done manually. Figure 7.1

is a flowchart showing the different methods that were considered by Z. Weinberg in the

data assembly. In the coming paragraphs we are going to show every step in details.

Firstly, The Conserved Domain Database (CDD) [80], which is a a database for identify-

ing conserved domains in new sequences, in order to identify the homologous gene sets. For

each gene, only collected the 5úpstream sequences are assembled, since the cis-regulatory

elements are mostly conserved in this area. At this point 2,946 CDD groups are present in

the dataset. In the second step, the Footprinter tool [76] is applied in order to select the

sets that host non-coding RNAs. Footprinter is a tool used to discover regulatory elements

in a set of homologous sequences, by identifying the conserved motifs in those regions.

Thirdly, CMfinder [57] is used. This infer the RNA motifs in each unaligned sequence.

This leads to a dataset of 35,975 motifs out from the initial CDD groups. Then, the redun-
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dant and poor motifs are removed in the postprocessing step in order to identify the rest

of motifs based on the different RNA elements. With this step they reduce the number of

unrelated motifs to 1,740 motifs, which helps in the prediction. RaveNnA is used in the

fourth step to find more motif instances by scanning the prokaryotic genome database. A

refinement is applied on the newly discovered motif members. This refinement and the

motif postprocessing steps are repeated in order to get the best result. After this step,

they are left with 1,466 motifs grouped in 1,0660 classes. Finally, they have performed

gene context analysis and report the top ranking motifs.

Identify CDD group members

Retrieve upstream sequences

Footprinter ranking

CMfinder

Motif postprocessing

RaveNnA

CMfinder refinement

Motif postprocessing

2946 CDD groups

35975 motifs

1740 motifs

1466 motifs

Figure 7.1: It shows the different steps the data goes through and also illustrates the
methods used in generating them. The soild boxes indicate intensive computation (approx.
run time) specified next to the box. After each step the number of remaining motifs is
shown.

As a result of the pipeline 7.1 an identification of promising motifs by searching RNAs

is done. These motifs have regions with conserved nucleotide sequences and have evidence

of secondary structure. Testing on bacteria and archaea, they have identified 104 candidate
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structured RNAs, 12 of them were metabolite-binding RNA [54].

Wienberg and his team classified the resulting motifs into two different classes: negative

and positive. The negative class contains motifs that have permuted alignments, where

they have computed multiple sequence alignment by CLUSTALW of the 100 sequence

datasets that have the highest motif scores. Then, they randomly permuted the alignment

50 times preserving the gap pattern. After that, they degap the permuted alignment and

apply CMfinder and keep the top ranking motif from each dataset. The positive class

contains known non-coding RNAs recognized in Rfam families.

7.2 Receiver Operator Characteristic: Evaluation met-

rics

The Receiver Operator Characteristic (ROC) curve is used in machine learning in binary

decision problems. This curve is mostly used to measure the performance of a learning

algorithm on dataset that has positive and negative instances [81]. Formally, for a set of

instances I, each instance i is mapped to one class P,N, where P is the positive class and N

is the negative class. The classification model is a mapping from instances to the predicted

class. Let Y and N be the prediction classes produced by a model. Given an instance

and classifier (classification model) [4], we can see that there are four possible outcomes.

If the classifier predicted that this instance belongs to the positive class and it is actu-

ally positive, then it known as true positive TP. However, if the instance is positive but

classified as negative then it is false negative FN. If the instance is negative and classified

as negative the it is counted as true negative TN. Finally, if the instance is negative but

classified as positive then it is false positive FP. Figure 7.2 shows these four cases as it

known as confusion matrix.

The true positive rate also known as recall is estimated as :

tprate =
Positivescorrectlyclassified(TP )

totalpositives(P )
(7.1)

The false positive rate known as false alarm
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Figure 7.2: The upper part of the figure shows the four different cases of the prediction,
where p and n are the true class and Y and N are the predicted class. The lower part of
the figure gives some measurement calculations.

fprate =
negativesincorrectlyclassified(FN)

totalnegatives(N)
(7.2)

The ROC curve is created by plotting the true positive rate (tp rate) against the false

positive rate (fp rate) at a threshold. Figure 7.2 shows the ROC curve drown for five

randomly classified instances. In this work, we use the ROC curve as a measurement unit

of the classification method used in this work.

7.3 Results

In this section the results of the approach of this work is represented and discussed. The

evaluation is executed on a cluster that consists of several computers with different config-

urations. The pipeline described in chapter 5 is executed on this cluster. The input is the

data described in the previous Section 7.1. The pipeline works as follows:

• Different graphs are generate from these positive and negative classes according to a

pattern using MAGG..

• EDeN is applied on the output of MAGG delivering the final results.

43



CHAPTER 7. EVALUATION

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

A

B

C

E

D

False Positive rate

Tr
u

e
 P

o
s
it

iv
e
 r

a
te

Figure 7.3: A basic ROC graph showing five discrete classifiers.

The EDeN parameters configuration that is used in this work are radius r = {0, . . . , 4}
and distances d = {0, . . . , 20}. These ranges have been chosen because it allows EDeN to

cover all created graphs.

Because of the run time considering all radiuses and distances is very time consuming,

only some combinations of radius and distance are considered. after a pre-evaluation, the

most promising combinations are chosen.This section covered these combinations and in

Appendix A.3 all tested different parameters combinations are provided.

Different patterns are considered creating different types of graphs. The set of graph classes

representation used in this work are {N ,S }, where N is the set of graphs without the

stem nodes. S is the set of graphs that recognize the stem regions. Each of them have

the representation of {U ,L }, as described in Chapter6. The results of this evaluation

are based on running EDeN on radius r = {2, 4} × d = {12}, because these parameters

provide the best results. The average and the standard deviation of the ROC measurement

is considered . This way, the rate of the true positive (correctly classified) and the false

positive (wrongly classified) instances is calculated.

In the following, the results of running EDeN with the selected parameters, radius

r = {2, 4} and distance d = 12, is discussed. When EDeN is running with r = 2, then

it is creating two subgraphs every two nodes. Each of these subgraphs contain nodes that

are in maximum distance 12 from the root node. Then, the comparison is measuring the

similarity between these subgraphs according to the method introduced in Chapter 5.
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For better presentation, a short way of writing the pattern is used. For example, when

the tested pattern is N0 = x0, N1 = x1, . . . , Nn = xn, then it stands for:

{N0 = x0, N1 = x1, . . . , Nn = xn}, {(N0, N1), (N1, N2), . . . , (Nn−1, Nn)}, {〈N0, N0〉}.

The tables are sorted with respect to the highest ROC value first. The following two tables,

Table 7.1 and Table 7.2, depict the results of running two different types of graphs created

by MAGG from NU ,NL , respectively.

r = 2, d = 12 r = 4, d = 12
Pattern AVG0 ± (Std) AVG1 ± (Std) AVG0 ± (Std) AVG1 ± (Std)
N1=cons 0 .719 ± 0.202 0.871 ± 0.112 0.745 ± 0.190 0.958 ± 0.040
N1=cov .544 ± .248 .538 ± .248 .551 ± .247 .539 ± .248
N1=cons cov .537 ± .248 .510 ± .249 .513 ± .249 .495 ± .249
N1=cov con .535 ± .248 .555 ± .246 .570 ± .245 .573 ± .244
N1=sscons cons .530 ± .249 .581 ± .243 .560 ± .246 .599 ± .240
N1=sscons cov .522 ± .249 .559 ± .246 .562 ± .246 .515 ± .249

Table 7.1: This table shows the final result of the first class of the generated graphs
NU running on radius r = 2, 4 and distance d = 12. The first column shows the running
pattern, i.e. which information considered when building the graph. The second and the
third columns give the result of average and (+/−) standard deviation. of testing on the
two positive classes.

r = 2, d = 12 r = 4, d = 12
Pattern AVG0 ± (Std) AVG1 ± (Std) AVG0 ± (Std) AVG1 ± (Std)
N1=cons N2=sscons .669 ± .221 .706 ± .207 .621 ± .235 .653 ± .226
N1=cov N2=cons .658 ± .224 .676 ± .218 .639 ± .230 .629 ± .233
N1=cons N2=cov .647 ± .228 .690 ± .213 .630 ± .233 .661 ± .223
N1=sscons N2=cons .628 ± .233 .646 ± .228 .631 ± .233 .626 ± .234
N1=cons N2=cov N3=conss N4=ent .603 ± .239 .651 ± .226 .574 ± .244 .607 ± .238
N1=cons N2=cov N3=conss .596 ± .240 .661 ± .223 .609 ± .238 .637 ± .230
N1=conss N2=cons .470 ± .249 .527 ± .249 .553 ± .247 .584 ± .242

Table 7.2: In this table we show the result of the first class of the generated graphs
NL running on r = 2, 4, d = 12. The table follows the notation introduced in the previous
table 7.1.

Based on Table 7.1 one can observe that, aside of any type of the alignment infor-

mation, the graph built using conservation of the alignment gives the best ROC results of

approximately 80%. The rest of information types are close to the norm, i.e. they do not

provide enough information to do the classification. When one takes the higher radius
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r = 4 into account, one can see a major improvement in the results. That is, the ROC

value of the graph encoding the conservation is improved from 80% to 90% with a small

standard deviation of 0.040.

However, comparing Table 7.1 with Table 7.2, one can see a significant improvement in

the latter table. Considering the same patterns but encoding the information in individual

nodes helps the machine learning tool to do the classification better. For instance, consid-

ering the pattern, N1=cov N2=cons that encodes the covariance as a first node and the

conservation as a second node, results in a ROC value of 65% (Table 7.2) in comparison

to 53% (Table 7.1). Note that, the pattern resulting in a ROC value of 53% encodes the

same type of information in as single node instead of two nodes. This hints that dividing

the information is more useful in the classification. As one can notice comparing the two

different radiuses r = 2 and r = 4, when the graph encodes different types of information,

does not result in a notable improvement. On the contrary, the smaller radius provides

better results most of the time.

In the following paragraphs the results from SU ans SL are discussed. As a reminder,

the class S encodes stem and non-stem regions. This is done by adding a new node de-

scribing these regions as discussed in Chapter 6. The following tables, Table 7.3 and Table

7.4, are showing the results of running the same patterns considered above.

r = 2, d = 12 r = 4, d = 12
Pattern AVG0 ± (Std) AVG1 ± (Std) AVG0 ± (Std) AVG1 ± (Std)
N1=cons -s .721 ± .200 .856 ± .122 .752 ± .186 .971 ± .028
N1=cov -s .605 ± .238 .623 ± .234 .583± .243 .597 ± .240
N1=cons cov -s .594 ± .241 .531 ± .248 .553 ± .247 .503 ± .249
N1=sscons cons -s .557 ± .246 .588 ± .242 .577 ± .244 .581 ± .243
N1=cov cons -s .554 ± .246 .599 ± .240 .570 ± .245 .611 ± .237
N1=cons conss -s .551 ± .247 .484 ± .249 .573 ± .245 .571 ± .244
N1=conss cov -s .525 ± .249 .505 ± .249 .582 ± .243 .521 ± .249

Table 7.3: In this table we show the result of the second class of the generated graphs
{SU } running on r = {2, 4}, d = 12. The table follow the notations introduced in Table
7.1. The −s after the pattern indicates that stem and non-stem regions are recognized.

When the stem regions are added into the graph structure a significant improvement

is observed. Naturally, this is because more information is encoding in the graph. Com-

paring the results of Table 7.1 with those of Table 7.3 a remarkable improvement in the

results can be seen. The results of patterns from graphs fromNU are mostly less than

the mean, which is not the case with patterns for graphs from theSU . For instance, the
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r = 2, d = 12 r = 4, d = 12
Pattern AVG0 ± (Std) AVG1 ± (Std) AVG0 ± (Std) AVG1 ± (Std)
N1=cons N2=cov -s .672 ± .220 .690 ± .213 .654 ± .226 .658 ± .224
N1=cov N2=cons -s .695 ± .211 .669 ± .221 .673 ± .220 .631 ± .232
N1=cons N2=sscons -s .681 ± .216 .701 ± .209 .646 ± .228 .655 ± .225
N1=cons N2=cov N3=conss N4=ent -s .632 ± .232 .627 ± .233 .598 ± .240 .583 ± .243
N1=cons N2=cov N3=conss -s .631 ± .232 .640 ± .230 .620 ± .235 .608 ± .238
N1=conss N2=cons -s .505 ± .249 .567 ± .245 .602 ± .239 .616 ± .236

Table 7.4: In this table we show the result of the second class of the generated graphs
{SL } running on r = {2, 4}, d = 12. The table follow the notations introduced in Table
7.1. The −s after the pattern indicates that stem and non-stem regions are recognized.
Therefore, nodes labeled by (S,NS) are generated.

pattern , +N1=cov, that encods the covariation gives a ROC value of 54% which increased

to be ≈ 60% when taking the stem regions into consideration. The same applies when the

graph represents multiple types of information. As an example, in Table 7.2 the pattern

+N1=conss N2=cons, results in a ROC value of 47%, which increased to 50%. In general,

the graphs from S is returning better results. This is because, they encode more infor-

mation about the sequence alignment structure. This way EDeN can be more accurate in

classification.

Graphs from SL including stem regions gives ROC value of approximately 70%. The

results do not differ much considering radius r = 2 and r = 4. In some cases the prediction

increases from 50% to 60% as the results of the last pattern in Table 7.4. That shows

that sometimes the larger radius is better, specially when the graph encodes information

in separate nodes. Analogously, NL gives better results than the NU .

r = 2, d = 12 r = 4, d = 12
Graph class Pattern AVG0 ± (Std) AVG1 ± (Std) AVG0 ± (Std) AVG1 ± (Std)
SU N1=cons -s .721 ± .200 .856 ± .122 .752 ± .186 .971 ± .028
NU N1=cons .719 ± .202 .871 ± .112 .745 ± .190 .958 ± .040
SL N1=cov N2=cons -s .695 ± .211 .669 ± .221 .673 ± .220 .631 ± .232
NL N1=cons N2=sscons .669 ± .221 .706 ± .207 .621 ± .235 .653 ± .226

Table 7.5: This table shows the best results of each graph class generated by MAGG and
evaluated by EDeN The table follow the notations introduced in Table 7.1. The −s after
the pattern indicates that stem and non-stem regions are recognized.

Table 7.5summarizes the best results of Table 7.1- 7.4. It can be observed, the conserva-

tion information supports EDeN in classification. In general, S graph class result in higher

classification results than those of N . This is again because more information about the
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alignment structure is provided which.
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Chapter 8

Conclusion

Over the last decade, the importance of ncRNAs has become increasingly evident. There-

fore, having a tool that can apply machine learning in order to predict the functionality of

such RNAs is useful. The main goal of this thesis was to create a computational method

that predicts whether a set of aligned ncRNAs is functional or not. These alignments

contain conservation and structure information. The method developed in the presented

work is called MAGG. It is used in combination with a tool based on a graph kernel approach

(EDeN). EDeN is used to characterize graphs. The function of MAGG is the construction of

different types of graphs. It can generate four graph types: two of them are N and two

are S . Every generated graph can encode different ncRNA alignment information. These

aligned ncRNA sequences were generated by the CMfinder method. EDeN is the machine

learning frame work that is used in this work.

The proposed method returned ROC values of 86% with the SU graph, 85% with the

NU graph, 68% with the SL graph, and 69% with the NL graph 7.5. The first two

ROC values are returned using the conservation information as node encoding.The third

ROC value is returned when using the covariance and the conservation as node encoding.

The fourth ROC value is returned when using the conservation and the secondary structure

prediction as node encoding. These results indicate that the most correct classifications

can be obtained by using the SU and NU graphs encoding the conservation information.

Notably, the results returned for the U graph do not markedly improve by including the

stem regions. However, given that the function of ncRNAs is often governed by their struc-

ture, it appears sensible to assume that encoding additional structural information beyond

simple stems (hairpins, bulges, loops) might improve the final classification. At this stage
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the classification approach can definitely be used as a powerful pre-filtering method when

a large amount of alignments is provided. Of course, further work is needed to develop

and optimize this method.

Currently, MAGG starts from aligned ncRNA sequences and then builds graphs based

on them. To simplify the application, automated alignment of the input sequences could

be implemented. Furthermore, the application of the current approach on other types of

sequences may be interesting.
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Appendix

A.1 Stockholm format

The data files we are using in our experiment are in stockholm format. This format

is a multiple sequence alignment format used by Rfam and Pfam for representing RNA

sequence alignments. Each file in stockholm format starts with a header that indicates

the stockholm identifiers followed by some command and then the sequence alignments,

Figure A.1 shows how stockholm file looks like.

Figure A.1: Stockholm alignment file format.

These files are the input into MAGG. From all the information encoded in the file we use

the conservation of the alignment column, the strength of the column conservation, as well

as the entropy information to build our graph. Figure A.2 shows the desired lined in the

stockholm file. Our graph model depends on the type of information we wants to build it
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based on. For each information we create a vertex and then connect these vertices based

on the relation between them. The output graph is undirected labeled graph, for definition

see chapter 3.

Figure A.2: Information needed from the input file.

A.2 Nodes label information

Firstly, the sscons indicates the alignment secondary structure prediction. This type of

information indicates the base pair relationship by using brackets like <> ()[], and dots

indicates unpaired nucleated.

Secondly, the cons shows conservation of the alignment column. The conservation

information shows the nucleotides that conserved its position during evolution. It has

different values as follow:

1. A nucleotide (A,C,G,U) is conserved (this is probably the most interesting case),

2. The column is conserved as a purine/pyrimadine (R=A or G ; or Y=C or U),

3. ’n’ indicates that the presence of a nucleotide is conserved but not a specific one.

4. A dash ’-’ indicates that it’s usually a gap.

Thirdly, conss indicates the strength of conservation. It’s a number whose meaning

depends on the symbol in the cons line. There is different cases:
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• If the cons line is a nucleotide or purine/pyrimidine (A,C,G,U,R or Y), then the

conss number is between 1− 3 where:

– 1 is ≥ 97 % conserved.

– 2 is ≥ 90 %.

– 3 is ≥ 75 %.

• If the cons line has ’n’, then the conss number is between 1− 4 where:

– 1 means there’s a nucleotide there ≥ 97% of the time.

– 2 means ≥ 90 %.

– 3 means ≥ 75 %.

– 4 means ≥ 50 %.

• If the cons symbol is a gap ’-’, then the conss number is always zero.

Fourthly, cov indicates the covariation of each base pair. The covariation of the base

pair shows how randomly these base pairs are changing together. Here is the measurement

for the covariation:

• 2 means there is covariation.

• 1 means only compatible mutations (e.g. A-U and G-U).

• 0 means no changes in the type of base pair.

• ? means that there are too many non-canonical base pairs.

Fifth, ent indicates the column entropy. The entropy of a column is the profitability of

occurring the nucleotide in the column.

A.3 Result of different parameters

Here is a representation of one of the pattern considered in the result reported in Chapter

7. The following table shows the different raduises and distances tested running EDeN.

From these tested parameters came the choose of the parameters chosen for running the

evaluation. The pattern considered is N1 = cons − e − s. For better presentation, the

resuting table is divided in to tables.
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0 0 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.564 ± 0.001
0 0 4 20 0.774 ± 0.004 0.376 ± 0.000 0.505 ± 0.000 0.704 ± 0.000
0 0 2 10 0.828 ± 0.007 0.115 ± 0.000 0.202 ± 0.000 0.701 ± 0.000
0 0 2 12 0.831 ± 0.008 0.146 ± 0.000 0.248 ± 0.000 0.705 ± 0.000
0 0 2 16 0.829 ± 0.004 0.200 ± 0.000 0.321 ± 0.000 0.692 ± 0.001
0 1 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.561 ± 0.001
0 1 4 20 0.801 ± 0.009 0.376 ± 0.000 0.510 ± 0.000 0.733 ± 0.007
0 1 2 10 0.839 ± 0.009 0.115 ± 0.000 0.202 ± 0.000 0.715 ± 0.002
0 1 2 12 0.849 ± 0.009 0.146 ± 0.000 0.248 ± 0.000 0.718 ± 0.002
0 1 2 16 0.849 ± 0.006 0.200 ± 0.000 0.323 ± 0.000 0.704 ± 0.002
0 2 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.558 ± 0.000
0 2 4 20 0.792 ± 0.009 0.376 ± 0.000 0.509 ± 0.000 0.730 ± 0.007
0 2 2 10 0.828 ± 0.007 0.115 ± 0.000 0.202 ± 0.000 0.710 ± 0.002
0 2 2 12 0.831 ± 0.008 0.146 ± 0.000 0.248 ± 0.000 0.714 ± 0.002
0 2 2 16 0.833 ± 0.005 0.200 ± 0.000 0.322 ± 0.000 0.700 ± 0.002
0 3 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.569 ± 0.000
0 3 4 20 0.791 ± 0.009 0.376 ± 0.000 0.508 ± 0.000 0.729 ± 0.007
0 3 2 10 0.834 ± 0.008 0.115 ± 0.000 0.202 ± 0.000 0.711 ± 0.002
0 3 2 12 0.845 ± 0.009 0.146 ± 0.000 0.248 ± 0.000 0.715 ± 0.002
0 3 2 16 0.840 ± 0.006 0.200 ± 0.000 0.322 ± 0.000 0.701 ± 0.002
0 4 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.564 ± 0.001
0 4 4 20 0.803 ± 0.009 0.376 ± 0.000 0.511 ± 0.000 0.734 ± 0.007
0 4 2 10 0.852 ± 0.007 0.115 ± 0.000 0.203 ± 0.000 0.714 ± 0.002
0 4 2 12 0.853 ± 0.008 0.146 ± 0.000 0.249 ± 0.000 0.719 ± 0.002
0 4 2 16 0.849 ± 0.006 0.200 ± 0.000 0.323 ± 0.000 0.705 ± 0.002
0 5 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.565 ± 0.001
0 5 4 20 0.797 ± 0.010 0.376 ± 0.000 0.510 ± 0.000 0.730 ± 0.007
0 5 2 10 0.848 ± 0.008 0.115 ± 0.000 0.202 ± 0.000 0.712 ± 0.002
0 5 2 12 0.849 ± 0.009 0.146 ± 0.000 0.248 ± 0.000 0.716 ± 0.002
0 5 2 16 0.846 ± 0.006 0.200 ± 0.000 0.323 ± 0.000 0.701 ± 0.002
0 6 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.566 ± 0.001
0 6 4 20 0.817 ± 0.005 0.376 ± 0.000 0.514 ± 0.000 0.741 ± 0.006
0 6 2 10 0.856 ± 0.005 0.115 ± 0.000 0.203 ± 0.000 0.720 ± 0.001
0 6 2 12 0.862 ± 0.006 0.146 ± 0.000 0.249 ± 0.000 0.725 ± 0.001
0 6 2 16 0.860 ± 0.003 0.200 ± 0.000 0.324 ± 0.000 0.713 ± 0.001
0 7 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.557 ± 0.000
0 7 4 20 0.800 ± 0.009 0.376 ± 0.000 0.510 ± 0.000 0.733 ± 0.007
0 7 2 10 0.834 ± 0.008 0.115 ± 0.000 0.202 ± 0.000 0.714 ± 0.002
0 7 2 12 0.841 ± 0.009 0.146 ± 0.000 0.248 ± 0.000 0.717 ± 0.002
0 7 2 16 0.843 ± 0.006 0.200 ± 0.000 0.322 ± 0.000 0.703 ± 0.002
0 8 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.566 ± 0.001
0 8 4 20 0.789 ± 0.009 0.376 ± 0.000 0.508 ± 0.000 0.733 ± 0.007
0 8 2 10 0.828 ± 0.007 0.115 ± 0.000 0.202 ± 0.000 0.716 ± 0.002
0 8 2 12 0.826 ± 0.006 0.146 ± 0.000 0.248 ± 0.000 0.719 ± 0.002
0 8 2 16 0.840 ± 0.006 0.200 ± 0.000 0.322 ± 0.000 0.705 ± 0.002
0 9 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.565 ± 0.001
0 9 4 20 0.798 ± 0.009 0.376 ± 0.000 0.510 ± 0.000 0.734 ± 0.007
0 9 2 10 0.839 ± 0.009 0.115 ± 0.000 0.202 ± 0.000 0.718 ± 0.001
0 9 2 12 0.845 ± 0.009 0.146 ± 0.000 0.248 ± 0.000 0.721 ± 0.002
0 9 2 16 0.837 ± 0.006 0.200 ± 0.000 0.322 ± 0.000 0.707 ± 0.002

Table A.1: Caption
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1 0 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.641 ± 0.001
1 0 4 20 0.883 ± 0.001 0.853 ± 0.000 0.868 ± 0.000 0.942 ± 0.000
1 0 2 10 0.921 ± 0.002 0.292 ± 0.000 0.443 ± 0.000 0.846 ± 0.000
1 0 2 12 0.918 ± 0.002 0.346 ± 0.000 0.502 ± 0.000 0.846 ± 0.000
1 0 2 16 0.911 ± 0.001 0.430 ± 0.000 0.584 ± 0.000 0.831 ± 0.000
1 1 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.639 ± 0.001
1 1 4 20 0.897 ± 0.003 0.853 ± 0.000 0.874 ± 0.000 0.948 ± 0.000
1 1 2 10 0.926 ± 0.002 0.292 ± 0.000 0.444 ± 0.000 0.854 ± 0.000
1 1 2 12 0.927 ± 0.002 0.346 ± 0.000 0.503 ± 0.000 0.854 ± 0.001
1 1 2 16 0.921 ± 0.001 0.430 ± 0.000 0.586 ± 0.000 0.839 ± 0.001
1 2 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.637 ± 0.001
1 2 4 20 0.893 ± 0.003 0.853 ± 0.000 0.872 ± 0.000 0.947 ± 0.000
1 2 2 10 0.921 ± 0.002 0.292 ± 0.000 0.443 ± 0.000 0.851 ± 0.000
1 2 2 12 0.918 ± 0.002 0.346 ± 0.000 0.502 ± 0.000 0.851 ± 0.000
1 2 2 16 0.913 ± 0.001 0.430 ± 0.000 0.585 ± 0.000 0.835 ± 0.001
1 3 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.647 ± 0.000
1 3 4 20 0.892 ± 0.003 0.853 ± 0.000 0.871 ± 0.000 0.947 ± 0.000
1 3 2 10 0.924 ± 0.002 0.292 ± 0.000 0.443 ± 0.000 0.852 ± 0.000
1 3 2 12 0.925 ± 0.002 0.346 ± 0.000 0.503 ± 0.000 0.852 ± 0.001
1 3 2 16 0.917 ± 0.002 0.430 ± 0.000 0.585 ± 0.000 0.836 ± 0.001
1 4 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.001
1 4 4 20 0.899 ± 0.003 0.853 ± 0.000 0.875 ± 0.000 0.949 ± 0.000
1 4 2 10 0.933 ± 0.001 0.292 ± 0.000 0.445 ± 0.000 0.856 ± 0.000
1 4 2 12 0.929 ± 0.002 0.346 ± 0.000 0.504 ± 0.000 0.856 ± 0.000
1 4 2 16 0.921 ± 0.001 0.430 ± 0.000 0.586 ± 0.000 0.840 ± 0.001
1 5 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.644 ± 0.001
1 5 4 20 0.895 ± 0.003 0.853 ± 0.000 0.873 ± 0.000 0.948 ± 0.000
1 5 2 10 0.931 ± 0.002 0.292 ± 0.000 0.444 ± 0.000 0.853 ± 0.000
1 5 2 12 0.927 ± 0.002 0.346 ± 0.000 0.503 ± 0.000 0.853 ± 0.001
1 5 2 16 0.920 ± 0.002 0.430 ± 0.000 0.586 ± 0.000 0.837 ± 0.001
1 6 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.644 ± 0.001
1 6 4 20 0.908 ± 0.001 0.853 ± 0.000 0.879 ± 0.000 0.952 ± 0.000
1 6 2 10 0.936 ± 0.001 0.292 ± 0.000 0.445 ± 0.000 0.859 ± 0.000
1 6 2 12 0.934 ± 0.001 0.346 ± 0.000 0.505 ± 0.000 0.859 ± 0.000
1 6 2 16 0.929 ± 0.000 0.430 ± 0.000 0.588 ± 0.000 0.845 ± 0.000
1 7 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.634 ± 0.000
1 7 4 20 0.897 ± 0.003 0.853 ± 0.000 0.874 ± 0.000 0.948 ± 0.000
1 7 2 10 0.924 ± 0.002 0.292 ± 0.000 0.443 ± 0.000 0.854 ± 0.000
1 7 2 12 0.923 ± 0.002 0.346 ± 0.000 0.503 ± 0.000 0.854 ± 0.001
1 7 2 16 0.918 ± 0.002 0.430 ± 0.000 0.586 ± 0.000 0.838 ± 0.001
1 8 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.644 ± 0.001
1 8 4 20 0.891 ± 0.003 0.853 ± 0.000 0.871 ± 0.000 0.947 ± 0.000
1 8 2 10 0.921 ± 0.002 0.292 ± 0.000 0.443 ± 0.000 0.854 ± 0.000
1 8 2 12 0.916 ± 0.001 0.346 ± 0.000 0.502 ± 0.000 0.853 ± 0.001
1 8 2 16 0.917 ± 0.002 0.430 ± 0.000 0.585 ± 0.000 0.838 ± 0.001
1 9 0 0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.001
1 9 4 20 0.896 ± 0.003 0.853 ± 0.000 0.873 ± 0.000 0.948 ± 0.000
1 9 2 10 0.926 ± 0.002 0.292 ± 0.000 0.444 ± 0.000 0.857 ± 0.000
1 9 2 12 0.925 ± 0.002 0.346 ± 0.000 0.503 ± 0.000 0.856 ± 0.000
1 9 2 16 0.915 ± 0.001 0.430 ± 0.000 0.585 ± 0.000 0.840 ± 0.001

Table A.2: Caption
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[86] Pavel Pudil, Jana Novovicová, and Josef Kittler. Floating search methods in feature
selection. Pattern Recognition Letters, 15(10):1119–1125, 1994.

[87] Philip E. Bourne and Dan Gusfield, editors. Proceedings of the Eighth Annual Interna-
tional Conference on Computational Molecular Biology, 2004, San Diego, California,
USA, March 27-31, 2004. ACM, 2004.

[88] William W. Cohen and Haym Hirsh, editors. Machine Learning, Proceedings of the
Eleventh International Conference, Rutgers University, New Brunswick, NJ, USA,
July 10-13, 1994. Morgan Kaufmann, 1994.

62



BIBLIOGRAPHY

[89] William W. Cohen and Andrew Moore, editors. Machine Learning, Proceedings of
the Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania,
USA, June 25-29, 2006, volume 148 of ACM International Conference Proceeding
Series. ACM, 2006.

[90] Johannes Fürnkranz and Thorsten Joachims, editors. Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel.
Omnipress, 2010.

[91] Christopher J. Rawlings, Dominic A. Clark, Russ B. Altman, Lawrence Hunter,
Thomas Lengauer, and Shoshana J. Wodak, editors. Proceedings of the Third Inter-
national Conference on Intelligent Systems for Molecular Biology, Cambridge, United
Kingdom, July 16-19, 1995. AAAI, 1995.

[92] Proceedings Thirteenth International Conference on Intelligent Systems for Molecular
Biology 2005, Detroit, MI, USA, 25-29 June 2005, 2005.

63


	Introduction
	Biological background
	Bioinformatics
	Alignment
	Machine learning
	Problem description

	Related Work
	Preliminaries
	Alignment
	Alignments and alignments types
	Sequence alignment
	Structure alignment
	Local and global alignment
	Multiple alignment

	RNA folding
	CMfinder

	Machine Learning
	Support Vector Machine
	Kernel
	Graph kernel
	The Neighborhood Subgraph Pairwise Distance Kernel
	EDeN


	Multiple Alignment Graph Generator
	A novel graph approach
	 Processing pipeline
	MAGG


	Evaluation
	Data description
	Receiver Operator Characteristic: Evaluation metrics
	Results

	Conclusion
	Appendix
	Stockholm format
	Nodes label information
	Result of different parameters


