
RNA-Protein Interaction Prediction

with Graph Kernels

Master Thesis

Li Zhang

Albert-Ludwigs-Universität Freiburg

Technische Fakultät

Institut für Informatik

October 2011

Acknowledgements

First of all, i will express my appreciation to Mr. Dr. Fabrizio Costa, from

whom i got my thesis topic. Thanks for giving me so many helpful tutorials

during the whole process of my thesis, especially for his patient explanations

to my “stupid” questions.

Secondly, i will thank Mr. Daniel Maticzka, who worked as the second

tutor of my thesis and gave me many advices, which helps me a lot.

In addition, i will express my gratitude to Mr. Prof. Backofen and all the

faculties in the bioinformatics team, thanks for their support on my work.

At last, i will thank my parents, thanks for their continuous support and

encouragement behind me.

DECLARATION

I hereby declare, that I am the only author of my thesis and that no

other sources or learning aids have been used. Furthermore, I declare that

I have acknowledged the work of others by giving detailed references of the

corresponding work.

place, date Signature

Abstract

RNA-binding proteins (RBPs) are a class of proteins which are found in many

living organisms, they regulate post-transcriptional gene expression and play

important roles. But up to now, the binding preferences for most RBPs are

not well characterized. It is believed that the RBPs recognize the RNA tar-

gets in a sequence-specific manner, but the structural context of the binding

region also influences the binding. So in order to make clear the mechanism

of the binding between RBPs and their target RNAs, it is important for

us to develop some methods for the prediction of RBPs’ binding preferences.

Different to the existing methods like MEMERIS or RNAcontext, we present

an approach based on the graph kernel method. By using this method, for

some RBPs, we could reach higher prediction performances.

Contents

1 Introduction 3

2 Related Work 6

2.1 MEMERIS . 6

2.1.1 Single-strandedness characterization 7

2.1.2 MEME . 8

2.1.3 Integration of secondary structure information 9

2.2 RNAcontext . 10

2.2.1 Motif model of RNAcontext 11

2.2.2 Parameter estimation 12

3 Machine Learning 14

3.1 SVM and Kernel methods . 14

3.1.1 Support vector machine 14

3.1.2 Kernel methods . 16

3.2 Convolution Kernels . 18

3.3 Neighborhood Subgraph Pairwise Distance Kernel 19

3.4 Combination of SVM and NSPDK 22

3.5 Area under the Precision-Recall curve 24

3.6 Cross-Validation . 25

1

4 Application of graph kernels to RNA secondary structure 27

4.1 Goal of proposed method . 27

4.2 Experiment process of proposed method 28

4.2.1 Process of experiment based on RNAfold 29

4.2.2 Process of experiment based on RNAshapes 46

4.2.3 Process of experiment based on RNAplfold 48

5 Experiment 58

5.1 Dataset . 58

5.2 Experiment result . 61

6 Conclusion 69

2

Chapter 1

Introduction

Nowadays, scientists have already found hundreds of RNA-binding proteins

(RBPs) by using new techniques in bioinformatics. This kind of proteins

are vital in living organism, since they play key roles in post-transcriptional

regulation (PTR) of gene expression by binding to target RNAs to control

splicing, export, stability, localization and translation regulation[1]. In order

to know the mechanism of RBPs’ binding and the detailed function of RBPs

in the post-transcriptional regulation, we must make clear the RBPs’ binding

preferences. But unfortunately, their binding preferences to the target RNA

sequences are not well characterized up to now, so the development of meth-

ods for the prediction of RBPs’ binding preferences becomes an important

theme for us. It is believed that RBPs recognize RNA targets based not only

on the RNA sequences’ information but also on the structural contexts of the

binding sites, this characteristic makes the prediction for the RBPs’ binding

preferences very challenging[1]. For example, the microarray-based in vitro

method RNAcompete assay [2] and some in vivo methods (e.g, RIP-seq[3] and

CLIP-seq[4]) can be used together to predict the binding preference of an

individual RBP for a large number of RNA sequences, but the binding pref-

3

erence of RBPs for both specific sequence and secondary structural context

makes this method very difficult[1]. Although some motif finding algorithms

working only at the sequence level can predict the binding preferences very

well for some RBPs, the defects (i.e., ignoring the structure) of themselves

will produce misleading results when they meet some RBP with non-trivial

structural preferences which the binding preferences will be difficult to de-

tect without consideration of the corresponding structural contexts[1][5]. In

order to take both the sequence and structural information into considera-

tion during the process of prediction for RBPs’ binding preferences, scientists

have developed new motif finding methods, such as MEMERIS [5] and RNA-

context [1]. These approaches all use the probabilistic idea to compute the

binding preferences of RBPs.

Different to the two methods above, in this thesis, we introduce a brand

new way to predict the binding preferences of RBPs — Graph Kernel method.

By using the graph kernel method, we build different graph models con-

taining heterogeneous features, so that the model can incorporate different

biological information and represent complex structures such as sequences

and graphs, which is useful for us to look for the mechanism of the binding.

In order to compare our approaches’ performance with RNAcontext — the

state-of-the-art method for the prediction of RBPs’ binding preferences, we

use the same dataset with RNAcontext — RNAcompete-derived datasets[2],

which is comprised of measured binding preferences of nine RBPs (i.e., HuR,

Vts1p, PTB, FUSIP1, U1A, SF2/ASF, SLM2, RBM4 and YB1) to a pool of

213,130 unique short (29- to 38-nt) RNA sequences[1]. Then we use different

RNA folding softwares (i.e., RNAfold [18], RNAplfold [18], RNAshapes [21])

to generate the secondary structures for the RNA sequences in the dataset,

and use different graph models to convert the secondary structures to the

4

corresponding gSpans[12], where gSpan is the input of the graph kernel

NSPDK[11]. After that we use Support Vector Machine (SVM)[7] to learn

our models by using cross-validation[15], and fit each graph model with its

corresponding optimal parameters, and then evaluate the model’s perfor-

mance by doing prediction on the test set. The performance is measured

with the AUC-PR[14]. At last we compare our models’ performances with

the performance of RNAcontext.

The rest content of this thesis is organized as follows: in Chapter 2,

the related work done by others will be introduced, including MEMERIS

and RNAcontext. Then Chapter 3 contains the explanations of some con-

cepts and definitions about machine learning, which are fundamental for our

method. Chapter 4 talks mainly about the details of the experiment by using

our method, including the different graph models we built for our method

and the corresponding experiment process by using them. Chapter 5 intro-

duces of the dataset used in our experiment and does some analysis to the

experiment result. At last Chapter 6 will be the conclusion for this thesis.

5

Chapter 2

Related Work

In this chapter, let’s first have a look two related methods for the prediction

of RBPs’ binding preferences, they are MEMERIS and RNAcontext.

2.1 MEMERIS

This section is mainly based on the work in [5]. Since the RBPs recognize

target RNAs in a sequence-specific manner, most of the bindings occur in

the single-stranded regions, but it is also shown experimentally that the se-

questration of a binding motif in a double-stranded RNA region has a strong

negative influence to the binding, so in order to include the secondary struc-

ture information of RNA into the motif searching process of a protein, some

scientists developed a new approach called MEMERIS (MEME in RNAs

Including Secondary Structures) as an extension of the widely used motif

finding program MEME. MEMERIS searches the sequence motifs in a set of

RNA sequences and integrates the secondary structure information simulta-

neously. It is especially useful for searching the motifs locating preferably in

a single-stranded region.

6

In order to integrate the secondary structure during the process of motif

search, the way MEMERIS works can be divided into two steps: the char-

acterization of single-strandedness and integration of secondary structure

information.

2.1.1 Single-strandedness characterization

First of all, MEMERIS precomputes values that characterize the single-

strandedness of all putative motif occurrences, then uses these values to

guide the motif search towards single-stranded regions. For a substring in

a given RNA sequence between position a and position b, MEMERIS uses

two different ways to characterize the single-strandedness corresponding to

different situations respectively:

(1)PUa,b : the probability that all the bases in the substring are unpaired,

defined as

PUa,b = e
Eall−E

unpaired
a,b
RT ,

where Eall is the free energy of the ensemble of all structures, Eunpaired
a,b is

the free energy of the ensemble of all structures which have the complete

substring unpaired, R is the gas constant and T is the temperature. Eall and

Eunpaired
a,b can be computed with the partition function version of RNAfold.

(2)EFa,b : the expected fraction of bases in the substring are not paired,

defined as

EFa,b = 1−

b∑
i=a

L∑
j=1

pi,j

b− a+ 1
,

where L is the length of the RNA sequence, pi,j is the probability that base

i and j make a pair, which can also be computed with RNAfold.

For the given input sequences, MEMERIS first computes the PU and

7

EF values for all the substrings with length W in the sequences, after com-

putation, MEMERIS gets the secondary structure information of the single-

stranded region. Then what MEMERIS does is to integrate the information

into the motif finding process.

2.1.2 MEME

In MEME, motif finding is done in a set of unaligned nucleotides or protein

sequences, denoted as X = X1, X2, ..., Xn. And a motif is represented as a

position-specific probability matrix (PSPM) Θ1 = (P1, P2, ..., PW), where W

is the length of the motif and the vector Pi is the probability distribution of

the letters (i.e., A/U/C/G) at each position i. A given input sequence Xi

can be modeled as consisting of two parts, denoted as Θ = (Θ0,Θ1), where

Θ1 means zero, one or more non-overlapping motif occurrences sampled from

the matrix Θ1, and Θ0 represents the random samples from a background

probability distribution for the remaining sequence positions.

The number of motif occurrences depends on the model specified by the

user. So in MEME, there are three different models to be considered:

(1) OOPS model: exactly one motif occurrence per sequence

(2) ZOOPS model: zero or one motif occurrence per sequence

(3) TCM model: zero or more motif occurrences per sequence

Given the sequences, MEME uses expectation maximization (EM) algo-

rithm to perform a maximum likelihood (ML) estimation to find a motif.

Here the set of given sequences are complete data, while the start positions

of the motif occurrences are hidden data. The hidden data are described

by variables Zi,j, when there is a motif occurrence starting at position j in

sequence Xi, we say Zi,j = 1, otherwise Zi,j = 0. The EM algorithm is of-

ten used to perform the maximum likelihood estimation. It consists of two

8

steps: E (Expectation) step and M (Maximization) step. E step computes

the expectation of hidden variables, using current latent variables, while M

step computes the parameters of the model on the joint probability of the

complete data.

2.1.3 Integration of secondary structure information

In MEME, there is no assumption about the start position of a motif oc-

currence in a given sequence, so it uses uniform probability distribution ∀j

P (Zi,j = 1) = 1
m

, where m = L - W + 1 is the number of possible start-

ing positions for a motif with length W in a sequence of length L. But in

MEMERIS, in order to integrate the information of the single-strandedness,

MEMERIS replaces the uniform probability distribution by a distribution

based on EF and PU values. Since PU values are stricter than EF val-

ues, so MEMERIS using PU values favors single-strandedness better than

MEMERIS using EF values. Here we take MEMERIS using PU values as

an example, the prior probability for the OOPS model in MEMERIS are

P (Zi,j = 1 | PUi) =
PUi,j + π

m∑
k=1

PUi,k + π

,

where PUi is the vector of PU values for sequence Xi, j represents the

position in the sequence. π is a pseudocount for smoothing the distribution.

From the formula we could see that, the higher the PU value for position j,

the higher is the prior probability of being a motif start position.

Then, same with MEME, MEMERIS uses EM algorithm to find the motif

occurrence iteratively. But the E step and M step have some corresponding

change. For simplicity, we don’t talk the E step and M step of MEMERIS

in detail here.

9

Above all, MEMERIS searches a motif and integrates information of the

secondary structure simultaneously by the pre-computation of a single value

for each substring to measure its single-strandedness. The measurement is

based on the idea of base pair probabilities. In order to take multiple possible

structural contexts into consideration simultaneously, and compute the cor-

responding preferences for an RBP to each structural context respectively,

rather than only a pre-defined structural preference to be queried[1], RNA-

context was raised.

2.2 RNAcontext

This section is mainly based on the work in [1]. RNAcontext is an approach

for the prediction of RBPs’ binding preferences to the RNA sequences. It

assumes that the role of RNA secondary structure in the process of binding

is to establish a structural context for the RNA sequence recognized by the

RBP. Since a given RNA sequence can have multiple different secondary

structures, RNAcontext does not focus on the single minimum free energy

structure, but on the ensemble of secondary structures that an RNA sequence

can form. And for each nucleotide in the sequence, RNAcontext annotates

with its structural context (e.g., paired, in a hairpin loop or multiloop). That

means RNAcontext uses SFOLD[6] to sampling a large number of structures

(1000 structures) for each RNA sequence first, then annotates each base

in the sequence with context annotation alphabet , then RNAcontext sets

the structural context distribution (annotation profile) to be the empirical

annotation frequencies for that base across these samples.

10

2.2.1 Motif model of RNAcontext

Just as mentioned above, RNAcontext takes a set of sequences with their cor-

responding annotation profiles predicted by SFOLD as its input. Formally,

the input sequences can be represented as S = {s1, s2, ..., sN}, and the anno-

tation profiles for each sequence can be represented as P = {p1, p2, ..., pN}.

RNAcontext uses A to represent the annotation alphabet consisting of

structure features, A = {P,L,M,U}. Here, P means that the nucleotide is

paired, L means the nucleotide is in a hairpin loop, U means the nucleotide

is in an unstructured region, and M stands for miscellaneous states for a

nucleotide since it combines the remaining unpaired contexts including the

nucleotide is in a bulge, internal loop or multiloop. And the model parameters

are represented as Θ = {Φ,Γ, βs, βp, K}, where K is the binding site’s width,

Φ is a position weight matrix of sequence features with dimensions 4 × K,

and Γ is a vector of structure annotation parameters represented as Γ =

(ΓP ,ΓL,ΓM ,ΓU), with one parameter for each structure annotation in A.

And βs, βp are the bias terms in the sequence affinity model and structural

context model. For a sequence s and its annotation profile p, RNAcontext

assigns a score f(s, p,Θ) to represent the probability that at least one of its

subsequences of length K (we call K -mers) is bounded by the RBP, defined

as

f(s, p,Θ) = 1−
|s|−K∏
t=0

1−N(st+1:t+K , pt+1:t+K ,Θ)

= 1−
|s|−K∏
t=0

1−N seq(st+1:t+K ,Θ)× C(pt+1:t+K ,Θ)

= 1−
|s|−K∏
t=0

1− σ(βs +
K∑
k=1

Φsk,k)× σ(βp +
∑
a∈A

Γa ×
K∑
k=1

pa,k),

where N(st+1:t+K , pt+1:t+K ,Θ) is an estimate of the probability that the K -

11

mer with base content st+1:t+K and structural context pt+1:t+K is bound.

st+1:t+K represents the subsequence of s between base t+1 and t+K, pt+1:t+K

is a probability profile matrix with its rows representing the annotation alpha-

bet and its columns representing the annotation distributions for each base

between base t+1 and t+K. The term N seq(s,Θ) is an estimate of the prob-

ability that the RBP will bind st+1:t+K in the ideal structural context, and it

is defined with a standard biophysical model N seq(s,Θ) = σ(βs +
K∑
k=1

Φsk,k),

where σ(x) = (1 + exp(−x))−1 is a logistic function. This function saturates

to 0 for negative x and 1 for positive x quickly. The structural context term

C(p,Θ) is modeled in the term of C(p,Θ) = σ(βp +
∑
a∈A

Γa ×
K∑
k=1

pa,k), where

pa,k means the probability that the base at position k of s has structural

annotation a.

2.2.2 Parameter estimation

The motif model of RNAcontext has flexibility to represent many different

binding modes by tuning the the parameters of the model. For example, when

the subsequence st+1:t+K is in a preferred structural context represented as

annotation alphabet a, the corresponding value of Γa is positive and large, so

that the term C(p,Θ) equals about 1, and the score N(s, p,Θ) for the K -mer

s equals approximately about N seq(s,Θ). So the base content s determines

the score value. If the subsequence is in a disfavored structural context, the

score of Γa is a highly negative value, so that the term C(p,Θ) equals about

zero. Since the term N(s, p,Θ) is modeled as the product of N seq(s,Θ) and

C(p,Θ), the score of N(s, p,Θ) will also be equal to about zero regardless

of s. In this way, RNAcontext’s motif model could adapt itself to different

binding situations by regulating the parameters.

Now let’s talk about the estimate of parameters for the RNAcontext

12

model. After building the motif model, RNAcontext estimates parameters

from binding data by assigning different values to parameters according to

different binding situations. For example, for an RBP binding its favorite

sequence with a specific structural context, e.g. unstructured (U), RNAcon-

text represents this binding mode by setting the sequence parameter Φ to

match its sequence binding preference, and sets the elements in the structural

parameter Γ to be negative except for the element ΓU that corresponds to

the preferred structural context. For the RBP which has multiple preferred

contexts (e.g., hairpin loops or unstructured), RNAcontext sets large positive

value to the corresponding structure parameter ΓH and ΓU to represent it.

For the RBPs without obvious sequence preferences, RNAcontext sets the

elements of Φ to be constant values, and sets ΓP to be large positive value.

For RBPs without obvious structure preferences, RNAcontext sets Γ to zero

and sets βp to a large positive value. RNAcontext models the RBPs’ bind-

ing preferences by associating each RBP with a single preferred structured

context which is required for binding.

RNAcontext learns the model parameters Θ by reproducing the binding

affinitiesR = {r1, r2, ..., rN} for each of the given sequences S = {s1, s2, ..., sN}

with the model. RNAcontext models the affinity ri of a sequence si as a linear

function of the sequence score f(si,Θ) with unknown slope α and y-intercept

b. It searches the combinations of Θ, α and b that minimize the sum of the

squared differences between the measured affinity ri and the reproduced affin-

ity r̂i = α×f(si,Θ)+ b. RNAcontext evaluates the models by using two-fold

cross-validation on RNAcompete-derived datasets, since the construction of

datasets provides the advantage to use two-fold cross-validation (see details

in Chapter 5).

13

Chapter 3

Machine Learning

In this chapter, we will introduce some basic concepts about machine learn-

ing, which is helpful to understand our method.

3.1 SVM and Kernel methods

3.1.1 Support vector machine

Definition 3.1.1. [7] (Support Vector Machine) Support Vector Ma-

chines (SVM) are a group of supervised learning methods that can be applied

to classification or regression problems. It combines the ideas of statistical

learning theory, optimization theory, and is often used together with kernel

methods in classification problem.

In a classification problem, there are usually two kinds of set: training

set and test set. In the training set, each training instance is represented as

one “target value” (the class label) plus its corresponding “attributes” (the

features). The goal of classification by using SVM is to produce a model by

training on the training set, then use this model to predict the target values

14

of the data in the test set by using the given attributes of test set[8]. The

data used in SVM are in sparse representation, which means the attributes

of a data are all contained in a vector called sparse vector, so that each data

can be represented as a vector of real numbers, with each item of the vector

representing an category of attribute for the data[8]. In our method, the

conversion work from attributes to numeric vector is done by a graph kernel

called NSPDK (Neighborhood Subgraph Pairwise Distance Kernel)[11].

The SVM classifies the training data with hyperplanes, but among all the

hyperplanes, there exists an optimal one which makes the distance between

the data and the separating hyperplane itself largest. What SVM does in

the classification is trying to make a balance between searching the optimal

hyperplane that maximizes the margin and minimizing the training error.

As shown in Figure 3.1, the vectors located on the dashed lines are called

support vectors, the two dashed lines are supporting hyperplane, the sepa-

rating hyperplane locates in the middle of the two supporting hyperplanes.

In mathematics, the maximization of the margin between two supporting

hyperplanes is a dual optimization problem[9], and we don’t talk it here in

detail. But in reality, the situations that all the data with class label +1

locating on one side of the optimal hyperplane and all the data with class

label -1 locating on the other side are very rare. There are usually some data

locating in the wrong side, illustrated as in Figure 3.1. So there should be

some penalties for the training error, SVM uses parameter C to deal with

this problem for the linear classification. Penalty parameter C means the

tradeoff between margin maximization and training error minimization[9].

In our method, we also use parameter C for the linear classification.

15

Margin

Separating
Hyperplane

Supporting
Hyperplane

Figure 3.1: example figure for SVM: separate balls from diamonds

3.1.2 Kernel methods

In reality, we often meet some problems that the original input data could

not be separated linearly in the input space. So we need kernel methods[10]

to help us. Kernel methods use a function to map the original input data

from input space to a vector space called feature space. Then SVM still uses

the same way talked above to classify the mapped data in the feature space

with linear classifier.

The way kernel methods work can be divided into two procedures[10]:

(i): we use kernel function to map the original data items from input

space to feature space.

(ii): In the feature space, we use learning algorithms (e.g., SVM) to seek

the linear function to classify the mapped data items.

The mapping function is defined as kernel function, represented as Φ :

D → F,K(di, dj) = 〈φ(di), φ(dj)〉. The kernel function maps the data into

feature space, then computes the inner products between mapped data in the

16

mapping : Φ

Φ(o)

Φ(o)

Φ(o)
Φ(o)

Φ(o)

Φ(o)

Φ(x) Φ(x)

Φ(x)

Φ(x)
Φ(x)

Φ(x)o

o

o
o

o
o

x

x

xx

x

x

Figure 3.2: the kernel function maps the original data into a feature space,

and the nonlinear pattern becomes linear in the feature space.

feature space. However, the computation of inner product can be replaced

by the direct computation of function in the original input space, so that we

need not even know the concrete mapping function. This substitution is also

called as kernel trick [10].

Definition 3.1.2. [10] (Kernel Function) A kernel is a function k that for

all x, z ∈ X satisfies

k(x, z) = 〈φ(x), φ(z)〉,

where φ is a mapping from X to an (inner product) feature space F

φ : x→ φ(x) ∈ F.

The advantage of kernel function is that we can compute the inner product

between two mapped data by calculating the kernel function in the original

input space, we need not even know the explicit mapping function. After

having the kernel function, we use it to map the original data into a feature

space, then we get the corresponding kernel matrix, and we process the

matrix with a pattern analysis algorithm (e.g., SVM) to generate a pattern

17

function, the pattern function will be used for the prediction of unexpected

new examples[10]. Figure 3.3 shows the steps of applying kernel function.

Data

(),k x z K A

Kernel function Kernel matrix PA Algorithm Pattern Function

ia()f x = ? (),ik x x

Figure 3.3: stages of applying kernel method

3.2 Convolution Kernels

Graph is the most general data structure. It is used in many aspects since it

could model the relationships between objects. The most general form of a

graph consists of a vertex set V and an edge set E. The kernels related with

graphs are called graph kernels, which are a kind of convolution kernels.

Definition 3.2.1. [11] (Convolution Kernels) Let x ∈ X be an com-

posite object which could be divided into many parts represented as x =

(x1, x2, ..., xd) with each xi ∈ Xi for d = 1, ..., D with D ≥ 1. Let R be the

relation defined on the set X1×X2× ...×XD ×X such that R(x1, ..., xD, x)

is true iff x1, ..., xD are the parts of x. We define the inverse relation R−1(x)

yielding the parts of x, which means R−1(x) = x1, ..., xD : R(x1, ..., xD, x).

R−1(x) represents the set of all valid decompositions of an object, and it is

countable. If there exists a kernel Kd over Xd×Xd for each d = 1, ..., D, and

if two objects x, y ∈ X can be decomposed into x1, ...xd and y1, ..., yd, then

18

the convolution kernel is defined as

K(x, y) =
∑

x1,...,xd∈R−1(x)
y1,...,yd∈R−1(y)

D∏
d=1

Kd(xd, yd).

So in a word, the convolution kernel is a sum of the product of valid kernels

over the parts of object.

Example 3.2.1. [10] In a directed graph G = (V,E), there is a source vertex

s with the in-degree 0 and a sink vertex t with the out-degree 0. Pst is the

set of directed paths from vertex s to t, and each edge of the graph is labeled

with a kernel Ke, so for a path p = (u1, u2, ..., ud) we have the product of the

kernels related with the edges of path p

Kp(x, z) =
d∏

i=1

K(ui−1→ui)(x, z),

then the graph kernel associated with the graph G could be defined as

KG(x, z) =
∑
p∈Pst

Kp(x, z) =
∑
p∈Pst

d∏
i=1

K(ui−1→ui)(x, z).

In next section, we will introduce a graph kernel called Neighborhood

Subgraph Pairwise Distance Kernel (NSPDK), which is a convolution kernel

used in our method.

3.3 Neighborhood Subgraph Pairwise Distance

Kernel

In order to know the principle of NSPDK, we must make clear the concepts

below. The content of this section refers mainly to the work in [11].

Definition 3.3.1. (Distance) The distance between two vertices is the

length of the shortest path between those two vertices, denoted as D(u, v).

19

Definition 3.3.2. (Neighborhood) The neighborhood of radius r of a ver-

tex v is the set of vertices at a distance less than or equal to r from v, denoted

as Nr(v).

Definition 3.3.3. (Induced-subgraph) The induced-subgraph in a graph

G is a graph on a set of vertices W = w1, ..., wk that has W as its vertex set

and contains every edge of G whose two endpoints are both in W .

Definition 3.3.4. (Neighborhood Subgraph) The neighborhood sub-

graph of radius r of a vertex v is the subgraph induced by the neighborhood

of radius r of v, denoted as N v
r .

Definition 3.3.5. (Isomorphism) Isomorphism is a structure-preserving

bijection. Two simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor-

phic, denoted as G1 ' G2, if there is a bijection: φ : V1 → V2, such that

for any two vertices u, v ∈ V1, there is an edge uv if and only if there is an

edge φ(u)φ(v) in G2. For two labeled graphs, if they are isomorphic, then

except satisfying the condition above, there should be an isomorphism that

preserves also the label information, i.e., L(φ(v)) = L(v).

Definition 3.3.6. (Graph Invariant) A graph invariant (isomorphism in-

variant) is a graph property that is identical for two isomorphic graphs (e.g.,

the number of vertices and/or edges in the two graphs).

For two rooted graph Av and Bu and a graph G, we define a relation

Rr,d(A
v, Bu, G) among them. If both Av and Bu are in N v′

r , where v′ ∈ V (G)

and D(u, v) = d, then we say the relation Rr,d is true. So in a word, the

relation Rr,d selects in a graph G all pairs of neighborhood graphs of radius

r whose roots are at a distance d (see Figure 3.4).

20

Definition 3.3.7. (NSPDK) We define kr,d over G×G as a decomposition

kernel on the relation Rr,d:

kr,d(G,G
′) =

∑
Av ,Bu∈R−1

r,d(G)

A
′
v′ ,B

′
u′∈R

−1
r,d(G

′)

δ(Av, A
′
v′)δ(Bu, B

′
u′),

where δ(x, y) is the exact matching kernel. δ(x, y) equals 1 if x ' y, otherwise

0. So from the perspective of function, kr,d counts the number of identical

pairs of neighboring graphs of radius r whose roots are at a distance d between

two graphs. And the Neighborhood Subgraph Pairwise Distance Kernel is

defined as:

K(G,G′) =
∑
r

∑
d

kr,d(G,G
′).

r = 1, d = 5 r = 2, d = 5 r = 3, d = 5

C

C

A

C

A

C

G

U

G

C

G

A

G

U

A

G

G

C

C

A

C

A

C

G

U

G

C

G

A

G

U

A

G

G

C

C

A

C

A

C

G

U

G

C

G

A

G

U

A

G

G

A

A

A

A

A

A

A

A

A

A

A

A

Figure 3.4: pairs of neighborhood graphs for radius r = 1, 2, 3 and distance

= 5 (the neighborhood graphs can overlap)

Since the computation of the exact matching kernel δ(Gh, G
′

h′
) is equiv-

alent to solving the graph isomorphism problem (ISO), for which the poly-

nomial algorithms is still an open problem, NSPDK uses an approximate

21

way to convert the isomorphism test between two graphs to a fast numerical

identity test. That means first NSPDK uses a label function Lg : Gh −→ Σ∗

to produce a string encoding for the graph invariant in Gh and G
′

h′
including

vertices and edges, so that we could convert the set of rooted graphs Gh to

the set of strings Σ∗. Then NSPDK uses a hash function H : Σ∗ −→ N to

map the strings to natural numbers.

Concretely speaking, in the process of graph encoding, the label function

for vertices and edges are denoted as Ln and Le respectively, where Ln(v)

assigns to vertex v the concatenation of the lexicographically sorted list of

distance-label pairs 〈D(v, u), L(u)〉 for all u ∈ Gh including the root node;

Le(uv) assigns to edge uv the label 〈Ln(u), Le(uv), Ln(v)〉. So, above all, the

graph encoding Lg(Gh) assigns to the rooted graph Gh the concatenation of

the lexicographically sorted list of Le(uv) for all edges uv ∈ E(Gh). After

the graph encoding, NSPDK uses a Merkle-Damg̊ard construction based hash

function to map the graph encoding string to a 32-bit integer at last.

3.4 Combination of SVM and NSPDK

NSPDK runs on the input files in the gSpan format[12] represented as follows:

“t#N ” means the N th graph;

“v M L” means the M th vertex in this graph has label L;

“e P Q L” means the edge connecting the Pth and Qth vertex has label L.

A graph consists of vertices and edges, so a labeled graph could be represented

with a corresponding gSpan (shown in Figure 3.5).

The output of NSPDK is the sparse vector file taken as the input of SVM,

since SVM accepts the input file in sparse representation. In our experiment,

we use the software SVMlight (Joachims 1999).

22

3

4

1

2

Graph 1

t#1
v 1 A
v 2 U
v 3 U
v 4 C
e 1 2 L1
e 1 3 L2
e 3 4 L3
e 1 4 L4

L 2

L 4 L 3L 1

A U

U C

Figure 3.5: convert a labeled graph to the corresponding gSpan

The SVMlight works in two modes[13]: learning (training) and classifica-

tion (prediction). In the learning mode, it takes a lot of training examples

to train the model, and generates a model file for the classification use. In

the NSPDK generated sparse vector file, each instance is represented as a

numeric vector as mentioned before. We plus the target value in front of

each instance so that the file can be processed by SVMlight. The detailed

format of the sparse vector file after adding the target values is as follows[13]:

<line >.=. <target><feature>:<value><feature>:<value>

...<feature>:<value># <info >

<target >.=. +1 | -1 | 0 | <float >

<feature >.=. <integer >| “qid”

<value >.=. <float >

<info >.=. <string >

where “target” means the class label (target value) of the corresponding

training instance. The “feature” means the position number of the sparse

vector represented with integer values, while the “value” represents the el-

ement value of the sparse vector denoted with float values. In the learning

mode, SVMlight first generates a model file by taking the input sparse vector

23

file, then it uses this model file to generate a prediction file consisting of the

predicted class labels in the classification mode. After the two steps above,

we will use the software AUCCalculator to calculate the AUC-PR by using

the prediction file, since we use AUC-PR to measure the performance of our

method.

3.5 Area under the Precision-Recall curve

In machine learning, the PR (Precision-Recall) curves are often used to mea-

sure the performance of a learning algorithm on a given dataset, which con-

tains fixed number of positive and negative examples[14]. Since in a binary

decision problem, a classifier labels the examples as either positive or neg-

ative, the performance of it can be represented as a Confusion Matrix, in

which there are four categories[14]: True positives (TP), False positives (FP),

True negatives (TN), and False negatives (FN), where TP means the posi-

tive examples that are correctly labeled as positive, FP means the negative

examples that are incorrectly labeled as positive, and FN and TN represent

the positive examples incorrectly labeled as negative and negative examples

correctly labeled as negative respectively.

actual positive actual negative

predicted positive TP FP

predicted negative FN TN

Table 3.1: confusion matrix

In our method, since we combine graph kernel and SVM, the classifier’s

performance is related with the graph model we use. We prefer to use AUC-

PR to represent the predictive performances of our models, because we will

24

compare our method with RNAcontext, which represents its performance

with the AUC-PR metric. AUC-PR means the area under the curve of

Precision-Recall, it is a simple metric to define how an algorithm performs

over the whole space[14]. In PR space, the y-axis represents the precision,

the x-axis represents the recall. The related definitions are as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

3.6 Cross-Validation

Definition 3.6.1. [15] (Cross-Validation) Cross-validation is a statistical

method often used for the performance evaluation of learning algorithms,

when one wants know the performance of a predictive model on an unknown

dataset. The dataset is often divided into several equally sized subsets, then

we train the learning model on some subsets of them, called as training

sets, and we test the model after training on the remaining subsets, we call

test sets. According to the number of subsets partitioned, there are several

kinds of cross-validation, e.g., k -fold cross-validation, leave-one-out cross-

validation, etc.

Generally speaking, for k -fold cross-validation, we often use k − 1 folds

to do the training, and leave 1 fold for the testing. In the first round, we

train the model on the k − 1 folds, then test the fit model on the remaining

1 fold. This process is repeated k times, with each of the k subsets used

exactly once as the validation data. At last, the testing (validation) results

are averaged over the k rounds. And this average value is taken as the final

25

Total number of examples

Test examples

Round 1

Round 2

Round 3

Round 4

Round 5

Train

Model

Test

Result

Figure 3.6: five-fold cross-validation

result of k -fold cross-validation. Figure 3.6 illustrates the process of five-fold

cross-validation.

In our experiment, for the training of our models, we prefer to use five-

fold cross-validation, so that we can make sure that there are enough training

instances to learn the model. But for the final performance evaluation of our

models, we use two-fold cross-validation, since the construction of the dataset

we used in our experiment provides us the advantage to use this strategy.

We will introduce this in detail in following chapters.

26

Chapter 4

Application of graph kernels to

RNA secondary structure

In this chapter, we will introduce how we apply the graph kernel method

to the prediction of RBPs’ binding preferences, including the different graph

models we built and the processes of our experiment based on different folding

softwares and graph models.

4.1 Goal of proposed method

Before the introduction of our method, we should first make clear the goal

by using it. Generally speaking, there are three goals we want to achieve

through our experiment:

(1) train a graph model that has better performances (i.e., higher AUC-

PR) for the corresponding RBPs than RNAcontext.

(2) get to know whether the structural context has positive influence

to the binding through the performance comparison between models with

structural context and models without structural context.

27

(3) except the structural context, wonder whether there are some other

factors that influence the binding.

4.2 Experiment process of proposed method

The process of the experiment by using our method consists of many steps.

Briefly speaking, we start from the original dataset (i.e., RNAcompete-derived

datasets, see details in Chapter 5), after filtering, splitting and converting op-

eration on the original data, we get sequence files in FASTA format[16], then

we use different RNA folding softwares to predict the secondary structures

for each RNA sequence in the FASTA files, and we will get the output files

containing the secondary structures for the FASTA sequences in dot-bracket

format[17], then we use our java programs to convert the dot-bracket files to

the corresponding gSpan files, so that the graph kernel NSPDK can run on it

and output files in sparse representation, then we combine the original split

label files and the sparse vector files together to take as the input of SVM-

light, and use SVMlight to do cross-validation on the training set to train

our graph models, then we choose the optimal combination of model param-

eters with highest average AUC-PR for each model, and test the fit models’

performances by doing prediction on the corresponding test set. We use

AUCCalculator to compute AUC-PR to measure the models’ performances.

The AUC-PR values for RBPs computed with the fit models are the final

result of our experiment, which represent the predictive performances for the

corresponding RBPs’ binding preferences by using our method.

In our method, we use three different RNA folding softwares: RNAfold [18],

RNAplfold [18] and RNAshapes [21]. By using each of them, we generated sev-

eral graph models, so altogether we built 11 different graph models in our

28

whole experiment.

4.2.1 Process of experiment based on RNAfold

Now, let’s start from the models based on RNAfold first. For RNAfold, we

built three models, in which one is based on the MFE secondary structure

(without parameter when we use RNAfold), the second one is based on the

centroid structure (with parameter -p in the command), and the last one is

a modified model derived from the MFE structure model.

Definition 4.2.1. [19] (Centroid Structure) The centroid for a given set

of structures is the structure that has the minimum total base-pair distance

to the entire structures in the set. It could be considered as a single structure

in the ensemble that best represents the central tendency of the set.

Original data Filtered data
filter

Sequence

Label

FASTA RNAfold Dot-bracket

Gspan

split

java
program

Sparse vector Different java program

SVMlight Best model

cross-
validation

Prediction AUC-PR

AUCCalculator

NSPDK

java
program

concatenation

svmlight

Figure 4.1: process of experiment by using RNAfold

Figure 4.1 shows the process of experiment by using RNAfold, and the

description of each step is as follows:

step (1): Filter the original dataset

In this step, we start from the original RNAcompete-derived datasets,

convert the dataset to a “filtered” dataset with our java program. Since

29

we will use five-fold cross-validation to train our model and search the best

combination of model parameters on SVMlight later, we must assign class

labels to each training and testing instance (i.e., each RNA sequence in the

dataset). We prefer to use a similar way as in RNAcontext to filter the

original dataset and assign the class label for each RNA sequence.

In RNAcontext, it uses different cutoff for each of the nine RBPs, i.e.,

FUSIP1 : 2, RBM4 : 3, vts1p: 3.5, YB1 : 1.3, U1A: 0.5, SLM2 : 2.5, SF2 : 3,

HuR: 4, PTB : 2. By using these cutoff values, it filters the original dataset,

so that if a sequence in the dataset with estimated binding affinity larger

than the corresponding cutoff, it will be put into the “positive” group. On

the other side, if a sequence with estimated binding affinity below the median

value of the training set where it is in, it will be put into the “negative” group.

Here the training set means full or weak set for each of the nine RBPs in the

RNAcompete-datasets. In our experiment, we use a similar way as follows:

(i) First we get the cutoff values for the nine RBPs from RNAcompete-

derived datasets, and let the sequences with their estimated binding affinities

above the corresponding cutoff to be “positive” sequences in the training set.

(ii) Then for each of the nine RBPs, we calculate the median values for

the relative set A and set B of the full set and weak set respectively, while

in RNAcontext they only calculate median values for full and weak set of

each RBP. We let the sequences with their estimated binding affinities below

the corresponding median value to be “negative” sequences. For example,

for RBP FUSIP1, we compute the median values for set FUSIP1 weak A,

FUSIP1 weak B, FUSIP1 full A, FUSIP1 full B respectively. So, for each

of the nine RBPs, we have four median values computed from the relative

weak A, weak B, full A, full B set. Since in the original RNAcompete-derived

datasets, the sequence file is comprised of the RNA sequences with their esti-

30

mated binding affinities, and the affinities are in random order, so according

to the definition of median, we first sort the affinities in ascending order, then

calculate the median: If the number of sequences in the file is odd, then the

median is the middle value ((n + 1)/2) among all the sorted affinity values.

If the number of sequences is even, then the median is the average between

the n/2 and the n/2 + 1 values.

20-0.34
estimated affinity

sequence number

positivethrow awaynegative

Figure 4.2: the cutoff and median value for filtering a dataset: the cutoff

equals 2, the median equals -0.34

(iii) After we get the cutoffs and medians for dividing the positive and

negative sequences, we start to filter the original data. If one sequence’s

estimated binding affinity is larger than the cutoff, then we replace its binding

affinity with label +1; when the estimated binding affinity of a sequence is

lower than the median value of the corresponding set, we replace the affinity

with label −1. The sequences with estimated binding affinities between the

cutoff and median will be thrown away from the dataset (the reason we call

“filtered”). Figure 4.2 is an illustration for the filtering by using cutoff and

median on a dataset. Figure 4.3 shows the difference between the original

data and the filtered data after filtering.

31

filtered data

-1.31 AGCGUUGUGAGAA...
-0.1 GAGUACGACGUGAG...
4.2 CGCGAUCGGUGAG...
-0.54 GCAGCUAUUCUGAG...
-0.6 GCGUAAUUAUGUAG...

original data

-1 AGCGUUGUGAGAA...
+1 CGCGAUCGGUGAG...
-1 GCAGCUAUUCUGAG...
-1 GCGUAAUUAUGUAG...filter

Figure 4.3: the difference between original data and filtered data

step (2) Convert the filtered data to FASTA format

Definition 4.2.2. [16] (FASTA Format) FASTA format is often used to

represent nucleotide sequences in bioinformatics. A sequence in FASTA for-

mat begins with a symbol “>”, and the subsequent content following the

symbol will be taken as description for the sequence. The sequence informa-

tion starts in another line, and all lines should be shorter than 80 characters.

Example 4.2.1. FASTA sequence

>Description of the sequence

UGAUGCGUGAUGUUAUGCGUAGGUCGAUUGCGUAUGUGG

CGUAGUCGAUCGUAUGCUGAGUGCUGUUGCGAUGCGAUG

AUCGGAUGUCGUGAGUUCUAUGUCUGAUGGUG

Now let’s convert the sequences in the filtered dataset to the FASTA

format. Take a data file as instance, first we split the file into two parts: the

label part and the sequence part. Then we convert the sequence part to the

FASTA format by adding a sequence description above each sequence in the

file, since the RNA folding softwares used in our experiment all accept input

files in FASTA format.

32

-1 AGCGUUGUGAGAA.......

+1 GCGUACGACGUGAG.......

-1 GCGUAAUUAGUGAG.......

-1 GCAGCUAUUCUGAG......

+1 CGCGAUCGGUGAG.......

filtered data

-1
+1
+1
-1
-1

AGCGUUGUGAGAA......
GCGUACGACGUGG......
CGCGAUCGGUGAG.....
GCAGCUAUUCUGAG....
GCGUAAUUAGUGAG....

split

>Sequence1
AGCGUUGUGAGAA.....
>sequence2
GCGUACGACGUGG....
>sequence3
CGCGAUCGGUGAG...
>sequence4
GCAGCUAUUCUGAG..
>sequence5
GCGUAAUUAGUGAG..

sequences

labels

FASTA
sequences

java
program

Figure 4.4: process of splitting and converting

After the filtering, splitting and converting step, we have the RNA se-

quences in FASTA format (see Figure 4.4). Then from this time on, we start

to use different folding softwares to process the data and use different graph

models to work on it.

step (3): Convert FASTA to dot-bracket notation

By using different parameters of RNAfold, we could get the secondary

structures computed with different folding algorithms for the corresponding

RNA sequences in the FASTA file, such as the MFE structures (without

parameter) or the centroid structures (with parameter -p). For the MFE

structure, the generated output file includes the sequences in FASTA for-

mat, the corresponding secondary structures of the sequences in dot-bracket

notation, and also the corresponding minimum free energy for each sequence.

We throw the MFE away, and leave the sequence and its structure informa-

tion for our experiment use. Figure 4.5 illustrates the conversion process

33

from FASTA format to dot-bracket notation.

>sequence1

>sequence2

>sequence3

AGACCGCAAAUAUGGGAUUACUAAACGGACCAAAUGGC

AGAUUGCAUAGCAAAAAUGCCCGCCUCCCCGUCUGAAG

AGAUGAUCUGCGCUGUCAUGACAUACACCUGAGGCCAU

>sequence1

...(((......(((.....)))..)))..........
>sequence2

.....((...(((....)))..))..............
>sequence3

........((.(((.(((.(........))))))))).

AGACCGCAAAUAUGGGAUUACUAAACGGACCAAAUGGC

AGAUUGCAUAGCAAAAAUGCCCGCCUCCCCGUCUGAAG

AGAUGAUCUGCGCUGUCAUGACAUACACCUGAGGCCAU

RNAfold

Figure 4.5: convert FASTA format to dot-bracket notation with RNAfold

step (4): Convert dot-bracket notation to gSpan

In this step, we will use our java program to convert the output of

RNAfold to gSpan format. This step is crucial in our experiment, since

we could convert a dot-bracket file to different gSpan files by using different

graph models.

Before we use different graph models to convert the dot-bracket file to

gSpan file, we could first build a model called Plain sequence model based on

the FASTA file (shown in Figure 4.6). In this model, we generate for each

base in the RNA sequence a vertex v with the corresponding nucleotide (i.e.,

A/U/C/G) as the vertex’s label. And between each neighboring two bases

in the sequence, there is an edge with label b connecting them. Since this

model has no structural context, we can compare the performance of this

model with the performances of the other models with structural context, so

that we could know whether the structural context of the binding site has

positive influence to the binding or not. And the process of the experiment

by using this model has some differences compared with the process by using

RNAfold, that instead of using RNAfold and our java program, we directly

34

>sequence1
AGACCGCAAAUAUGGGAUUACUAAACGGACCAAA

A

G

A

C

C

G

C

A

A

A

U

A U
G

G

G A

U

U

A

C
U

A

A

A

C

G

G

A

C

C

A AA

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b b

b

b

bb
b

b

b
b

b

b

b

b

b

b

b

b

Figure 4.6: Plain sequence model based on FASTA file

convert the FASTA sequences to the gSpans by using the Plain sequence

model. The red line in Figure 4.7 illustrates the difference.

Original data Filtered data
filter

Sequence

Label

FASTA RNAfold Dot-bracket

Gspan

split

java
program

Sparse vector Different java program

SVMlight Best model

cross-
validation

Prediction AUC-PR

AUCCalculator

NSPDK

SVMlight

concatenation

Figure 4.7: process of experiment based on Plain sequence model

Now, let’s have a look the three graph models we built based on the

dot-bracket files generated by RNAfold:

(1) convert the MFE structure to the gSpan (RNAfold mfe model).

35

(2) convert the centroid structure to the gSpan (RNAfold centroid model).

(3) replace the labels of the vertices which are paired in the RNAfold mfe

model with label N (RNAfold covered model).

The first and second model are used to see the influence of structural

context to the binding, the only difference between them is just the folding

idea. Similar with the Plain sequence model, we take each nucleotide in the

sequence as a vertex v with the corresponding nucleotide as its label, and

between every two neighboring nucleotides, there is an edge with label b

connecting them. And for the base pair formed by the corresponding two

paired nucleotides, we also model it as an edge too, with label p. This model

is used for both MFE structure and centroid structure generated by RNAfold

to convert the dot-bracket notation to the corresponding gSpan (see Figure

4.8).

A

G

A

C

C

G

C

A

A

A

U

A U
G

G

G A

U

U

A

C
U

A

A

A

C

G

G

A

C

C

A AA

p

p

p

p

p
p

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b b

b

b

bb
b

b

b
b

b

b

b

b

b

b

b

b

>sequence1
AGACCGCAAAUAUGGGAUUACUAAACGGACCAAA

...(((......(((.....)))..)))......

Figure 4.8: RNAfold mfe model and RNAfold centroid model

For the third model (shown in Figure 4.9), we replace the labels of paired

36

nucleotides in the RNAfold mfe model with label N (we call this process

“cover”). By comparing the performance of this covered model with the

original RNAfold mfe model, we could know whether the change of detailed

nucleotides’ information on the paired region will influence the binding or

not. Since we already know experimentally that, most of the bindings occur

in the single-stranded regions, but the sequestration of a motif in double-

stranded region will cause strong negative influence to the binding or even

abolishes the binding[5]. So by building this model, we cover the nucleotides

paired in the latent binding regions (double-stranded region), and we want

to see if the experiment result by using this model is consistent with the

experimentally detected phenomenon — bindings are strongly negatively in-

fluenced or even abolished. Figure 4.10 shows the conversion process from

dot-bracket notation to gSpan format by using our models.

>sequence1
AGACCGCAAAUAUGGGAUUACUAAACGGACCAAA

...(((......(((.....)))..)))......

A

G

A

C

C

G

C

A

A

A

U

A U
G

G

G A

U

U

A

C
U

A

A

A

C

G

G

A

C

C

A AA

p

p

p

p

p
p

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b b

b

b

bb
b

b

b
b

b

b

b

b

b

b

b

b

A

G

A

N

N

N

C

A

A

A

U

A N
N

N

G A

U

U

A

N
N

N

A

A

N

N

N

A

C

C

A AA

p

p

p

p

p
p

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b b

b

b

bb
b

b

b
b

b

b

b

b

b

b

b

b

Figure 4.9: RNAfold covered model

step (5): Convert gSpan to sparse vector

In Chapter 3, we have said that the graph kernel NSPDK is responsible

for the conversion from gSpans to the sparse vectors. So after we have the

37

>sequence1

...(((......(((.....)))..)))..........
>sequence2

.....((...(((....)))..))..............
>sequence3

........((.(((.(((.(........))))))))).

AGACCGCAAAUAUGGGAUUACUAAACGGACCAAAUGGC

AGAUUGCAUAGCAAAAAUGCCCGCCUCCCCGUCUGAAG

AGAUGAUCUGCGCUGUCAUGACAUACACCUGAGGCCAU

t#1
v 1 A
v 2 G
v 3 A

v 37 G
v 38 C
e 1 2 b
e 2 3 b

e 37 38 b
e 15 21 p
e 14 22 p
e 6 26 p
e 5 27 p
e 4 28 p
t#2
v 1 A
v 2 G
v 3 A

Java program

Figure 4.10: conversion from dot-bracket to gSpan

corresponding gSpans for each RNA sequence, we input them into NSPDK

by using command “./NSPDK -fg file -of -R 1 -D 1 -b 25 ”, where -R and

-D are two parameters representing the radius and the distance as we have

introduced in Chapter 3, and -b is used to control the length of the sparse

vectors, since there are too many attributes. In order to incorporate more

information from the input gSpan file, we set b to be 25, that is the largest

value NSPDK can accept. In our experiment, R, D and the penalty param-

eter C are the three parameters used for the learning of our graph models.

We will choose the optimal combination of these three variables in the train-

ing process, and evaluate the performance of the model fit with the optimal

parameters on the test set. In our experiment, we set the range of R from 1

to 4, the range of D from 1 to 6, and the value of C within 1, 10, 100, 500.

38

The “file” in the command represents the gSpan file we input into NSPDK.

In step (2), we have split the filtered data into sequence part and label

part, now we need to paste the original labels and the corresponding sparse

vectors together, so that the pasted file can be processed by SVMlight.

step (6) Parameter optimization

In this step, we use the pasted file as input for SVMlight to do the param-

eter optimization (training) for our model by using five-fold cross-validation,

which can be divided into two steps: training and validation, corresponding

to the two modes of SVMlight: learn and classification. After the whole

training process, we evaluate the performance of our model fit with the op-

timal parameters by doing prediction on the test set, we call this testing

process. Corresponding to the two modes above, the testing process can also

be divided into two steps: first we train our fit model on the whole training

set to generate a model file, then we do prediction on the whole test set to

get a prediction file consisting of predicted class labels. Figure 4.11 illus-

trates the relationships between the training process, testing process and the

training and validation steps in the training process.

Take the RBP FUSIP1 as an example, we first train our model on the

dataset FUSIP1 weak A, by using different combinations of parameter R,

D and C. In our experiment, we set the range of R in [1, 4], D in [1,

6], C in (1, 10, 100, 500). The optimal parameter search by using cross-

validation is called Grid-search, it is straightforward but very naive, so it

is time-consuming[9]. In order to save time but still achieve the same goal,

we don’t search the optimal parameters by training our model on the whole

training set FUSIP1 weak A, but on a subset of it. For example, we choose

top 2000 sequences in the pasted sequence file as a subset for training (includ-

ing training and validation steps), and after we find the optimal parameters,

39

val idat ion

Round 1

Round 2

Round 3

Round 4

Round 5

t rain ing

best model

training and validation on
training set weak_A

training on the whole
training set weak_A

testing on the whole
test set Full_B

Figure 4.11: relation of training, validation and testing

we test our model fit with the parameters on the test set. But there may

exist such a problem, that the sequences in the chosen subset have some

structural similarities, while the remaining sequences in the pasted file have

a quite different structure tendency. When we use the chosen subset to do

cross-validation, it means we do training and validation on a set with certain

similarities, the AUC-PR value could be very good. And the model trained

on this set will reduce the reliability of our experiment. In order to avoid it,

first we assign random numbers at the beginning of each sparse vector line

in the input sparse vector file of SVMlight, then we sort the sparse vectors

with ascending order by using the random numbers at the beginning of each

line, so that we achieve the goal of shuffling the original sequences, and then

we choose the top 2000 lines as a subset for cross-validation use.

We do the parameter optimization in this way: in each round, we let one

of the three parameters to be variable once with the other two parameters

being constant simultaneously. For example, in the first round, first we let

R to be the variable and R changes from 1 to 4, D and C are constant

40

(e.g., D = 1, C = 100). So there are four parameter combinations, they

are R = 1, D = 1, C = 100; R = 2, D = 1, C = 100; R = 3, D = 1, C

= 100; R = 4, D = 1, C = 100. For each combination, we use five-fold

cross-validation to do the training and validation, since in the training, we

must make sure that there are enough examples to learn the model, that’s

why we prefer five-fold cross-validation. And we get five AUC-PR values

for each combination after training and validation. Then we compute the

average AUC-PR for each combination, and we get four average AUC-PR

values for the four combinations respectively, then we choose the parameter

combination with the maximum average AUC-PR. We assume that after

computing the average AUC-PR for the four combinations, we have R = 2,

D = 1, C = 100 that has the highest average AUC-PR value among the four.

Then still in this round, we set R = 2 to be a constant, and we still keep C

= 500 fixed, but we let D to be the variable, and D is from 1 to 6. In the

same way, we get new optimal combination of R, D and C, from which we

can pick the best value for parameter D, e.g., D = 4. At the end of the first

round, we set C to be the variable, and R and D are constant this time, that

means R = 2, D = 4, and we get C = 10. So after the first round, we get an

optimal combination of the three parameters R = 2, D = 4, C = 10 by using

the way above. And in the next round, we start to set variable from R again,

R is still from 1 to 4, but this time, the relative constant value for D and

C remain the optimal value of last round, i.e., D = 4, C = 10. Figure 4.12

shows the way we do the parameter optimization by using cross-validation.

We do this until the values of R, D and C do not change any more, this

usually takes about two or three rounds.

In the process of parameter optimization, since we use five-fold cross-

validation, in each round of the five, we use 80% of the 2000 sparse vectors

41

R D CRRRR

R=1

R=2

R=3

R=4

D=1 C=100

round 1

R=2

R = 2

D=1

D=2

D=3

D=4

D=5

D=6

C=100

R=2 D=4

C=1

C=10

C=100

C=500

D = 4

C = 10

R D CRRRR

R=1

R=2

R=3

R=4

D=4 C=10

round 2

R=2

R = 2

D=1

D=2

D=3

D=4

D=5

D=6

C=10

R=2 D=3

C=1

C=10

C=100

C=500

D = 3

C = 10

Figure 4.12: parameter optimization

for training and 20% for validation, and make sure that each 20% of the

subset data will be taken as validation set only once for each combination of

the three parameters. After the training and validation, we get the prediction

file generated by SVMlight, it consists of 400 (20% × 2000 = 400) predicted

target values, and this file will be used in the following step to compute the

AUC-PR.

First we paste the prediction file and the 400 validation sequences’ original

labels together as a file, then we convert the pasted file to the format accepted

by the AUCCalculator. That means, we set all the label +1 in the original

label file to be 1, and all the label -1 to be 0, so that this file can be taken

as the input of AUCCalculator (shown in Figure 4.13). After computation,

the output of AUCCalculator is the AUC-PR value. This AUC-PR value

42

represents the performance of the model fit with the current parameters

running on the current validation set. After the parameter optimization for

two or three rounds, we find the optimal parameters for our model.

-0.992
1.001
0.121
-0.990
-0.832

prediction file

label file

-1
+1
+1
-1
-1

-0.992 -1
1.001 +1
0.121 +1
-0.990 -1
-0.832 -1

paste

-0.992 0
1.001 1
0.121 1
-0.990 0
-0.832 0 AUC-PR

AUCCalculatorprocess

Figure 4.13: AUC-PR computation by using AUCCalculator

Above all, the process of parameter optimization (training process) con-

sists of two steps: training and validation. These two steps are done by

using five-fold cross-validation on a subset of the whole training set in our

experiment, with each fold being the validation set exactly one for each com-

bination of the three parameters. After we find the best parameters for the

model, we will use this optimal parameter combination to fit our model and

evaluate its performance in testing process.

step (7): Performance evaluation.

After we get the optimal combination of the three parameters R, D and

C after training and validation on a subset, we will compute the perfor-

mance of our fit model in testing process. We first train the fit model on the

whole training set FUSIP1 weak A to get a model file generated by SVM-

light, then we do classification on the whole test set FUSIP1 full B (not

FUSIP1 weak B) to generate the prediction file. In the training process on

43

the whole FUSIP1 weak A set, in order to enhance the performance, except

using parameter C, we also use parameter -j, which means how much the

training errors on positive examples outweight errors on negative examples

(default 1), it is set to be the ratio of negative to positive examples in the

whole training set FUSIP1 weak A. Since for each full and weak set of an

RBP in the dataset, they are comprised of set A and set B, this provides

an advantage for us to use two-fold cross-validation, so that we can train

our model on one set, and test on the other, vice verse. Take FUSIP1 as an

example, the process of the two-fold cross-validation is as shown in Figure

4.14.

training and validation
on full_A

training and validation
on full_B

training and validation
on weak_A

training and validation
on weak_B

training

test on full_B

test on full_A

test on full_B

test on full_A

testing

AUCPR_train_full_full_A

AUCPR_train_full_full_B

AUCPR_train_weak_full_A

AUCPR_train_weak_full_B

average

average

AVG_AUCPR_train_full_full_A_B

AVG_AUCPR_train_weak_full_A_B

final value

max

best model

best model

best model

best model

Figure 4.14: two-fold cross-validation for training and testing in our experi-

ment

(i) First we train our model on the relative subset of FUSIP1 full A,

FUSIP1 full B, FUSIP1 weak A and FUSIP1 weak B respectively as intro-

duced in step (6), and find their corresponding optimal parameters by using

five-fold cross-validation after two or three rounds. Then we use SVMlight

to train the four fit models on the corresponding whole training sets to get

the model files used for the classification. For example, after we get the

44

optimal parameters for the model trained and validated on the subset of

FUSIP1 full A, we train this model on the whole FUSIP1 full A set to gen-

erate a model file.

(ii) After we get the model file from SVMlight, we do classification (pre-

diction) on the whole test set FUSIP1 full B by using this model file, and

we get the prediction file which will be used together with the labels of the

test set FUSIP1 full B later for the model’s performance evaluation. For the

performance, we evaluate it with AUC-PR, which is computed by AUCCal-

culator in the way illustrated in Figure 4.13. For the AUC-PR generated

by training on FUSIP1 full A, and testing on FUSIP1 full B, we call this

value AUCPR train full full A. For the AUC-PR trained on FUSIP1 full B

and tested on FUSIP1 full A, we call this value AUCPR train full full B.

But for the models trained on FUSIP1 weak A and FUSIP1 weak B, we

test them on FUSIP1 full B and FUSIP1 full A respectively, rather than

on FUSIP1 weak B and FUSIP1 weak A. we call these two AUC-PR values

AUCPR train weak full A and AUCPR train weak full B.

(iii) After the four parallel training and testing steps, we will get four

AUC-PR values. Then we average the AUC-PR trained on FUSIP1 full A

and FUSIP1 full B, and we call this average value AVG AUCPR train full fu-

ll A B. Also we average the AUC-PR trained on FUSIP1 weak A and FUSIP-

1 weak B, and we call this average value AVG AUCPR train weak full A B.

(iv) After having the two average values, the last thing we will do is to

compare them and choose the maximum one as the final AUC-PR value for

FUSIP1, which means this value is the predictive performance of binding

preference for FUSIP1 by using the model in our approach.

45

4.2.2 Process of experiment based on RNAshapes

Original data Filtered data
filter

Sequence

Label

FASTA RNAshapes Dot-bracket

Gspan

split

java
program

Sparse vector Different java program

SVMlight Best model

cross-
validation

Prediction AUC-PR

AUCCalculator

NSPDK

java
program

concatenation

svmlight

Figure 4.15: process of experiment by using RNAshapes

The experiment process by using RNAshapes is similar to RNAfold, the

only difference is just replacing RNAfold with RNAshapes (shown in Fig-

ure 4.15). And by using RNAshapes, we compute the secondary structure

of RNA sequence by using different parameters, so that we could get corre-

sponding structures based on different folding ideas. In our experiment, we

first use parameter -s to get the complete suboptimal folding [20] structures

for each FASTA sequence. Different to MFE structure, the suboptimal fold-

ing structures for a sequence are not a single structure, but the structures

within a certain range of the minimum free energy (default 10%). After we

get the complete suboptimal folding structures for a sequence, we convert the

structures to a big graph. For example, we assume that a sequence has two

different secondary structures in the complete suboptimal folding, we convert

the first structure to a graph in the same way as RNAfold mfe model, that

means we generate a vertex for each nucleotide in the sequence with the cor-

responding nucleotide’s information as the vertex’s label, and the sequence

numbers of the vertices are from 1 to the sequence length. Between each

two neighboring nucleotides, there is an edge with label b connecting them.

46

For the base pair formed by two nucleotides, we model it as an edge with

label p. Then for the second secondary structure of the same sequence, we

model it by using the same graph model as above, but with the sequence

numbers of vertices starting from “the sequence length + 1” to “2 × the

sequence length”, so that the two secondary structures of the sequence form

an integrated graph. We call this graph model based on complete suboptimal

folding RNAshapes sub model (see Figure 4.16). We build this model in or-

der to know, if the complete suboptimal folding can have better performance

than MFE or centroid structure folding.

A T
C

T

G

C

G

C

T

G

T

C

A

T

G
A C

A

T

A

C

A

C

C

T

G

A

G

G

C

C

A

p

p

p

p

p

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

>sequence1
ATCTGCGCTGTCATGACATACACCTGAGGCCAT

-2.30

-2.40

.......((.(((...........))))).... []

.......((.(((((.....))..))))).... []

Tb

A T
C

T

G

C

G

C

T

G

T

C

A

T

G
A C

A

T

A

C

A

C

C

T

G

A

G

G

C

C

A

p

p

p

p

p

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Tb

p

p

b

Figure 4.16: convert the suboptimal folding structures into a graph

Except using parameter -s, we could also get the shape probabilities based

on partition function and the corresponding structures that fall into that

shape by using parameter -q [20]. Same with model RNAshapes sub, we

47

convert all the structures of a sequence into an integrated graph. Since for one

RNA sequence, there could be many shapes with a lot of secondary structures

falling into each of them, we can use parameter -T to omit the shapes with

low probabilities. In our experiment, We set the value of -T to be 0.1, that

means we only leave the shapes with probabilities larger than or equal to

0.1. And another important factor we have to take into consideration is that

there are five different shape types in RNAshapes representing the different

levels of shape abstraction[21]. In our experiment, we use level 1 (the most

accurate level) and level 5 (the most abstract level), and the parameter -

t is used to control the level. We call the models generated by these two

shape levels RNAshapes q 1 model and RNAshapes q 5 model. By building

these two models, we want to know whether the factor of shape probability

has positive influence to the binding, and we also want to know the binding

preference of the RBPs to the shape abstraction level.

4.2.3 Process of experiment based on RNAplfold

Different to RNAfold and RNAshapes, RNAplfold does not return the sec-

ondary structure for each sequence directly, but computes average pair prob-

abilities for local base pair i and j within a span L (default 70)[18]. In our

experiment, we use the parameter -u (default 31) to compute the unpaired

probability of x consecutive nucleotides from position i in the sequence. Then

the output of RNAplfold is a matrix with each line consisting of a position i

and the unpaired probability of base i, [i - 1,...,i], [i - 2,...,i] until [i - X +

1,...,i]. In our experiment, in order to see whether the unpaired probability

of each individual nucleotide has positive influence to the binding or not, we

set the value of -u to be 1. And the output matrix is saved in a “ lunp” file.

Figure 4.17 shows the probability matrix of a FASTA sequence.

48

>sequence10000
AGGGATCTGGTTGCACTCTACCAACCGGGTC

#unpaired probabilities
#i$ I =1

1 0.9999983
2 0.9997727
3 0.997848
4 0.02705769
5 0.005986191
6 0.00327252
7 0.0002413717
8 0.001812323
9 8.321472e-05
10 2.811117e-05
11 0.001318392
12 0.002167516
13 0.01781551
14 0.9999999
15 0.9990335
16 0.9999997
17 0.9999976
18 0.9999589
19 0.9989963
20 0.9999632
21 0.9975154
22 0.02034925
23 0.002181587
24 0.001327067
25 3.164994e-05
26 8.663724e-05
27 0.001821181
28 0.0002463862
29 0.003272858
30 0.005891099
31 0.02479686

Figure 4.17: the probability matrix of a FASTA sequence generated by

RNAplfold

Since the output of RNAplfold for each FASTA sequence is a probabil-

ity matrix, the process of the experiment based on it has some difference

compared with RNAfold. As the RNAfold, we also start from the original

dataset, we filtered the original data with different cutoff and median values

for set A and set B of both weak and full set of the nine RBPs. Then we

split the filtered data into two parts: labels and sequences.

On one side, for the sequence part, we still convert it to FASTA format

first, this is exactly the same as RNAfold. Then we use RNAplfold to pro-

cess the FASTA files. But the output of RNAplfold are many lunp files

such like sequence1 lunp, sequence2 lunp,...,sequence1000 lunp, each file con-

tains the corresponding probability matrix of the FASTA sequence with same

sequence number. In the probability matrix, it contains the unpaired prob-

ability of each nucleotide in the corresponding sequence by using option -u,

49

and the number of lunp files equals the number of the RNA sequences in the

FASTA file. Then we use our java program to write each FASTA sequence’s

information (sequence description and sequence) to the corresponding lunp

file which has the same sequence number. As an example, we assume that

in a FASTA file, there are 100 RNA sequences, then the number of gener-

ated lunp files is 100 (sequence1 lunp, sequence2 lunp,...,sequence100 lunp).

We write the corresponding sequence’s information into the lunp file with

the same sequence number, which means we write the information of se-

quence1, sequence2,...,sequence100 into the file sequence1 lunp, sequence2 lu-

np,...,sequence100 lunp respectively. Then we concatenate all of these lunp

files after writing, so that we get a single lunp file containing each FASTA

sequence’s unpaired probability matrix with the corresponding FASTA se-

quence’s description and sequence information following the matrix. Then

we can use java programs to convert this file to different gSpan files by us-

ing different graph models. And the left steps remain the same as in the

process of RNAfold. Figure 4.18 illustrates the experiment process by using

RNAplfold.

On the other side, for the label part, if we still paste the sparse vector file

with the original label file to do the cross-validation on SVMlight directly,

there will be an error. Since during the process of concatenation, we use

the Linux command “cat” to concatenate all the lunp files in an ascending

order, e.g., you will find that in the final concatenated lunp file, the content

of file sequence13 lunp will be in front of the content of file sequence2 lunp,

but will be behind the content of file sequence02 lunp. So if we still use

the original label file directly in the following steps, the order of labels is

different to the sequence order in the concatenated lunp file, and this will

cause an error. In order to solve it, we first use our java program to split

50

Original data Filtered data
filter

Sequence

Label

FASTA RNAplfold _lunp files

Gspan

split

java
program

Sparse vector Different java program

SVM Best model

cross-
validation

AUC-PR

AUCCalculator
Labels

java
program

_lunp files with
sequence information a _lunp file

concatenation

NSPDK

Label

svm
concatenation

concatenation

java
program

java
program

Prediction

Figure 4.18: process by using RNAplfold (including RNAplfold original

model and RNAplfold NP model)

the label file into thousands small label files with each containing only one

label. For example, in the original label files, it has 100 labels (+1/-1)

with each label in one line. We then split the original label file, so that

the labels in the line1, line2,...,line100 will be written into the generated

label files with names 1.label, 2.label,...,100.label respectively. The number

of generated small label files equals the number of labels in the original label

file. Then we concatenate these small files again to form a new label file, but

the order of labels in it has already changed, and this order is same with the

sequence order of the concatenated lunp file. Then we could use them to do

the cross-validation on SVMlight in the following steps of our experiment.

By using RNAplfold, we design four models: In the first model (RNAplf-

old original model), for each FASTA sequence, we first model the sequence as

the Plain sequence model introduced before. That means each nucleotide in

the sequence will be represented as a vertex with the corresponding nucleotide

51

#unpaired probabilities
#i$ I =1

1 0.9999983
2 0.9997727
3 0.997848
4 0.02705769
5 0.005986191
6 0.00327252
7 0.0002413717
8 0.001812323
9 8.321472e-05
10 2.811117e-05
11 0.001318392
12 0.002167516
13 0.01781551
14 0.9999999
15 0.9990335
16 0.9999997
17 0.9999976
18 0.9999589
19 0.9989963
20 0.9999632
21 0.9975154
22 0.02034925
23 0.002181587
24 0.001327067
25 3.164994e-05
26 8.663724e-05
27 0.001821181
28 0.0002463862
29 0.003272858
30 0.005891099
31 0.02479686
sequence10000
AGGGATCTGGTTGCACTCTACCAACCGGGTC

A

G

G

A

T

G

T

T

G

C
A

T

C

C

T

T

C

G

G

C
T

C

A

A

A

C

C

G

G

G

C

N

N

N

N

N
N

N

N

N

N

N

PPPPPPPP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb
b

b

b

b

b

a
a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

Figure 4.19: RNAplfold original model

as its label, and between each two neighboring vertices, there is an edge with

label b connecting them. Since we have the unpaired probability of each

nucleotide in the sequence, if the probability of one nucleotide is larger than

or equal to 0.5, we say this nucleotide has higher probability to be unpaired

than being paired. So we generate a new vertex above the corresponding

nucleotide’s vertex in the model by using an edge with label a connecting

them, and the label of the generated vertex is N. On the other side, if the

unpaired probability is less than 0.5, we set the label of the new vertex to

be P, which means the nucleotide has higher probability to be paired than

being unpaired. The model is shown in Figure 4.19.

The second graph model (RNAplfold NP model) has the same idea with

the first model, we just do a tiny change, that if the unpaired probability of a

nucleotide is larger than or equal to 0.5, except adding the vertex N above the

vertex of the nucleotide in the Plain sequence model, we also add a vertex P

52

above the added vertex N by using an edge with label a connecting these two

added vertices. To the opposite, if the unpaired probability of a nucleotide

is below 0.5, we just replace the positions of the corresponding vertex N and

P (see Figure 4.20). By building the two models above, we could test if the

unpaired probabilities of the bases in RNA sequence have positive influence

to the binding or not.

#unpaired probabilities
#i$ I =1

1 0.9999983
2 0.9997727
3 0.997848
4 0.02705769
5 0.005986191
6 0.00327252
7 0.0002413717
8 0.001812323
9 8.321472e-05
10 2.811117e-05
11 0.001318392
12 0.002167516
13 0.01781551
14 0.9999999
15 0.9990335
16 0.9999997
17 0.9999976
18 0.9999589
19 0.9989963
20 0.9999632
21 0.9975154
22 0.02034925
23 0.002181587
24 0.001327067
25 3.164994e-05
26 8.663724e-05
27 0.001821181
28 0.0002463862
29 0.003272858
30 0.005891099
31 0.02479686
sequence10000
AGGGATCTGGTTGCACTCTACCAACCGGGTC

A

G

G

A

T

G

T

T

G

C
A

T

C

C

T

T

C

G

G

C
T

C

A

A

A

C

C

G

G

G

C

N

N

N

N

N
N

N

N

N

N

N

PPPPPPPP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P

N

N

N

N

N

N

N

N

N

N

N

NNNNNNNNN

N

N

N

N

N

N

N

N

P

P

P

P

P
PP

P

P

P

P

N

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

aa

aa

aa

aa

a

a

a

a

a

a

a

a

a

a

a

a

a a

a a

a a

a
a

a a

a a

a
a

a
a

a
a

a
a

a

aa

a
a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b
bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 4.20: RNAplfold NP model

For the third model (RNAplfold modified model), we use a modified ver-

sion of RNAplfold. For a FASTA sequence, except generating a lunp file,

this modified RNAplfold also generates another four files: lunp H, lunp I,

lunp M, lunp E. These four files contain the probability of each nucleotide

in the sequence to be in the state hairpin loop, interior loop, multiloop and

external region respectively. That means the unpaired probability for each

position in the sequence is split up by the structural contexts. This is similar

with the annotation alphabet in RNAcontext (i.e., P, L, M, U). And for each

53

nucleotide, the sum of the corresponding probabilities in the four files should

be equal to the probability of the corresponding position in the original lunp

file, because if a nucleotide is not paired, then it must be in one of the four

states above. After we get these files, for a given sequence, if the probability

of a position i in the original lunp file is larger than or equal to 0.5, ex-

cept converting the sequence to a model in the way illustrated as the model

RNAplfold NP, we still compare the four probabilities at the same position

in the other corresponding four generated files. If the maximum value among

the four locates in the lunp H file, then we know that the probability for this

nucleotide to be in the hairpin loop is biggest among the four states, then

we add a vertex H to connect the vertex N in the model RNAplfold NP by

using an edge with label a between them. If the probability of a position i

in the original lunp file is less than 0.5, we don’t do any change to the cor-

responding vertices compared with RNAfold NP model. Figure 4.21 shows

the RNAplfold modified model.

The change in the experiment process based on RNAplfold modified model

is as follows: For each sequence, the outputs generated by the modified

RNAplfold are five probability matrices contained in the lunp, lunp H,

lunp I, lunp M, lunp E file respectively. Then we write the correspond-

ing sequence’s information into its corresponding five output files, so that

in each of the five output files, there is a probability matrix followed by

the corresponding sequence description and sequence information. Then, we

concatenate all the relative lunp, lunp H, lunp I, lunp M, lunp E files

respectively to get a lunp file, a lunp H file, a lunp I file, a lunp M file

and a lunp E file. At last we paste all of these five concatenated files into

a final file. In this file, for each sequence, there are five corresponding prob-

ability matrices followed by the sequence description and information. The

54

A

G

G

A

T

G

T

T

G

C
A

T

C

C

T

T

C

G

G

C
T

C

A

A

A

C

C

G

G

G

C

N

N

N

N

N
N

N

N

N

N

N

PPPPPPPP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P

N

N

N

N

N

N

N

N

N

N

N

NNNNNNNNN

N

N

N

N

N

N

N

N

P

P

P

P

P
PP

P

P

P

P

N

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

aa

aa

aa

aa

a

a

a

a

a

a

a

a

a

a

a

a

a a

a a

a a

a
a

a a

a a

a
a

a
a

a
a

a
a

a

aa

a
a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b
bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

N

E

NNE

NNNE

NNNM

NNNI

NNNH

NNNH

NNNH

NNNM

NNNH

NNNH

NNNI

NNNM

NNNM

NNM

NNNI

NNNI

NNNE

NNNE

NNNE

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Figure 4.21: RNAplfold modified model

five matrices represent the relative probabilities that the nucleotides in the

sequence are unpaired, in a hairpin loop, in an interior loop, in a multiloop

or in an external region. Then we could use our java program to work on this

file, and if the unpaired probability for a position in the first matrix is larger

than or equal to 0.5, we compare the other four probability values in the

same position of the other four matrices, so that we could know the state of

the unpaired nucleotide. Then we use RNAplfold modified model to convert

the pasted file into a gSpan file. Figure 4.22 shows the experiment process

by using RNAplfold modified model.

For the last model by using RNAplfold, we combine the RNAfold and the

modified RNAplfold. That means except building the RNAplfold modified

model, we also check if some nucleotides in the sequence form base pairs by

using RNAfold. We call this model RNAplfold combine model (see Figure

55

Original data Filtered data
filter

Sequence

Label

FASTA RNAplfold

Gspan

split

java
program

Sparse vector Different java program

SVM Best model

cross-
validation

Prediction AUC-PR

AUCCalculator
Labels

java
program

concatenation

NSPDK

Label

svm
concatenation

concatenation

java
program

*_lunp files
*_lunp_H files
*_lunp_I files
*_lunp_M files
*_lunp_E files

*_lunp files,
*_lunp_Hfiles,
*_lunp_Ifiles,
*_lunp_M files,
*_lunp_E files with
sequence information

a *_lunp file,
a *_lunp_H file,
a *_lunp_I file,
a *_lunp_M file,
a *_lunp_E file

paste

a single file

Figure 4.22: process of experiment based on RNAplfold modified model

4.23). The process of the experiment based on this model has only a little

difference to the process based on RNAplfold modified, that except using

modified RNAplfold to get the corresponding five files for each sequence,

we also use RNAfold to compute the corresponding MFE structure for each

sequence. Then we use our java program to write the sequence and its MFE

structure information into the corresponding five generated files, then use

the same way to convert it and the left steps remain the same. Figure 4.24

illustrates the experiment process by using RNAplfold combine model.

56

A

G

G

A

T

G

T

T

G

C
A

T

C

C

T

T

C

G

G

C
T

C

A

A

A

C

C

G

G

G

C

N

N

N

N

N
N

N

N

N

N

N

PPPPPPPP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P

N

N

N

N

N

N

N

N

N

N

N

NNNNNNNNN

N

N

N

N

N

N

N

N

P

P

P

P

P
PP

P

P

P

P

N

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

aa

aa

aa

aa

a

a

a

a

a

a

a

a

a

a

a

a

a a

a a

a a

a
a

a a

a a

a
a

a
a

a
a

a
a

a

aa

a
a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b
bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

N

E

NNE

NNNE

NNNM

NNNI

NNNH

NNNH

NNNH

NNNM

NNNH

NNNH

NNNI

NNNM

NNNM

NNM

NNNI

NNNI

NNNE

NNNE

NNNE

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

p

p

p

Figure 4.23: RNAplfold combine model

Original data Filtered data
filter

Sequence

Label

FASTA RNAplfold

Gspan

split

java
program

Sparse vector Different java program

SVM Best model

cross-
validation

Prediction AUC-PR

AUCCalculator
Labels

java
program

concatenation

NSPDK

Label

svm
concatenation

concatenation

java
program

*_lunp files
*_lunp_H files
*_lunp_I files
*_lunp_M files
*_lunp_E files

*_lunp files,
*_lunp_Hfiles,
*_lunp_Ifiles,
*_lunp_M files,
*_lunp_E files with
sequence and dot-
bracket information

a *_lunp file,
a *_lunp_H file,
a *_lunp_I file,
a *_lunp_M file,
a *_lunp_E file

paste

a single file

Dot-bracketRNAfold

Figure 4.24: process of experiment based on RNAplfold combine model

57

Chapter 5

Experiment

5.1 Dataset

As RNAcontext, we use RNAcompete-derived datasets in our experiment.

The datasets are an RNA pool consisting of 213,130 unique short RNA se-

quences, with each sequence’s length between 29- to 38-nt. The datasets are

comprised of nine RBPs (i.e., HuR, Vts1p, PTB, FUSIP1, U1A, SF2/ASF,

SLM2, RBM4, YB1) with their corresponding measured binding affinities

computed by RNAcompete and other vivo method[1].

The RNA pool can be divided into two sets: set A and set B. Both of

these two sets satisfy the following two constraints[1]:

(1) each loop with length between 3 and 7 (inclusive) is represented on

at least one sequence flanked by RNA stems of 10 bases;

(2) each possible 7-mer appears in at least 64 different sequences with

high folding free energy, so the sequences are linear or form weak secondary

structures.

We call the sequences satisfying the first condition stem-loop sequences,

while the sequences fulfilling the second constraint weakly-structured sequences.

58

There is no overlap between these two sequence groups. And the sequences in

the pool have two characteristics[1]: (1) there are some unintended sequences

in the pool (e.g., some weakly-structured sequences contain stem-loops). (2)

no two sequences in the pool have a common subsequence with length more

than 12-nt long. The design of the RNA pool and the sequence properties

can be found in [2].

RNA pool

stem-loop

weakly-structured weakly-structured

stem-loop

set Bset A

Figure 5.1: the division of the RNA pool

From Figure 5.1, we could see that there are two different stem-loop

groups and two different weakly-structured sequences groups in set A and

set B respectively. This construction provides us the advantage to train

our graph model on one set, then test our model’s performance on the

other set, and vice verse, so that we can get two independent performance

measurements[1]. This strategy is called two-fold cross-validation.

As the way in RNAcontext, for each of our graph models, we also trained

two sets of models. One set was trained on the full training set comprised

of all the RNA sequences in the training set. The other set of models was

trained with the weakly-structured sequences in the training set, which means

the stem-loop sequences are removed from the set. So, in the RNAcompete-

59

derived datasets, for each RBP, there are two training sets: full set and weak

set. Figure 5.2 shows the construction of full and weak set for one RBP in

RNAcompete-derived datasets.

stem-loop
stem-loop

weakly-structured weakly-structured

weakly-structured

weakly-structured

Full
Weak

A B
A B

Figure 5.2: the construction of full set and weak set for an RBP

Above all, in RNAcompete-derived datasets, the full set data is comprised

of the full sets of all the nine RBPs. And for each RBP, the full set consists

of set A and set B. In the same way, the weak set consists of all the weak sets

of the nine RBPs with each containing set A and set B respectively. Figure

5.3 illustrates the construction of full and weak sets of RNAcompete-derived

dataset. The full and weak sets are comprised of the relative full and weak

Fusip_data_full_A Fusip_data_full_B

Full

Weak

YB1_data_full_A YB1_data_full_B

Fusip_data_bruijn_B YB1_data_bruijn_A YB1_data_bruijn_BFusip_data_bruijn_A

Figure 5.3: the construction of RNAcompete-derived datasets

60

sets of the nine RBPs. And both the full and weak set of an RBP can be

divided into set A and set B.

5.2 Experiment result

We implement our experiment in the way introduced in Chapter 4 on the

dataset in Linux environment. And after computation, we compare our

method’s performance with RNAcontext — the current best method for the

prediction of RBPs’ binding preferences. The nine RBPs’ AUC-PR values

by using our different models are as follows:

Proteins Plain sequence RNAfold mfe RNAfold centroid RNAfold covered

RBM4 0.62 0.68 0.67 0.22

FUSIP1 0.73 0.84 0.84 0.18

vts1p 0.36 0.38 0.33 0.26

YB1 0.20 0.21 0.22 0.08

SLM2 0.70 0.67 0.66 0.47

SF2 0.82 0.76 0.78 0.40

U1A 0.47 0.62 0.62 0.48

HuR 0.92 0.91 0.91 0.72

PTB 0.70 0.68 0.68 0.54

Table 5.1: Performances of the Plain sequence model and the models related

with RNAfold

61

Proteins RNAcontext RNAshapes sub RNAshapes q 1 RNAshapes q 5

RBM4 0.91 0.63 0.65 0.65

FUSIP1 0.53 0.84 0.83 0.84

vts1p 0.65 0.43 0.37 0.35

YB1 0.17 0.24 0.25 0.21

SLM2 0.81 0.65 0.66 0.64

SF2 0.70 0.77 0.77 0.77

U1A 0.30 0.57 0.63 0.58

HuR 0.96 0.90 0.90 0.91

PTB 0.69 0.66 0.68 0.68

Table 5.2: Performances of RNAcontext and the models related with

RNAshapes

Proteins RNAplfold original RNAplfold NP RNAplfold modified RNAplfold combine

RBM4 0.38 0.38 0.62 0.61

FUSIP1 0.28 0.26 0.83 0.84

vts1p 0.21 0.20 0.49 0.44

YB1 0.11 0.20 0.23 0.21

SLM2 0.60 0.60 0.67 0.65

SF2 0.80 0.79 0.79 0.72

U1A 0.32 0.31 0.67 0.64

HuR 0.91 0.91 0.91 0.89

PTB 0.60 0.60 0.65 0.64

Table 5.3: Performances of the models related with RNAplfold

62

From table 5.1, we could see that for the RBPs RBM4, FUSIP1, vts1p,

YB1, U1A, the AUC-PR values in model RNAfold mfe are larger than the

corresponding values in model Plain sequence. This tells us that, for these

five RBPs, the structural context folded by using MFE idea in the bind-

ing region has positive influence to the binding, while for the other four

RBPs, the structural context has negative influence or no obvious positive

influence. This result is consistent with the result of RNAcontext experi-

ment. In RNAcontext, using the structural context leads to a significant im-

provement in AUC-PR for eight of the nine RBPs, among which the AUC-

PR of RBPs vts1p, RBM4, FUSIP1, U1A, YB1 increase dramatically[1].

So, to some extent, our experiment’s result is consistent with the result of

RNAcontext. And still in this table, we could find that the performance of

RNAfold covered model is much worse than the other three models. Since

model RNAfold covered replaces all the paired nucleotides’ labels with la-

bel N, this change may destroy the structural context as well as the specific

sequence of a latent binding motif in the double-stranded region. And we al-

ready know that the sequestration of a motif locating in the double-stranded

region will have strong negative influence to the binding, so the experiment

result of model RNAfold covered is consistent with the experimentally de-

tected phenomenon.

In table 5.2, the AUC-PR values of nine RBPs in the three models

RNAshapes sub, RNAshapes q 1 and RNAshapes q 5 have no big difference,

and their performances have no obvious improvement compared with the

model RNA mfe or RNA centroid. So we think that, the RBPs recognize

the target RNA from the aspects of structural context and specific sequence,

rather than the shape probability of the secondary structures. By compar-

ing the performances of model RNAshapes q 1 and model RNAshapes q 5,

63

we find that, four of the nine RBPs’ AUC-PR values in the former one are

better than the latter one, two are a little worse. So we can think that the

RBPs recognize the target RNA sequence in accurate shape level, the reason

is probably that the RBPs bind the sequence in a sequence-specific manner.

In table 5.3, for the model RNAplfold original and RNAplfold NP, seven

of the nine AUC-PR values are much worse than the corresponding values

in RNAcontext (except SF2, U1A), and all of the nine AUC-PR values are

worse than the corresponding values in Plain sequence model. So can we say

that, for all of the tested RBPs, the unpaired probability of each individual

nucleotide in an RNA sequence has no positive influence to the binding. And

the performances of model RNAplfold modified and RNAplfold combine are

much better than the model RNAplfold original and RNAplfold NP, which

tells us that the detailed structural context of each individual nucleotide in

the RNA sequence has positive influence to the binding.

From the three tables above, we could find that, by using the model

Plain sequence, RNAfold mfe, RNAfold centroid, RNAshapes sub, RNAsha-

pes q 1, RNAshapes q 5, RNAplfold modified and RNAplfold combine, the

AUC-PR values of RBPs FUSIP1, SF2, U1A, YB1 are always better than

the corresponding values in RNAcontext. In model Plain sequence, even

PTB’s AUC-PR is higher than in RNAcontext. So we can say that, by using

our graph model without structural context, the performances of binding

preference prediction for RBPs FUSIP1, SF2, U1A, YB1 and PTB have

reached the state-of-the-art level, while by using our model with structural

context we can reach the state-of-the-art performance for four of the five

RBPs above except PTB.

From the perspective of models, the performance comparisons between

our models and RNAcontext are as follows:

64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of Plain sequence model

Plain sequence
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAfold mfe model

RNAfold mfe
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAfold centroid model

RNAfold centroid
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAfold covered model

RNAfold covered
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAplfold original model

RNAplfold original
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAplfold NP model

RNAplfold NP
RNAcontext

65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAplfold mod model

RNAplfold mod
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAplfold combine model

RNAplfold combine
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAshapes sub model

RNAshapes sub
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAshapes q1 model

RNAshapes q1
RNAcontext

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

RBM4FUSIP1 vts1p YB1 SLM2 SF2 U1A HuR PTB

A
U

C
-P

R

RBPs

Performance of RNAshapes q5 model

RNAshapes q5
RNAcontext

66

From the perspective of RBPs, the performance comparisons for each of

the nine RBPs in different models are as follows:

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

RBM4

Performances of RBM4 in different models

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R
Fusip

Performances of Fusip in different models

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

vts1p

Performances of vts1p in different models

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

YB1

Performances of YB1 in different models

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

SLM2

Performances of SLM2 in different models

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

SF2

Performances of SF2 in different models

67

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

U1A

Performances of U1A in different models

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

HuR

Performances of HuR in different models

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
la

in

R
N

A
fo

ld
(M

F
E

)

R
N

A
fo

ld
(c

en
tr

o
id

)

R
N

A
fo

ld
(c

o
v

er
ed

)

R
N

A
p

lf
o

ld
(o

ri
g

in
al

)

R
N

A
p

lf
o

ld
(N

P
)

R
N

A
p

lf
o

ld
(m

o
d

)

R
N

A
p

lf
o

ld
(c

o
m

b
in

e)

R
N

A
sh

ap
es

(s
u

b
)

R
N

A
sh

ap
es

(q
1

)

R
N

A
sh

ap
es

(q
5

)

R
N

A
co

n
te

x
t

A
U

C
-P

R

PTB

Performances of PTB in different models

68

Chapter 6

Conclusion

Since RBPs play an important role in the post-transcriptional regulation of

living organisms, the development of methods for the prediction of RBPs’

binding preferences is important for us to understand the binding mecha-

nisms. In this thesis, we introduced a brand new approach for the prediction

of RBPs’ binding preferences — graph kernel method. Different to the ex-

isting motif finding methods like MEMERIS and RNAcontext, which use

probabilistic idea, our method is based on the machine learning method like

kernel method and support vector machine. During the process of our experi-

ment, we designed 11 graph models with each containing different attributes.

And the experiment result shows that by using the graph model without

structural context in our method, the AUC-PR values of five RBPs are bet-

ter than the corresponding performances in RNAcontext, while by using the

graph models with structural context such like RNAfold mfe model, four

RBPs’ performances are better than in RNAcontext. So we can say that, for

the five RBPs FUSIP1, SF2, U1A, YB1 and PTB, our method is the state-of-

the-art method for the prediction of binding preferences. By comparing the

performances between the models with structural context and model without

69

structural context, we could see that, not every RBP’s AUC-PR increases

under the structural context. And for the RBPs whose AUC-PR increase

obviously under the structural context, our experiment result is consistent

with the experiment result of RNAcontext, which means, for the following

five RBPs: FUSIP1, RBM4, U1A, YB1, vts1p, the structural context in the

binding sites has positive influence to the binding, but for the other four

RBPs, the structural context in the binding sites seems to be not so helpful

for the binding. From the experiment result, we could also conclude that the

unpaired probability for each nucleotide in the RNA sequence has no positive

influence to the binding, but the structural context of each nucleotide in the

sequence will influence the binding positively. And the shape probability of

the secondary structures is not a decisive factor in the binding. Our exper-

iment result also proved the experimentally detected phenomenon, that the

sequestration of a binding motif in a double-stranded region will cause strong

negative influence to the binding.

70

References

[1] Hilal Kazan, Debashish Ray, Esther T. Chan, Timothy R.Hughes, Quaid

Morris (2010) RNAcontext: a new method for learning the sequence and

structure binding preferences of RNA-binding proteins. Computational

biology.

[2] Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry S, et al. (2009)

Rapid and systematic analysis of the RNA recognition specificities of

RNA-binding proteins. Nature biotechnology 27(7) 667-670.

[3] Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isola-

tion and identification of mRNAs, microRNAs and protein components

of ribonucleoprotein complexes from cell extracts. Nat Protoc 1: 302-

307.

[4] Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identi-

fying protein-RNA interaction sites in living cells. Methods 37: 376-386.

[5] Michael Hiller, Rainer Pudimat, Anke Busch, Rolf Backofen (2006) Us-

ing RNA secondary structures to guide sequence motif finding towards

single-stranded regions. Nucleic Acids Research.

[6] Ye Ding, Charles E. Lawrence (2003) A statistical sampling algorithm

for RNA secondary structure prediction. Nucleic Acids Research.

71

[7] O. Ivanciuc, Applications of Support Vector Machines in Chemistry,

Rev. Comput. Chem. 2007, 23, 291-400.

[8] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin (2010) A practical

guide to support vector classification.

[9] Bernhard Schlkopf and Alexander J. Smola (2001) Learning with Ker-

nels. The MIT Press.

[10] John Shawe-Taylor and Nello Cristianini (2004) Kernel Methods for Pat-

tern Analysis. Cambridge University Press.

[11] Fabrizio Costa, Kurt De Grave (2010) Fast neighborhood subgraph pair-

wise distance kernel. Appearing in Proceeding of the 27th International

Conference on machine learning, Haifa, Israel.

[12] Xifeng Yan and Jiawei Han (2002) gSpan: Graph-Based Substructure

Pattern Mining. Proc. 2002 International Conference on Data Mining

(ICDM’02), Maebashi, Japan.

[13] Thorsten Joachims, SVM-Light Support Vector Machine.

http://svmlight.joachims.org/

[14] Jesse Davis, Mark Goadrich (2006) The relationship between Precision-

Recall and ROC curves. Appearing in Proceeding of the 23th Interna-

tional Conference on machine learning, Pittsburgh, PA.

[15] Ling Liu, Özsu, M. Tamer (2009) Encyclopedia of Database Systems.

Springer-Verlag.

[16] http://www.g2l.bio.uni-goettingen.de/blast/fastades.html

72

[17] Ramlan, E. I. and Zauner, K. P. (2008) An Extended Dot-Bracket-

Notation for Functional Nucleic Acids. In: International Workshop on

Computing with Biomolecules, Wien, Austria, August 27, 2008, pp. 75-

86, Österreichische Computer Gesellschaft. ISBN 978-3-85403-244-1

[18] Vienna RNA Package. http://www.tbi.univie.ac.at/∼ivo/RNA/

[19] Ye Ding, Chi Yu Chan, Charles E. Lawrence (2011) RNA secondary

structure prediction by centroids in a Boltzmann weighted ensemble.

Published by Cold Spring Harbor Laboratory Press.

[20] Peter Steffen, Robert Giegerich, Björn Voß, Marc Rehmsmeier, Jens,

Reeder (2008) RNAshapes 2.1.5 manual.

[21] Robert Giegerich, Björn Voß, Marc Rehmsmeier (2004) Abstract shapes

of RNA. Nucleic Acids Research.

73

