

Albert-Ludwigs-Universität
Freiburg

 Master Thesis

Variations of the Sankoff-Algorithm with a
Focus on Heuristics

Done by: Farah Majid Abdul Hameed

Born on: 4 May 1980

Under the chair of: Prof. Dr. Rolf Backofen

Direct Supervisor: Dr. Sebastian Will

15 June 2009

Fakultät für Angewandte Wissenschaften
Institut für Informatik

Lehrstuhl für Bioinformatik

ii

Selbständigkeitserklärung

Hiermit erkläre ich, dass die hier vorliegende Masterarbeit von mir selbständig und

nur unter Verwendung der angegebenen Hilfsmittel und Quellen erstellt wurde.

Freiburg, den

Unterschrift

iii

Abstract

The combination of the alignment and secondary structure prediction solutions of two RNA

sequences can significantly improve the accuracy of the structural predictions. The

algorithm which simultaneously solves these problems tends to be computationally

expensive like the original form “Sankoff Algorithm” [S85]. Thus, the methods which

addressed this problem impose constraints that reduce the computational complexity by

restricting the folding and/or alignment and thus make the Sankoff algorithm more

practical.

In this thesis, reviewing the different Sankoff-style methods in such a way that compares

them corresponding to the Sankoff algorithm, through the parallels and differences. As well

as, the focus is on the heuristics (i.e. the imposed constraints on the alignments and/or the

structures) and comparing between them.

In practical, the work discusses:

- Sankoff algorithm which is the original form of simultaneous Folding and

Alignment of RNA sequences,

- Dynalign method which is the direct implementation of Sankoff algorithm,

- Foldalign method which is the first implementation of simultaneous Folding and

Alignment of RNA sequences,

- PMcomp/LocARNA which are a simplification of the Sankoff algorithm.

In this work, practical results are obtained for three dataset examples of RNA families that

have different sequence lengths, which indicate to the different influences on the speed of

each program depending on the type and strength of each heuristic in these methods. Thus,

the conclusion is combining some heuristics of the current methods in such a way that can

improve the computation efficiency as well as accuracy as a new method or new versions

of the current methods.

iv

Acknowledgements

 This work would not have been possible without the support and

encouragement of my supervisor Dr. Sebastian Will, under his

supervision we chose this topic and began the thesis.

 I would like to thank Prof. Dr. Rolf Backofen the head of

Bioinformatics team and the teaching staff and also members of

the University of Freiburg.

 Special thanks go to DAAD whose gave me the chance to study

the Master in Germany and for their support during whole my

study time.

 I cannot end without thanking my family, on whose constant

encouragement and love I have relied throughout my time at the

Academy.

v

Contents

1. Introduction 1

1.1 Motivation 1

1.2 Contribution 4

1.3 Overview 4

2. Background and Preliminaries 5

2.1 Biology of RNA 5

2.2 Sequence Alignment 8

2.2.1 Edit Distance 9

2.2.2 Needleman-Wunsch Edit Distance Algorithm 10

2.2.3 Smith-Waterman Algorithm 11

2.2.4 Multiple Sequence Alignment 12

2.3 RNA Secondary Structure 12

2.4 RNA Secondary Structure Prediction 16

3. Methods for Simultaneous Alignment and Folding 20

3.1 Sankoff Algorithm 20

3.2 Dynalign 27

3.3 Foldalign 34

3.3.1 Pairwise Foldalign 1.0 34

3.3.2 Pairwise Foldalign 2.0 40

3.3.3 Pairwise Foldalign 2.1 44

3.4 PMcomp and LocARNA 51

3.4.1 PMcomp 52

3.4.2 LocARNA 55

vi

4. Results 60

4.1 Results 60

4.1.1 The results of Foldalign version 2.0.3 62

4.1.2 The results of Foldalign version 2.1.0 65

4.1.3 The results of Dynalign 69

4.1.4 The results of LocARNA 71

4.2 Discussion of Results 79

5. Conclusion 81

5.1 Conclusion 81

5.2 Future Work 83

Bibliography 84

List of Figures 87

List of Tables 88

1

Chapter One

Introduction

1.1 Motivation

The dynamic programming comparison for the sequences finds widespread applications

in the field of molecular biology, through the detection and evaluation of similarities

among a number of nucleic acid (DNA, RNA) sequences, as well as protein sequences.

This thesis will concentrate on the RNA sequences, precisely for the RNA secondary

structure which is essential for biological function. However, it is still difficult to

determine experimentally the RNA structure. The most popular algorithm to predict the

structure is the Minimum Free Energy (MFE) which folds a single sequence. This

method has been implemented via Mfold [ZS81] and RNAfold [HFB+S94].

Nevertheless, the accuracy of MFE structure prediction is still restricted in practice. In

general, the comparative methods [PTW99] are also used for determining RNA

structure but at the best accuracy.

Actually, there are three automated approaches for analyzing RNA sequences and

structures, which are illustrated below in Figure 1.1 [GG04]. For Plan A, the aligned

sequences are obtained by using a standard multiple sequence alignment algorithms,

such as ClustalW [THG94], t-coffee [NHH00], prrn [G99]. Then a consensus

secondary structure is inferred by attempting to detect the covariation of base paired

sites in the alignment. The mutual information measure is frequently used to this

[CK91], [GPH+PS92] and [GHB+S97]. The tools which have been developed recently

are used a combination of energetic and a covariance terms [HFS02], or evolutionary

Stochastic Context-Free Grammar [KH03]. This plan is at the step of multiple sequence

Chapter 1: Introduction

2

alignment, the well preserved sequence is produced. Although this shows a very

successful approach, but it is still restricted with the sequence homology that should be

a high enough in the alignment step that helps to find structurally the consistent

mutations.

Figure 1.1: Three automated approaches for producing the aligned structure of RNA

sequences. [GG04]

For plan B, the Sankoff algorithm was the first strict mathematical treatments of

simultaneous alignment and folding for RNA sequences, which was proposed by David

Sankoff [S85]. This algorithm is computationally expensive (i.e. it requires a lot of

computational resources ࣩ(N3n) for time and ࣩ(N2n) for memory, where N is the

sequence length and n is the number of sequences). Therefore, several restricted

versions are implemented of the Sankoff algorithm impose some realistic constraints on

the size and/or shape of the substructures to reduce the computational complexities for

time and memory. These restricted versions can be divided into two groups according

to which scheme are used:

1) The energy-based methods which also can be distinguished into two groups:

Chapter 1: Introduction

3

a) The methods implementing more or less a complete energy model of the

folding part, such as Foldalign [GHS97a, GHS97b, HLS+G05, HTG07] which

is the first implementation of simultaneous Folding and Alignment of RNA

sequences and Dynalign [MT02, HSM07] which is the method of direct

Sankoff algorithm.

b) The methods suppose that a structure model of the input sequences is given in

the form of weights for each base pair, such as PMcomp [HBS04] and

LocARNA [WRH+SB07] which are a simplification of the Sankoff algorithm.

There are other Sankoff-style methods based on the energy model, but in this thesis we

are only interested in the above methods, in addition to showing the heuristics for each

one.

2) The probabilistic methods that based on the Stochastic Context Free Grammars

(SCFG) parameters which are estimated from multiple sequence alignments. These

methods that we did not discussed in this thesis, like Stemloc [H05] which is a pairwise

RNA structural alignment prediction program based on SCFG, it uses “fold” and

“alignment” envelopes to reduce the computation and memory. There is another

method known as also RNA structural alignment “Consan” [DE06].

Finally, plan C is represented by aligning RNA secondary structures rather than

sequences. Due to the nature of the nested branching of RNA structures, these are

appropriately represented as trees. Since there is no ability to find sequence

conservation through alignment step, fold the sequences separately by using the

methods of single sequence structure prediction and then directly align the result

structures. There are several methods for aligning structures of RNA. In the measuring

the similarity by edit operations, the structure comparisons have been generalized to

trees ([T79], [S88], [SZ90], [ZSh89], [JLM+Z02], [WZ01], [SB03]), other methods

align locally ([HTG+K03], [BW04]). Since the main weakness of this approach is the

single sequence structure predictions are inaccurate in many times, that leads to affect

on all further analyses. Hence, this approach is too strong to be used when the reliable

structures are provided.

Chapter 1: Introduction

4

1.2 Contribution

As mentioned above, that the original form of simultaneous Folding and Alignment of

RNA sequences is the Sankoff algorithm. Due to the expensive computations of this

algorithm, some restricted versions of the Sankoff algorithm are implemented.

The main contribution of this thesis is to review the different Sankoff-style methods

and concentrate on their heuristics which used to make the Sankoff algorithm

applicable in practice. In addition to compare these methods corresponding to the

original form “Sankoff Algorithm”, on the basis of the consideration of various aspects,

such as the system scoring scheme, the computation time and memory requirements.

Furthermore, this thesis gives also the results which are obtained from running the

programs of these methods under some special selected parameters (which represent

the heuristics) of these programs to compare the speed of these methods, as well as to

compare and analyze the identified heuristics.

1.3 Overview

Now an overview of the chapters that make up our work is given. Chapter 2 introduces

the background of the RNA biology and the required preliminaries for the purposes of

this thesis. Chapter 3 reviews the Sankoff-style methods and shows the points of the

parallels and differences corresponding to the Sankoff algorithm. In Chapter 4, the used

dataset examples of RNA families are given. In addition the obtained results from these

methods are presented and discussed. Finally, Chapter 5 summarizes the conclusions of

this thesis and gives an outlook for the future work in this area.

5

Chapter Two

Background and preliminaries

This chapter will give the background and preliminaries needed for the purposes of this

thesis, by introducing the methods of RNA sequence comparisons and the secondary

structure prediction that represent the important information before going to the

methods in the next chapter.

2.1 Biology of RNA

Ribonucleic Acid (RNA) is a single-stranded molecule which is composed of a long

series of the linked nucleotides by the phosphodiester linkages. Each of these

nucleotides is made up of a ribose sugar, a phosphate group and a nitrogenous base.

There are four possible bases which are generally adenine (A), cytosine (C), guanine

(G) and uracil (U). Due to the hydrogen bonds between the certain basepairs, a stable

structure will be formed. These basepairs are formed between (C-G) and (A-U) of

Watson-Crick basepairs and the Wobble basepairs between (G-U). Figure 2.1.a below

shows these types of basepairs in RNA.

There are different kinds of RNA: messenger RNA (mRNA) carries information from

DNA about a protein sequence to structures called ribosomes, Transfer RNA (tRNA) is

a small RNA chain consisting of about 80 nucleotides that serves as adapter between

mRNA and amino acids, Ribosomal RNA (rRNA) which is the main component of the

ribosomes [WP08].

Chapter 2: Background and preliminaries

6

i) Watson-Crick basepairs.

ii) Wobble basepairs.

Figure 2.1.a: The RNA basepairs i) Watson-Crick basepairs, ii) Wobble basepairs.
Image Source: “BC 5254/GCS 719, Computer Applications in Biomedical Research”
http://www.finchcms.edu/cms/biochem/Walters/rna_folding.html.

An RNA structure is represented at different levels:

- Primary structure: It represents by a linear sequence of nucleotides over the

alphabet ∑ = {A, C, G, U}. These nucleotides (bases) are connected together

by

st

- Se

th

fo

G

2.

- Te

re

an

Ps

pa

This thesi

Figure 2.
Mathias M
of RNA S
Symposiu

i) Prim

y covalent p

tructure.

econdary str

he certain pa

ormed by Wa

G-U. Section

.1.b shows in

ertiary struc

elevant to the

n interactio

seudoknots a

art (iii) Figur

s will treat th

.1.b: The R
Möhl, Sebast
Structures In
um on Combi

mary structu

phosphodieste

ructure: As m

airs of bases,

atson-Crick b

2.3 will talk

n part (ii) the

ture: It is th

e hydrogen b

on between

are example

re 2.1.b.

he secondary

RNA structur
tian Will, Ro
cluding Arb
inatorial Patt

ure

7

er bonds. Pa

mentioned ab

 a stable stru

base pairing

k about the se

e secondary s

he three-dim

bond occurre

the distin

of tertiary s

y structures o

re is represe
olf Backofen
itrary Pseud
tern Matchin

ii) Seconda

Chapter

art (i) in Fig

bove due to

ucture will b

g G-C and A

econdary stru

structure.

mensional stru

ences betwee

nct element

structure. Th

of RNA.

ented at diff
n. “Fixed Par
oknots”. Pro

ng (CPM 200

ary structure

r 2: Backgroun

gure 2.1.b sh

the hydrogen

be formed. T

-U, and Wob

ucture in mo

ucture of m

en bases. Its

ts of secon

he tertiary st

ferent levels
rameter Trac

oceedings of
08):69-81.

iii) Te

e

nd and prelimin

hows the prim

n bonds betw

The basepair

bble base pa

ore details. Fi

molecule whic

elements inv

ndary struc

tructure show

s. Image Sou
ctable Alignm

f the 19th An

ertiary struc

naries

mary

ween

rs are

airing

igure

ch is

volve

cture.

ws in

urce:
ment
nnual

ture

Chapter 2: Background and preliminaries

8

2.2 Sequence Alignment

Sequence Alignment is one of the important terms for sequence comparison that

compares the similarities among sequences. Sequence similarity often indicates

functional and structural similarity.

Definition 2.2: (Alignment) Let two sequences ଵܵ and ܵଶ be over an alphabet ∑ with –

 such that ,∑ ב ଵܵ, ܵଶ א ∑*. An Alignment ࣛ is a pair ሺ ଵܵ
,ڃ ܵଶڃሻ with ଵܵڃ, ܵଶ׫ ∑) א ڃ {–

})* such that:

1. The length of the aligned sequences are equal, i.e. |ܵଵڃ| = |ܵଶڃ|

2. There is no position i such that: ଵܵ೔
ڃ = – = ܵଶ೔

ڃ

3. The sequences ଵܵ
 give the same sequences ଵܵ and ܵଶ respectively, if all ڃand ܵଶ ڃ

gaps are removed.

Where the gaps are located in a sequence alignment for a base in one sequence there is

no analogous base in the other sequence.

Note: for the RNA sequence alignment, an alphabet over ∑ = {A, C, G, U}.

There are several types of sequence alignment and the Global alignment is one of these

types. Global alignment represents the best alignment over the entire length of the two

sequences and is suitable when both have similar length with enough degree of

similarity throughout. A general global alignment technique is called the Needleman-

Wunsch algorithm [NW70] which is based on dynamic programming that we will

discuss it later in this chapter. Here, we refer to the pairwise sequence alignment which

finds the best matching alignment between two sequences.

Example: Let ଵܵ = AGACUAGACAU and ܵଶ = CGAGACGU over ∑ = {A, C, G, U},

the possible global pairwise sequence alignment which satisfies the above conditions,

is:

 ଵܵ
 AGACUAGACAU = ڃ

 ܵଶڃ = CGA – – – GACGU

Chapter 2: Background and preliminaries

9

In addition to this sequence alignment, there is also another form that is comparison-

dependent on the shape of the structures, this is called Structural alignment.

2.2.1 Edit Distance

Edit Distance is also one of definitions for comparing sequences that is a metric for

measuring the amount of differences between two sequences. The edit distance between

two sequences is given by the minimum number of edit operations that require

transforming one sequence into the other. It is defined according to Clote et al.

[CB2000] as follows:

Definition 2.2.1.a: (Edit Distance) Given a cost function इ: (∑ ׫{–}) ൈ (∑ ׫{–}) ՜

Թ and two sequences ܵଵ and ܵଶ over a finite alphabet ∑ where ଵܵ, ܵଶ א ∑*, the cost of

E = e1, e2, …, er of edit operations is defined as इ ሺܧሻ = ∑ इ ሺ݁௜ሻ௥
௜ୀଵ . Then the edit

distance of ଵܵ, ܵଶ is defined as:

݀इሺ ଵܵ, ܵଶሻ ൌ min ሼइ ሺܧሻ| ଵܵ ฺா ܵଶሽ

There is another type of cost that gives mismatch cost ݔ and gap cost ݕ that are defined

according to Sankoff [S85] as follows:

Definition 2.2.1.b: (Another representation for the cost of Edit distance) Let ଵܵ =

 ଶ೙ be two sequences. An alignment of ଵܵ and ܵଶ is defined byݏ…ଶభݏ = ଵ೘ and ܵଶݏ…ଵభݏ

two integer sequences 1 ൑ ݅ଵ ൏ ݅ଶ ൏ ڮ ൏ ݅௥ ൑ ݉ and 1 ൑ ݆ଵ ൏ ݆ଶ ൏ ڮ ൏ ௥݆ ൑ ݊. Let

ः be the number of pairs ሺ݅௞, ݆௞ሻ, such that ݏଵ௜ೖ ് :ଶ௝ೖ. The cost of the alignment isݏ

 ሺ݉ ൅ ݊ െ ݕሻݎ2 ൅ ःݔ

The case of ः replaces each ݏଵ௜ೖ by ݏଶ௝ೖ, if they are not equal, and ݎ indicate the

number of all pairs in the alignment sequences.

The definitions 2.2.1.a and 2.2.1.b are equivalent, such that:

Chapter 2: Background and preliminaries

10

इቀ1݅ݏ, 2݆ቁݏ ൌ

ݔ ݂݅ ଵ೔ݏ ് ଶೕݏ

ݕ ݂݅ ଵ೔ݏ ൌ െ ݎ݋ ଶೕݏ ൌ െ

0 ݁ݏ݅ݓݎ݄݁ݐ݋

2.2.2 Needleman-Wunsch Edit Distance Algorithm

In global sequence alignment, an attempt to align the entirety of two different

sequences is made up to and includes the ends of sequence as mentioned before. The

solving method for an edit distance problem is Needleman-Wunsch algorithm (1970)

which was the first application of dynamic programming algorithm to biological

sequence comparison [NW70]. The idea is to use dynamic programming to efficiently

implement a recursion.

Definition 2.2.2: (Needleman-Wunsch Edit Distance algorithm) Given a metric cost

function इ, and two input sequences ଵܵ and ܵଶ over an alphabet ∑. The Needleman-

Wunsch algorithm defines the matrix ܦሾ݅, ݆ሿ with 0 ൑ ݅ ൑ |ܵଵ| and 0 ൑ ݆ ൑ |ܵଶ| by the

recursion formula to obtain an optimal alignment as described:

,݅ ׊ ݆ ൐ 0 ׷ ,ሾ݅ܦ ݆ሿ ൌ ݉݅݊

ሾ݅ܦ െ 1, ݆ െ 1ሿ ൅इሺ ଵܵሾ݅ሿ, ܵଶሾ݆ሿሻ,

ሾ݅ܦ െ 1, ݆ሿ ൅इሺ ଵܵሾ݅ሿ, െሻ,

,ሾ݅ܦ ݆ െ 1ሿ ൅इሺെ, ܵଶሾ݆ሿሻ.

With Initialization

,ሾ0ܦ 0ሿ ൌ 0,

,ሾ݅ܦ 0ሿ ൌ ∑ इ௜
௞ୀଵ ሺ ଵܵሾ݇ሿ, െሻ,

,ሾ0ܦ ݆ሿ ൌ ∑ इ௝
௞ୀଵ ሺെ, ܵଶሾ݇ሿሻ.

Chapter 2: Background and preliminaries

11

The filled matrix is from top left ܦሾ1,1ሿ to bottom right ܦሾ| ଵܵ| , |ܵଶ|ሿ. Suppose we have

filled in the three entries ܦሾ݅ െ 1, ݆ሿ, ሾ݅ܦ െ 1, ݆ െ 1ሿ and ܦሾ݅, ݆ െ 1ሿ to the up and

diagonally above and left of ܦሾ݅, ݆ሿ respectively, that we have an optimal alignment for

each of those three pairs, and then minimizing overall these pairs. We can either align

ଵܵሾ݅ሿ with ܵଶሾ݆ሿ, or align ଵܵሾ݅ሿ with a new gap, or align ܵଶሾ݆ሿ with a new gap.

After filling the matrix, the corresponding alignment is obtained from a trace back step

through the filled matrix.

2.2.3 Smith-Waterman algorithm

This algorithm is a dynamic programming algorithm for the local sequence alignment

[SW81]. Local sequence alignment is suitable for comparing with the sequences have

short similar subsequences over two different lengths of sequences. The Smith-

Waterman algorithm guarantees that finding the optimal local alignment accordance to

the scoring system (substitution matrix and gap penalty) being applied, where the

substitution matrix is a similarity between each pair of bases.

Definition 2.2.3: (Smith-Waterman algorithm) Given two input sequences ଵܵ ൌ …ଵభݏ

ଵ೙ and ܵଶݏ ൌ ଶ೘ over an alphabet ∑ and the scoring function इ between theݏ …ଶభݏ

sequence alignments. The Smith-Waterman algorithm defines the matrix ܪሾ݅, ݆ሿ with

0 ൑ ݅ ൑ ݊ and 0 ൑ ݆ ൑ ݉, by the following recursion equations to produce the

maximum similarity score:

,ሺ݅ܪ ݆ሻ ൌ
ݔܽ݉

0

ሺ݅ܪ െ 1, ݆ െ 1ሻ
൅इ ቀݏଵ೔, ଶೕቁݏ

ݎ݋݂ 1 ൑ ݅ ൑ ݊ , 1 ൑ ݆ ൑ ݉
ሺ݅ܪ െ 1, ݆ሻ ൅इ൫ݏଵ೔, െ൯

,ሺ݅ܪ ݆ െ 1ሻ ൅इ ቀെ, ଶೕቁݏ

With initialization, ܪሾ݅, 0ሿ = ܪሾ0, ݆ሿ = 0 for 0 ൑ ݅ ൑ ݊, 0 ൑ ݆ ൑ ݉

Chapter 2: Background and preliminaries

12

This algorithm differs from Needleman-Wunsch algorithm by including a zero value

for the negative similarity (i.e. out the range of subsequences).

2.2.4 Multiple Sequence Alignment

Multiple sequence alignment is an extension of pairwise alignment to incorporate more

than two sequences at a time. In general, the input set of query sequences are assumed

to have an evolutionary relationship by which they share a lineage and are descended

from a common ancestor.

The most widely used approach to multiple sequence alignments uses a heuristic search

known as progressive technique (also known as the hierarchical or tree method), that

builds up a final Multiple Sequence Alignment by combining pairwise alignments

beginning with the most similar pair and progressing to the most distantly related.

All progressive alignment methods require two stages: a first stage in which the

relationships between the sequences are represented as a tree, called a guide tree, and a

second stage in which the Multiple Sequence Alignment is built by adding the

sequences sequentially to the growing Multiple Sequence Alignment according to the

guide tree. The most important heuristic is to align the most similar pairs of sequences

first. Typically guide trees are used to efficiently model this principle in progressive

alignment algorithm. The most popular example for this alignment is: ClustalW

[THG94].

2.3 RNA Secondary Structure

As mentioned before that RNA is usually a single-stranded linear molecule, but this is

not the case in a biological system. RNA strand folds back on to itself via the base pair

interactions to form secondary and tertiary structures which are essential for correct

biological function. These functions include: (mRNA) genetic information copied from

DNA to be used as a template for the synthesis of protein, (tRNA) serves as an adaptor

which decodes the genetic code and (rRNA) catalyzes the protein synthesis. Therefore,

the importance of the RNA secondary structures is found in many biological processes.

Chapter 2: Background and preliminaries

13

Furthermore, the efficiency in the structure prediction can provide the essential

directions for experimental investigations.

The folding for an RNA molecule depends on the sequence nucleotides, by the

complementary base pairing on it. A formal definition for an RNA secondary structure

is given according to [MT78] as follows:

Definition 2.3: (RNA Secondary Structure) Let ܵ be an RNA *{A, C, G, U} א

sequence. An RNA secondary structure over the sequence ܵ is defined as a set of the

base pairs ܲ as follows:

ܲ = {(i, j) | i ൏ j ٿ ௜ܵ and ௝ܵ form a complementary pair (Watson-Crick) or a non-

standard pair (Wobble basepair)}

Where ׊ (i, j)א ܲ and ׊ (i′, j′)א ܲ, ܲ must satisfy the following condition:

- i = i′ j = j′, each base can have at most one bond with one other base.

A structure ܲ is called nested structure, if it satisfies the following condition:

- i ൏ i′ implies (j′ ൏ j) ڀ (j ൏ i′) must be satisfied.

i i′ j′ j i j i′ j′

Otherwise ܲ is called crossing.

RNA secondary structure consists of contiguous basepairs which are called helices, and

different kinds of loops that are the unpaired bases surrounded by helices. Hence, the

secondary structure can be divided into various structural elements.

A base pair (i′, j′) א ܲ is called Accessible from (i , j) א ܲ, if i ൏ i′ ൏ j′ ൏ j and if there

is no other base pair (i′′, j′′) א ܲ such that, i ൏ i′′ ൏ i′ ൏ j′ ൏ j′′ ൏ j.

- A hairpin loop is formed when RNA strand folds back on itself. It is defined as

follows: a base pair (i , j) א ܲ closes a hairpin loop if ׊ i ൏ i′ ൑ j′ ൏ j: (i′, j′)

ב ܲ.

Chapter 2: Background and preliminaries

14

- A stack loop is formed in the case two adjacent base pairs. It is defined as

follows: a base pair (i, j) א ܲ closes a stacking if (i +1, j -1)א ܲ. Several

numbers of stacking basepairs are called stem.

- An internal loop is at least one unpaired base on each strand of the loop

separating two paired regions. It is defined as follows: two base pairs (i , j) א ܲ

and (i′, j′) א ܲ form an internal loop (i , j , i′ , j′) if they satisfy the following

conditions:

• i ൏ i′ ൏ j′ ൏ j

• (i′ - i) + (j - j′) ൐ 2 (no stack)

• There is no base pair (i′′, j′′) between (i, j) and (i′, j′).

- A bulge has unpaired base on only one strand of the loop. It is called left or

right bulge if j = j′ + 1 or i′ = i + 1 respectively. The other strand has

uninterrupted base pairing.

All these elements of the secondary structure represent the non-branching structures.

- A multi-branched loop is the double-stranded regions which are coming

together with separations of any number of unpaired bases, sometimes called

bifurcated structures.

- An external loop is a number of single-stranded bases (unpaired bases) and

basepairs which are not accessible from any basepair. There is no contribution

to the total free energy in these regions.

Note that, the closing pair (i, j) of the k-loop is not itself defined to form part of that

loop in the decomposition of the structure. Figure 2.3.a. shows the RNA secondary

structure elements.

Figure 2.
RNA seco

There are
RNA seco
2.3.b.

Figure 2
Waldispü
Departme

 Interna

.3.a: RNA s
ondary struct

different app
ondary struct

.3.b: RNA
ühl. “18.41
ent of Math

al loop

 Stem

secondary st
ture predictio

proaches for
ture graph an

secondary
17: Introdu
hematics, M

15

tructures ele
on, Lyngsø, Z

RNA secon
nd in bracket

structure re
uction to

MIT

Chapter

 Ex

 Hairp

ements. Imag
Zuker, and P

dary structur
t notation. Th

epresentation
Computatio

r 2: Backgroun

xternal

pin loop

ge Source: I
Pedersen (199

re representa
hey are show

ns. Image S
onal Struct

nd and prelimin

 Multi-l

 Bu

Internal loop
99).

ations, such a
wed in Figure

ource: Jér
tural Biolo

naries

loop

ulge

ps in

as
e

rôme
ogy”,

Chapter 2: Background and preliminaries

16

2.4 RNA Secondary Structure Prediction

There are two main approaches used to predict the secondary structure:

1. Comparative Sequence Analysis: It is the gold standard which determines an

RNA secondary structure when a crystal structure is absent. It uses multiple

sequence alignments of homologues sequences to predict the structure. Hence,

it needs aligning many sequences with identical function. [PTW99]

2. Dynamic Programming (DP): This algorithm is used to solve the optimization

problems by dividing the problem into independent sub problems. Each sub

problem is solved only once, and its solution is stored in a table such that re-

computing the solution is avoided. It contains several approaches that are used

to predict an RNA secondary structure:

Nussinov algorithm [N80] represents one of the first attempts of RNA secondary

structure prediction. It determines the maximum number of basepairs in non crossing

structure. It can be defined as follows:

Definition 2.4.a: (Nussinov matrix) Let ܵ be an RNA sequence. The Nussinov matrix

௜ܰ,௝ is defined as follow:

௜ܰ,௝ = max {|ܲ| ܲ is a nested structure of the subsequence ݏ௜ {௝ݏ …

where 1 ൑ ݅ ൑ |ܵ| and ݅ െ 1 ൑ ݆ ൑ |ܵ| ٿ ݆ ൐ 1, this implies to the following recursion

equations:

Initialization: ௜ܰିଵ,௜ = 0, ௜ܰ,௜ 1 ׊ 0 = ൑ ݅ ൑ |ܵ|,

Recursion: ׊ i ൑ j

௜ܰ,௝ ൌ ݔܽ݉

௜ܰ,௝ିଵ,

௜ஸ௞ழ௝ݔܽ݉ ௜ܰ,௞ିଵ ൅ 1 ൅ ௞ܰାଵ,௝ିଵ ,

௞ ܽ݊݀ s୨ݏ ݁ݎ݄ܹ݁ complementary

Now after filling this matrix, we will get the best structure by using a trace back

procedure. The Nussinov algorithm detects mostly just one variant from various

Chapter 2: Background and preliminaries

17

possibilities for base pairing, it also does not consider the size of internal loops, the

stacking of base pairs and the strength of base pair.

The second approach which is achieved by using DP is Zuker algorithm [ZS81] that we

treated in this thesis. It computes the Minimum Free Energy secondary structure and it

distinguishes among all possible basepair loops.

Before discussing this algorithm, we need to identify the definition of Free Energy.

Definition 2.4.b: (Free Energy) The Gibbsian Free Energy G in a system (e.g. of gas

molecules in equilibrium or in a dilution of molecules) holds:

G = U – T S

where U is the enthalpy, T is the absolute temperature (in Kelvin) and S is the entropy.

Two terms determine the free energy of molecule:

- Enthalpy: from secondary structure basepairs.

- Entropy: “disorder in unpaired regions”.

Usually the difference ∆G = ∆H – T ∆S, can be experimentally measured ֜ flexible

rules.

where ∆G is approximated as the sum of contributions from loops of base pairs and

other secondary structures.

Definition 2.4.c: (Energy contribution for loops) the energy contribution of the

secondary structure elements are defined as follows:

• Hairpin loop (i, j),

• Stacking (i, j, i +1, j - 1),

• Internal loop (i, j, i′, j′).

Assume that ܧሺℓሻ describes the energy contribution for each of the above three

structure element loops, and the simplified energy contribution for the multi-loops

is:

• Multi-loop: ܧሺℓሻ = a + bk + ck′,

Chapter 2: Background and preliminaries

18

where a, b, c are weights, a is the energy contribution of closing basepair, b and c

are constants for k = number of helices and k′ = number of single-stranded

positions, respectively.

The complete free energy is measured, by taking the summation of energy loops:

∑ ሺܲሻ ൌܧ ሺܧ ௜ܲ௝ሻሺ௜,௝ሻא௉ , where ܧሺ ௜ܲ௝ሻ is the energy contribution of the secondary

structure element ܲ which is closed by basepairሺ݅, ݆ሻ. The energy of such structure ௫ܲ of

sequence x, is called “Turner Free Energy”, and the total free energy is called “Turner

Free Energy Model”.

Now for the Zuker algorithm that the widely used computational approach for

predicting RNA secondary structures from single sequences, which is based on

thermodynamic models that associates the free energy values from each possible

secondary structure of a strand. The secondary structure is with the lowest possible free

energy value, the minimum free energy (MFE) structure is predicted to be the most

stable secondary structure of the strand.

Now, the Zuker matrices are defined according to Sankoff [S85] as follows:

Definition 2.4.d: (Matrix F(i, j), Matrix C(i, j)) Let F(i, j) be the minimum energy

possible for a secondary structure ܲ on the partial sequence i, …, j. Let C(i, j) be the

minimum energy given that (i, j) א ܲ, where C(i, j) = ∞ if no such structure exists.

,ሺ݅ܥ ݆ሻ
ൌ ݉݅݊

 ,ሺℓሻ , ℓ is the hairpin closed by (i, j)ܧ

݉݅݊ሼܧሺℓሻ ൅ ,݌ሺܥ ሻሽݍ , ℓ a 2-loop closed by (i, j) with
 (p, q) accessible, u = p – i + j - q - 2 ≤ U,

݉݅݊
௜ழ௛ழ௝ିଵ

ሼܩሺ݅ ൅ 1, ݄ሻ ൅ ሺ݄ܩ ൅ 1, ݆ െ 1ሻ ൅ ܽሽ ,

where ܧሺℓሻ is represent Turner Free Energy. G is a matrix for multiple loops defined as

follows:

Chapter 2: Background and preliminaries

19

,ሺ݅ܩ ݆ሻ ൌ ݉݅݊

,ሺ݅ܥ ݆ሻ ൅ ܿ ,

,ሺ݅ܩ ݄ሻ ൅ ሺ݆ െ ݄ሻܾ ,
݉݅݊
௜ஸ௛ழ௝

,ሺ݅ܩ ݊݅݉ ݄ሻ ൅ ሺ݄ܩ ൅ 1, ݆ሻ ,
ሺ݄ െ ݅ ൅ 1ሻܾ ൅ ሺ݄ܩ ൅ 1, ݆ሻ ,

,ሺ݅ܨ ݆ሻ ൌ ݉݅݊
,ሺ݅ܥ ݆ሻ ,

min
௜ஸ௛ழ௝

ሼܨሺ݅, ݄ሻ ൅ ሺ݄ܨ ൅ 1, ݆ሻሽ ,

As usual, by applying trace back step to the filled matrices, we can get the minimum

free energy secondary structure.

20

Chapter Three

Methods for Simultaneous
Alignment and Folding

This chapter will introduce the methods that are used to solve the problem of

simultaneous Folding and Alignment for RNA sequences. We will start with the

original work “Sankoff Algorithm” and then present the variants to this algorithm,

which are restricted implementations to reduce the computational complexity.

3.1 Sankoff Algorithm

The last chapter discusses “Sequence Alignment” by explaining how to calculate the

optimal alignment distance between two different sequences; it also talks about

“Folding of RNA sequence” and through such approach which achieved to predict the

RNA secondary structure by Dynamic Programming, the Minimum Free Energy

secondary structure can be computed. As we see, all these problems have optimal

dynamic programming solutions.

Sankoff algorithm [S85] solves these problems which have dynamic programming

solutions simultaneously for two sequences with length N and at time proportional to

ࣩሺN6ሻ and storage ࣩሺN4ሻ. The following steps are included to describe Sankoff

algorithm according to Sankoff [S85]:

First, equivalent structures must be defined for two RNA sequences; the branching

configuration represents an invariant part of the identity structure. It is determined by

two structure elements, which are the external pairs and multiple loops.

Chapter 3: Methods

21

Definition 3.1.a: (Equivalent Structures) Let i1 < i2 < … < in and j1 < j2 < … < jm be

positions in the sequences ଵܵand ܵଶ respectively, of all elements that are either an

external pair or an accessible pair in a multiple loop of the nested structures ଵܲ of

sequence ଵܵ and ଶܲ of sequence ܵଶ . The Equivalent Structures for ଵܲ and ଶܲ according

to the branching configurations require that n = m and (if, ig) א ଵܲ if and only if (jf, jg) א

ଶܲ .

According to the definition there are no restrictions on the number and type of 2-loops

that are nested in each external pair and in each multiple loop accessible pair, and also

on the number of unpaired bases in any k-loop and unpaired external bases. Therefore,

the equivalence between the structures represents an essential part for finding two

sequences which have a common folding, but it is still not sufficient, as shown in

Figure 3.1.a.

Figure 3.1.a: This figure shows two equivalents, but they have highly dissimilar
secondary structures. [S85]

Second, the same secondary structures of two sequences are needed to provide the high

similarities and not just the equivalent branching configurations. To assess the

similarities between two equivalent structures, the idea of Alignment will be

introduced. The equivalence between the structures of two sequences is guaranteed,

through the constrained alignments between these structures.

Chapter 3: Methods

22

Definition 3.1.b: (Constrained Alignment) Let i1 < i2 < … < in and j1 < j2 < … < jm be

positions in the sequences ܵ1 and ܵ2 respectively. The Constrained Alignment on the

structures ܲ1 and ܲ2 of these sequences respectively is: i1 aligned with j1 and i2 with j2

… in with jm.

Thus, any K-loop in one structure is aligned with a single K-loop of the other structure,

or may be deleted or inserted in some cases. Now, one can see the following cases that

describe the constrained alignment between two structures according to Sankoff [S85]

as follows:

- External pairs and accessible pairs in multiple loops: all external pairs and

accessible pairs in multiple loops are aligned and not inserted or deleted; such

that each of them will have its correspondence in the other structure.

- 2-Loops: it has no constraint against the insertion or the deletion to their

accessible pairs; hence it is free to be different from one structure and the other.

- Hairpins: a hairpin in the structure is aligned with its correspondence in the

other structure, such that the equivalent structures will have the same number

of hairpins and at the same locations on the structures.

Third, we can now clearly determine our target of finding the “equivalent structures”

and “constrained alignment” in such a way that makes the whole configuration of

structure and alignment, optimal. However, the expectation to find the equivalent

structures which are thermodynamically optimal in each sequence separately is difficult

to get. Even if it is found like this case, an appropriate constrained alignment between

them might not inevitably be the minimum cost among all possible pairs of the

equivalent structures.

Definition 3.1.c1: (Sankoff-score) Let ࣛ be an alignment of the sequences ܵ1 and ܵ2,

and let ܲ1 be a nested structure of sequence ܵ1 and let ܲ2 be a nested structure of

sequence ܵ2. The Sankoff-score of ࣛ, ଵܲand ଶܲ is given as:

Sankoff-score (ࣛ, ଵܲ, ଶܲ) = Edit-Distance (ࣛ) + ܧଵ (ଵܲ) + ܧଶ (ଶܲ)

Definition 3.1.c2: (Sankoff problem) Given two sequences ܵ1 and ܵ2 as input. The

Sankoff problem is the problem to find the lowest free energy secondary structure

common to a nested structure ܲ1 of sequence ܵ1 and a nested structure ܲ2 of sequence

Chapter 3: Methods

23

S2, and an alignment ࣛ of the sequences ܵ1 and ܵ2, such that the two structures ܲ1 and

ܲ2 are equivalent and the alignment between these structures is constrained, and

Sankoff-score (ࣛ, ଵܲ, ଶܲ) is minimized.

Therefore, to optimize this problem, we use a new objective function which represents

a trade-off between the free energy and alignment cost for the two sequences. The

following definitions are used to find the optimizing structure and alignments for two

sequences, which are defined according to Sankoff [S85] as follows:

Definition 3.1.c3: (Matrix D(i1, j1; i2, j2)) The extension of the definition D(i, j)

(which is defined in the previous chapter) is, the minimal Edit Distance cost of

an alignment between partial sequences si1, …,sj1 and si2, …, sj2,

If i1 > j1, then the cost for inserting the entire sequence is si2, …, sj2

If i2 > j2, then the cost for deleting the entire sequence is si1, …, sj1

Definition 3.1.c4: (Matrix F(i1, j1; i2, j2), Matrix C(i1, j1; i2, j2)) Let F(i1, j1; i2, j2)

be the minimum cost possible for a pair of equivalent secondary structures ܲ1

and ܲ2 on positions i1, …, j1 and i2, …, j2 of sequences ܵ1 and ܵ2 respectively,

where the cost is the sum of the free energy and the constrained alignment cost.

Let C (i1, j1; i2, j2) be the minimum cost given that (i1, j1) 1ܲ א and (i2, j2) 2ܲ א

without considering the costs of aligning ݏ௜భ, ݏ௝భ, ݏ௜మand ݏ௝మ, If no such pair of

structures exists, set C = ∞. Then recursion C is:

Chapter 3: Methods

24

,ሺ݅ଵܥ ݆ଵ; ݅ଶ, ݆ଶሻ

ൌ ݉݅݊

ሺℓଵሻܧ ൅ ሺℓଶሻܧ ൅ ሺ݅ଵܦ ൅ 1, ݆ଵ െ 1; ݅ଶ ൅ 1, ݆ଶ െ 1ሻ , ℓ 1, ℓ 2 hairpins closed by
 (i1, j1), (i2, j2) respectively,

݉݅݊ ሼܧሺℓଵሻ ൅ ሺℓଶሻܧ ൅ ,ଵ݌ሺܥ ;ଵݍ ,ଶ݌ ଶሻݍ ൅ ሺ݅ଵܦ ൅ 1, ;ଵ݌ ݅ଶ ൅ 1, ଶሻ݌
൅ ,ଵݍሺܦ ݆ଵ െ 1; ,ଶݍ ݆ଶ െ 1ሻሽ ,

ℓ 1, ℓ 2 are 2-loops closed by (i1, j1),
(i2, j2) with (p1, q1), (p2, q2) accessible,
ଵ݌ െ ݅ଵ ൅ ݆ଵ െ ଵݍ െ 2 ൑ ܷ, ଶ݌ െ ݅ଶ ൅ ݆ଶ െ ଶݍ െ 2 ൑ ܷ,

or one of
ℓ 1 = Ø and (p1, q1) = (i1, j1)
ℓ 2 = Ø and (p2, q2) = (i2, j2),

min
௜భழ௛భழ௝భିଵ
௜మழ௛మழ௝మିଵ

ሼܩሺ݅ଵ ൅ 1, ݄ଵ; ݅ଶ ൅ 1, ݄ଶሻ ൅ ሺ݄ଵܩ ൅ 1, ݆ଵ െ 1; ݄ଶ ൅ 1, ݆ଶ െ 1ሻ ൅ 2ܽሽ

The first and second options in this matrix refer to the fact that all terms in hairpin or in

2-loop are aligned with their corresponding or, in the case of 2-loop, that the entire loop

is deleted or inserted. The third option is, G, be matrix used for multiple loops.

Recursion for G and F:

,ሺ݅ଵܩ ݆ଵ; ݅ଶ, ݆ଶሻ ൌ ݉݅݊

,ሺ݅ଵܥ ݆ଵ; ݅ଶ, ݆ଶሻ ൅ 2ܿ ൅ ,ሺ݅ଵܦ ݅ଵ; ݅ଶ, ݅ଶሻ ൅ ,ሺ݆ଵܦ ݆ଵ; ݆ଶ, ݆ଶሻ ,

,ሺ݅ଵܩ ݄ଵ; ݅ଶ, ݄ଶሻ ൅ ሺ݆ଵ െ ݄ଵ ൅ ݆ଶ െ ݄ଶሻܾ
൅ ሺ݄ଵܦ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻ ,

݉݅݊
௜భழ௛భழ௝భ
௜మழ௛మழ௝మ

݉݅݊ ,ሺ݅ଵܩ ݄ଵ; ݅ଶ, ݄ଶሻ ൅ ሺ݄ଵܩ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻ ,
ሺ݄ଵ െ ݅ଵ ൅ 1 ൅ ݄ଶ െ ݅ଶ ൅ 1ሻܾ

൅ ሺ݄ଵܩ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻ
൅ ,ሺ݅ଵܦ ݄ଵ; ݅ଶ, ݄ଶሻ ,

,ሺ݅ଵܨ ݆ଵ; ݅ଶ, ݆ଶሻ ൌ ݉݅݊

,ሺ݅ଵܥ ݆ଵ; ݅ଶ, ݆ଶሻ ൅ ,ሺ݅ଵܦ ݅ଵ; ݅ଶ, ݅ଶሻ ൅ ,ሺ݆ଵܦ ݆ଵ; ݆ଶ, ݆ଶሻ ,

݉݅݊
௜భஸ௛భழ௝భ
௜మஸ௛మழ௝మ

ሼܨሺ݅ଵ, ݄ଵ; ݅ଶ, ݄ଶሻ ൅ ሺ݄ଵܨ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻሽ ,

,ሺ݅ଵܦ ݆ଵ; ݅ଶ, ݆ଶሻ ,

The initial conditions are C (i1, i1; i2, i2) = ∞ and G (i1, i1; i2, j2) = G (i1, j1; i2, i2) = ∞.

Chapter 3: Methods

25

The first case of matrix G refers to the fact that corresponding accessible pairs are

aligned in multiple loops, and the same for external pairs in the first option of matrix F.

The second and fourth options in G refer to corresponding multiple loops aligned and

the same for the last option of F for the corresponding external regions. The last and

first options in F indicate the two cases, zero external pairs and one such pair, which

are found in both structures respectively.

As we showed above, that these matrices include all configurations in a structure such

that the corresponding accessible pairs for the multiple loops and the accessible terms

for the external regions are aligned; also the corresponding closing pair of hairpins is

aligned, but for the loops of index 2 they are either aligned, completely inserted or

deleted.

Before illustrating the correctness of these recurrences which identify the optimal

structures, we just want to indicate that the recursions of Zuker algorithm (that are

defined in the previous chapter) are an important part to construct the above recursions.

Now, the following Figures illustrate the correctness of the Sankoff algorithm

recursions:

Chapter 3: Methods

26

Finally, it can be seen that Sankoff algorithm is considered an ideal approach, but it has

high computational complexity. For this reason, several methods have emerged which

implement Sankoff algorithm but with pragmatic restrictions to make it practical to use

and these methods are presented in the following parts of this chapter.

Chapter 3: Methods

27

3.2 Dynalign

The previous part shows the simultaneous RNA sequences Alignment and Folding by

presenting the Sankoff Algorithm which represents the original form to solve these

problems simultaneously. Since, it is computationally over expensive (as we have

seen), so there are several methods which implement Sankoff Algorithm under various

restrictions to make it more practical to use. Dynalign indicates one of these methods

that suggested by Mathews et al. [MT02].

The main idea of Dynalign is to find the secondary structure common to two sequences.

This method depends on the dynamic programming algorithm suggested by Sankoff,

which finds lowest free energy secondary structure common for two RNA sequences

and the sequence alignment that supports this structure. The restriction used in this

method, is parameter M which restricts the maximum distance between the positions of

aligned nucleotides of two sequences. Therefore, the computational complexity will be

more tractable with this restriction, ࣩ(M3N3) for the time and ࣩ(M2N2) for the memory,

where M is the maximum separation parameter which restricts the set of sequence

alignments which are considered and N is the length of the shorter sequence [MT02].

The general description of Dynalign is given according to Mathews et al. [MT02] as:

“Dynalign is a computer algorithm that improves the accuracy of structure prediction

by combining free energy minimization and comparative sequence analysis to find a

low free energy structure common to two sequences without requiring any sequence

identity”.

When they write about “comparative sequence analysis”, they refer to finding a

structure common to two or more sequences. This is the method, which is not yet

automated, by which most RNA secondary structures are solved. Thus, the comparative

sequence analysis here shows the comparison between two structures during the

alignment.

Definition 3.2: (Dynalign problem) Let two sequences S1 and S2 be given as input. The

Dynalign problem finds the lowest free energy secondary structure common to S1 and

S2, and the sequence alignment between S1 and S2 that supports this structure, such that

the basepairs of S1 and S2 are preserved in the same aligned positions in the alignment,

and it minimizes ∆G°total which is the total free energy of the system, where:

Chapter 3: Methods

28

∆G°total = ∆G°s1 + ∆G°s2 + k ∆G°gap

Where ∆G°s1 and ∆G°s2 are forms of “Turner Free Energy Model” (i.e. the

conformational free energies) for the sequences S1 and S2 respectively, which are

computed by the nearest-neighbor approximation [MSZ+T99] (another typology of free

energy that refers to a “special case” of the Sankoff). ∆G°gap is the gap penalty that

applies to each gap in the alignment and k is the number of gaps.

This method does not explicitly score the sequence identity, because as shown from the

equation above ∆G°total is not based on the matching nucleotides that occurred in the

sequence alignment. Generally, this method can be used to predict the structures for

homologous sequences that do not have the sequence identity but only the structure

conservation.

One should see, the analogy between Dynalign method and Sankoff algorithm in

principle: It is shown in Sankoff algorithm minimizes the total cost of combining the

free energy minimization of the RNA secondary structure for two sequences (Folding),

and the minimum alignment cost by the optimal distance between the structures

(Alignment). Therefore, Sankoff algorithm depends on the matching nucleotides in the

Alignment. The Dynalign method minimizes the total free energy as shown above, by

combining the free energy minimization for two sequences (Folding), and the energy

contribution of gap which is multiplied by the number of gaps (Alignment). So it does

not depend on the matching nucleotides.

Dynalign is one of the practical implementations of the Sankoff algorithm, which is a

dynamic programming algorithm solution for both of sequence alignment and RNA

secondary structure prediction for two sequences. Therefore, it guarantees an optimal

solution which is one important point in the dynamic programming algorithm for

supporting optimal solution.

The restriction of this method is a parameter M which restricts the depth of a search for

the alignments between two sequences. This restriction modifies the definition 3.2 and

the restriction can be shown as follows:

For all i א S1, k א S2 and (i, k) is a pair in alignment: |i – k| ൑ M.

The computational complexity will be tractable with this restriction, such that ࣩ(M3N3)

for time and ࣩ(M2N2) for storage, where a parameter M decreases the set of alignments

Chapter 3: Methods

29

which are considered and N is the length of shorter sequence, compared with Sankoff

algorithm, ࣩሺN6ሻ for time and ࣩሺN4ሻ for storage, where N is also the length of the

smaller of the two sequences.

In the Dynalign implementation, another scheme for a parameter M is used to recast the

parameter M implementation in such a way that scales with the difference in sequence

length for the two sequences, where the nucleotide i from the first sequence and the

nucleotide k from the second sequence:

|i × ሺ ଶܰ ଵܰ⁄ ሻ - k| ൑ M

where N1 is the length of the first sequence and N2 is the length of the second sequence.

This restriction allows aligning the ends of the sequences (i = N1and k = N2) at any M

and any difference of the sequence length. This restriction can be chosen for

significantly smaller M sizes than the shorter sequence length N, hence, it reduces the

computation complexity. The Results chapter will show that this scheme for parameter

M was used in the Dynalign program.

Dynalign does not depend on the scoring of base matches as we have showed;

therefore, it has no problem for compensating base changes. Unlike to the Sankoff

algorithm that includes a scoring function for the matching nucleotides in the

alignment.

In practice, both of Sankoff algorithm and Dynalign method have limitation on the

sequence length because of computational complexity. No prediction of pseudoknots

occurs in each of Sankoff algorithm and Dynalign method.

Dynalign has three matrices like Sankoff, but with different names. In this method, the

maximum distance restriction between aligned nucleotides by parameter M,

computationally leads to simplify the structure calculation. These matrices that

including multi-branch loops are defined according to Mathews et al. [MT02] as

follows:

- Definition 3.2.a: (Matrix V(i, j, k, l)) Matrix V(i, j, k, l) is the minimal sum of

the free energies for the two sequences that cover nucleotides i, …, j in the first

sequence and k, …, l in the second sequence, such that (i, j)and (k, l) are

basepairs and i aligned with k and j aligned with l, plus any gap penalties for

Chapter 3: Methods

30

interior nucleotides in the sequence alignment. It is recursively computed as

minimum of the three cases:

• V1 for hairpin loops which is closed by the basepairs (i, j) and (k, l),

• V2 is the lowest sum of the free energies for one of these loops: a helix

extension, bulge loop, or internal loop in the common structure.

• V3 is also the lowest sum of free energies for a multi-branch loop that

closed by the basepairs (i, j) and (k, l). It has 16 cases that are

computed to all possible combinations of whether or not that i+1 and j-

1 are dangling ends on the basepair (i, j), and whether k+1 or l-1 are

dangling ends on the basepair (k, l).

This matrix corresponds to the C-matrix in Sankoff, but in the case of a

multi-branch loop, in contrast to Sankoff, it includes all possible cases for

determining the dangling ends on both the closing basepairs.

- Definition 3.2.b: (Matrix W(i, j, k, l)) Matrix W(i, j, k, l) is the minimal sum of

the free energies for the nucleotides i, …, j of the first sequence and k, …, l of

the second sequence and i aligned with k and j aligned with l, plus any gap

penalties for interior nucleotides in the sequence alignment. It is the minimum

of three cases:

• W1 for adding unpaired nucleotides to a multi-branch loop, and

similarly to V3, it has also 16 possible cases.

• W2 for helix termini.

• W3 for bifurcation in the structure. It’s necessary for considering multi-

branch loops with more than three branching helices.

This matrix corresponds to the G-matrix in Sankoff, but in the case of

adding unpaired nucleotides, in contrast to Sankoff, it includes all possible

cases for determining the unpaired nucleotides of the dangling ends.

- Definition 3.2.c: (Matrix W5(i, k)) Matrix W5(i, k) is the minimal sum of free

energies for the nucleotides 1, …,i of the first sequence and 1, …, k of the

second sequence, plus any gap penalties for nucleotides in sequence alignment.

It is the minimum of the four cases, which assuming that several consecutive

helices in both structures are not closed by basepairs.

Chapter 3: Methods

31

This matrix corresponds to the F-matrix in Sankoff, but in contrast to Sankoff,

one of the cases also has 16 possible cases for allowing the dangling ends on

the helices closed by such basepair.

In recent years, there have been some developments for this method that reducing the

computational complexity for time and memory requirements, and in addition to

improve the accuracy in the structure prediction.

In Dynalign method, the restriction is the parameter M, as discussed before that defines

as a measure of maximum insertion length. This parameter controls the trade-off

between the computation and accuracy. Whereas a small value of M is desired to

decrease the computation time, the accuracy of the secondary structure prediction will

also be decreased. Therefore, the determination value of M is essential for the structure

prediction accuracy. A large value of M is desired for the longer sequences, since they

need longer insertions, while more computation time will be required. Due to this

limitation in the Dynalign method, for selecting the values of parameter M, a new

methodology is suggested in Dynalign by Harmanci et al. [HSM07].

This new methodology imposes constraints on the alignment in Dynalign, and these

constraints are defined by a probabilistic analysis. A posteriori probability that is used

for the nucleotide alignments, estimates the confidence in local accuracy of the

sequence alignment, and it is efficiently computed by Hidden Markov Model

[DEK+M99]. These estimations restrict the choices of the dynamic programming step

by the constraint windows. In high confidence regions, strong constraints are imposed

on the possibilities in dynamic programming steps by cutting off the computation

which is not required. Otherwise, the low confidence regions, allow many possibilities

in the dynamic programming steps.

The used formulation of Hidden Markov Model (HMM) computes the posteriori

symbol-to-symbol alignment probabilities for the homologous sequences which are

represented by Pr(i ↔ k | S1, S2), i.e. the probability of co-incidence between one

nucleotide position i of sequence S1 with other nucleotide position k of sequence S2

[DEK+M99].

There are three conditions satisfying the co-incidence between two nucleotide positions

(one of each sequence) according to Harmanci et al. [HSM07], these conditions are as

follows:

Chapter 3: Methods

32

- Nucleotide positions i and k are aligned,

- Nucleotide position i occurs in an “insertion” in sequence S1 and nucleotide

position k in sequence S2 aligns with nucleotide position i_ from sequence S1,

where i_ denotes the largest position index less than i in sequence S1 that aligns

with a nucleotide position from sequence S2.

- Nucleotide position k occurs in an “insertion” in the sequence S2 and nucleotide

position i in sequence S1 aligns with nucleotide position k_ from sequence S2,

where k denotes the largest position index less than k in sequence S2 that aligns

with a nucleotide position from sequence S1.

The effective computation of a posteriori probability of the co-incidence between

nucleotide positions is done by using the HMM forward-backward algorithm, which is

described according to Harmanci et al. [HSM07] as follows:

ሺ݅ݎܲ ՞ ݇ሃܵଵ, ܵଶሻ ൌ
∑ ,௠ሺ݅ߙ ݇ሻߚ௠ሺ݅, ݇ሻ௠

ሺݎܲ ଵܵ, ܵଶሻ

Where the sum is over m = {ALN, INS1, INS2}, which represents the set of three

possible states for the nucleotides co-incidence. Each state defines the alignment

according to the nucleotide positions between two sequences. So the aligned nucleotide

positions and an insertion of the sequence S1 and an insertion of the sequence S2, are

representing the states ALN, INS1, INS2 respectively. The forward variable αm(i, k)

keeps track of events before alignment position (i, k) and the backward variable βm(i, k)

keeps track of events after alignment position (i, k). ܲݎሺ ଵܵ, ܵଶሻ is the probability of

emission of the observed sequences.

A low value of the posterior co-incidence probability Pr(i ↔ k | S1, S2) is that a

nucleotide position i in sequence S1 not probable to co-incident with nucleotide position

k in sequence S2. Therefore, the suggestion is to impose constraint on the alignments in

Dynalign by excluding all alignments that are not probable through having very small

value of the posterior co-incidence probability. So this occurs by defining an alignment

constraint by comparing the posterior co-incidence probability with an appropriate low

threshold Pthreshold, and according to Harmanci et al. [HSM07] an alignment constraint

set is defined as follows:

C = {(i, k) | (Pr(i ↔ k | S1, S2) > Pthreshold}

Chapter 3: Methods

33

Where C represents an alignment constraint set and its elements describe the pairs of

nucleotide positions that may co-incident between the sequences. Otherwise, they are

rejected.

The threshold value Pthreshold has analogous to a parameter M. It controls a trade-off

between computation and accuracy. A low value of Pthreshold, a strong confidence is

determined and hence the constraint sets will include all actual alignments, but more

computation is required for the choices that are increased. For a high value of Pthreshold,

the computation requirements are decreased because an alignment constraint set will be

restricted. A higher Pthreshold, may be very restrictive such that it prevents the optimal

alignment to be included in the set of alignments that is considered due to the alignment

constraint set. Hence, the prediction accuracy will be reduced in Dynalign.

The alignment constraints are effectively determined by providing an appropriate

HMM parameter and threshold values. An appropriate threshold probability is chosen

according to the several experiments performed on the sequences in the

implementation, which is depended on the similarity of sequences.

This new methodology for Dynalign produces a significant improvement in accuracy

and speed, compared to the previous heuristic of Dynalign.

Chapter 3: Methods

34

3.3 Foldalign

This part will discuss another method which represents the first practical

implementation of Sankoff algorithm for simultaneous folding and alignment of RNA

sequences, this is called Foldalign method. This method has three versions, according

to the heuristics and improvements that have been added.

3.3.1 Pairwise Foldalign 1.0

This method utilizes a simplified version of Sankoff Algorithm but neglects the

branching structures; this version is called pairwise Foldalign 1.0 [GHS97a],

[GHS97b]. Therefore, it lowers the calculation time from ࣩሺN6ሻ to ࣩሺN4ሻ for two

sequences, where N is the sequence length. This method combines both of sequence

similarity and structure, such that, it is based on the local sequence alignment by using

the definition of (Smith-Waterman algorithm) for the aligning part, and optimizes the

number of basepairs in the structures by using the definition of (Nussinov algorithm),

rather than free energies for the folding part.

Now one must to show the analogies of the Sankoff algorithm between the Foldalign

method which simplifies and extends the basic Sankoff algorithm. As is known the

Sankoff algorithm minimizes the total cost of combination of both the minimum

Alignment cost and the minimum free energy structures for two sequences; the

Foldalign method is focused on the local sequence alignment (that is mentioned before,

in the preliminaries chapter), therefore, it applies the definition of (Smith-Waterman

algorithm) which finds the maximum score local alignment for two sequences. So, it

maximizes a score that combines sequence similarity and structure. For this case, it

employs the Nussinov algorithm that maximizes the number of basepairs to score the

structure. Now, this gives the ability to exploit pairwise Foldalign 1.0 for determining

the maximum scoring local alignment RNA sequences.

Now, the following definitions of the pairwise Foldalign 1.0 according to Gorodkin et

al. [GHS97a], [GHS97b] are presented as follows:

Definition 3.3.1.a: (FA1.0 scoring matrix) The FA1.0 scoring matrix (Sij,kl) is 25 ൈ 25

matrix for the four bases that also include the gaps, where the indices i, j, k, l א {A, C,

Chapter 3: Methods

35

G, U, –} and its values in Թ. It combines the two independent contributions that will be

discussed later in the FA1.0 scoring matrix construction.

Definition 3.3.1.b: (FA1.0-score) Let ࣛ be an alignment of the sequences A and B, let

PA be a nested structure of sequence A and let PB be a nested structure of sequence B.

We assume a fixed FA1.0 scoring matrix S. The FA1.0-score of ࣛ, PA and PB is given

as:

FA1.0 െ scoreሺࣛ, ஺ܲ, ஻ܲሻ ൌ ෍ ௔೔௕ೖ ,௔ೕ௕೗ߞ ൅ ෍ ڃሺܽ௣ߪ , ܾ௣ڃ ሻ
௣אሾଵ… |ࣛ|ሿሺ௜,௝ሻא ௉ಲ

ሺ௞,௟ሻא ௉ಳ
௔௡ௗ ሺ௜,௞ሻࣛא,ሺ௝,௟ሻא ࣛ

where ߪ is the similarity score for all subalignments, and ߞ௔೔௕ೖ ,௔ೕ௕೗ is a cost for

aligning i with k and j with l when (i, j) and (k, l) are basepairs.

For example:

ࣛ ൌ A1 C2 G3 U4 – G5 – U6
C1 C 2G3 – A4 G5 A6 G7

σሺA, Cሻ ൅ σሺC, Cሻ ൅ σሺG, Gሻ ൅ σሺU,െሻ ൅ σሺെ, Aሻ ൅ σሺG, Gሻ ൅ σሺെ, Aሻ ൅ σሺU, Gሻ

൅ ζACUG ൅ ζCCGG

ࣛ ൌ ሼሺ1,1ሻ, ሺ2,2ሻ, ሺ3,3ሻ, ሺ5,5ሻ, ሺ6,7ሻሽ

Definition 3.3.1.c: (FA1.0 problem) Given two sequences A and B as input, the FA1.0

problem is the problem to find an alignment ࣛ of the sequences A and B, and a nested

structure PA of sequence A and a nested structure PB of sequence B, such that the

basepairs of the structures PA and PB are preserved in the aligned positions, and with a

constraint of non-branching structures and FA1.0-score (ࣛ, ஺ܲ, ஻ܲ) is maximized.

As is shown the recursion of Nussinov algorithm (in the preliminaries chapter) allows

for branching structures. Here, in order to reduce the time complexity for the Foldalign

method, the case related for the branching structures is dropped.

Chapter 3: Methods

36

Formally, this method finds the best subsequence alignment between two sequences by

using the 4-D dynamic programming algorithm according to Gorodkin et al. [GHS97b]

as follows:

Definition 3.3.1.d: (FA1.0 recursion) Let two subsequences ai … aj and bk …bl, and a

fixed FA1.0 scoring matrix (ܵ௔೔௔ೕ,௕ೖ௕೗), be given with a non-branching structures

constraint, then the output is the highest scoring subsequence alignment of matrix D,

that is produced by the following recursion:

௜௝,௞௟ܦ ൌ ݔܽ݉

ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,௕ೖ௕೗ , (a)

௜ሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵି௔ೕ,௕ೖ௕೗ ,

(b)
ሺ௜ାଵሻ௝,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔ି,௕ೖ௕೗ ,
ሺ௜ାଵሻሺ௝ିଵሻ,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,ି௕೗ ,
ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔௔ೕ,௕ೖି ,

ሺ௜ାଵሻሺ௝ିଵሻ,௞௟ܦ ൅ ܵ௔೔௔ೕ,ିି , (c)ܦ௜௝,ሺ௞ାଵሻሺ௟ିଵሻ ൅ ܵିି,௕ೖ௕೗ ,

ሺ௜ାଵሻ௝,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔ି,௕ೖି , (d)ܦ௜ሺ௝ିଵሻ,௞ሺ௟ିଵሻ ൅ ܵି௔ೕ,ି௕೗ ,

ሺ௜ାଵሻ௝,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔ି,ି௕೗ , (e)ܦ௜ሺ௝ିଵሻ,ሺ௞ାଵሻ௟ ൅ ܵି௔ೕ,௕ೖି ,

ሺ௜ାଵሻ௝,௞௟ܦ ൅ ܵ௔೔ି,ିି ,

(f)
௜ሺ௝ିଵሻ,௞௟ܦ ൅ ܵି௔ೕ,ିି ,
௜௝,ሺ௞ାଵሻ௟ܦ ൅ ܵିି,௕ೖି ,
௜௝,௞ሺ௟ିଵሻܦ ൅ ܵିି,ି௕೗

where a maximum value of Dij,kl gives the maximal similarity between the

subsequences ai … aj and bk …bl.

The different classes are represented by the letters from (a) to (f) on the right side of the

above recursion, according to the number of gaps and its distribution within the

alignment. As is shown, in this recursion the branching structures are not allowed, in

order to reduce the time complexity.

Chapter 3: Methods

37

Note that zero value is found in the recursion of local sequence alignment, but it is not

included in this recursion because the matrix Dij,kl contains alignment scores over all

the subsequences, ai … aj and bk … bl, also because the negative values are allowed to

be included within the complete alignment.

Definition 3.3.1.e: (FA1.0 scoring matrix construction) Sij,kl is the FA1.0 scoring

matrix that is constructed for the subsequences i, …, j and k, …, l, from two terms of

the independent contributions, so S describes the sum of the two matrices ࣛ and B, as

follows: S = ࣛ + B,

Where S is a scoring matrix 1.0 that substitutes any pair of bases with the other

including gaps, ࣛ is a matrix for sequence alignment and B is a matrix for basepairs

alignment.

First, a matrix ࣛ will be constructed from two independent matrices, such that, it

contains all pairs that are possible in one sequence of positions (i, j) and in other

sequence of positions (k, l), by combining the cost of (ࣛ 0)ik that aligns i with k and the

cost (ࣛ 0)jl that aligns with l, as shown in:

ࣛ ij,kl = (ࣛ 0)ik + (ࣛ 0)jl

where ࣛij,kl represents the score matrix for aligning any two bases in one sequence with

any two bases in the other sequence with gaps including. (ࣛ0)ik and (ࣛ0)jl are similarity

substitution matrices.

Now, to build the score matrix B for base pairing, a simple description is introduced as

follows (*):

 Bij,kl =
௜௞௝௟ߞ if (i, j) and (k, l) can basepairs

0 otherwise

(*) There is another presentation for the score matrix B, and one example for the matrix S, [GHS97b].

where ζ is a base pairing alignment matrix that gives a score for substituting a basepair

of one sequence to a basepair of other sequence, its values gives reason to occurring

compensating mutations in the final matrix S.

Chapter 3: Methods

38

The 4-D dynamic programming of pairwise Foldalign 1.0 will extend to contain

alignment for two entities (individual sequences and/or aligned sequences) in a set of

RNA sequences, without overlapping of sequences between them; therefore, the

Greedy algorithm will be used for this extension to construct the multiple alignments

from pairwise comparisons that are optimized by the pairwise Foldalign 1.0 for the

preservation of both sequence and structure.

However, in a set of n sequences, there might be some of these sequences not-related to

the rest or might be functionally related but denote the two or more of structural classes

that do not provide a single common motif over all sequences. The overall method (i.e.

pairwise Foldalign 1.0 and Greedy algorithm) distinguishes that there are m ൑ n

sequences including the most significant common motif in the alignment, while the rest

of sequences might refer to other structural class. Hence, it considers that there are 2n

subsets for n sequences, and it identifies the subset which is the most significant

common motif, while neglecting the other non-useful subsets.

The Greedy algorithm is described in two steps according to Gorodkin et al. [GHS97b]

as follows:

• Comparing all individual sequences with each other, and then comparing all

pairwise alignments with all individual sequences, as long as in each

comparison a sequence does not appear more than once.

• All triplet alignments align with individual sequences, and all pairwise

alignments compare with each other, again as long as in each comparison a

sequence does not appear more than once.

By continuing with this algorithm, all sequences will be compared at the end of the

alignment. It requires time ࣩ(N4nn) where N is the sequence length for n sequences (i.e.

exponential time), and as mentioned above some of sequences (subsets) are improbable

to be involved in the final aligned subset, therefore, such procedure requires discarding

non-useful alignments (aligned subsets).

There are two limitations on the comparisons that are used to optimize this algorithm;

therefore, they reduce the time complexity to ࣩ(N4n2). These are: (1) a single sequence

which always one of the two entities, and (2) there is “threshold” number of the highest

scoring alignments at each round that is stored.

Chapter 3: Methods

39

Explanation: Considering “threshold” 30, and comparing each single sequence with

each pairwise alignment create triplet alignments and only the 30 of the best scoring

alignments are stored to comparing again with single sequences to create four

sequences alignments. With these limitations on the comparisons the complexity

becomes ࣩ(N4n2).

In addition to tractability over the Greedy algorithm, Foldalign method has another

advantage that it can find the subsets (aligned sequences) with most significant

alignments. The disadvantage of the Foldalign method is that there is no guarantee to

find the optimal solution, as in Sankoff algorithm.

During the implementation of the pairwise Foldalign 1.0, two limitations are showed,

these are defined as follows:

• Definition 3.3.1.f: (δ-restriction) The maximum scoring alignments Dij,kl for

the subsequences i, …, j and k, …, l are calculated, if restricting the maximum

length of difference between these two subsequences being aligned by δ

nucleotides.

Only Dij,kl, where |(j – i +1) - (l – k + 1)| ൑ δ is satisfied, are calculated.

Otherwise Dij,kl = - ∞, if |(j – i +1) - (l – k + 1)| ൐ δ.

• Definition 3.3.1.g: (λ-restriction) The maximum scoring alignments Dij,kl for

the subsequences i, …, j and k, …, l are calculated, if restricting the maximum

RNA-motif length by λ nucleotides.

(j – i + 1) ൑ λ

(l – k + 1) ൑ λ

where i, j, k, l, are indices of Dij,kl.

Since these two heuristics have effect on the alignment length of the problem that is

solved, they will reduce the time and memory complexities.

Chapter 3: Methods

40

3.3.2 Pairwise Foldalign 2.0

The main limitation of the pairwise Foldalign 1.0 implementation includes only the

stem-loop structures because of the computational complexity. Therefore, several

improvements are applied to extend and improve the Foldalign method.

Now a new Foldalign implementation suggested by Havgaard et al. [HLS+G05] will be

discussed. This pairwise Foldalign 2.0 implementation extends from the previous

implementation to include: the bifurcated structures, structural parameters provided in

the scoring scheme that employs for free energy minimization (similar to energy terms

in Dynalign) [MSZ+T99] [XSB+KSJ98], and also contains computation of the

substitution matrices that is similar to RIBOSUM [KE03].

Now, we present the following definitions for the pairwise Foldalign 2.0 according to

Havgaard et al. [HLS+G05] as follow:

Definition 3.3.2.a: (FA2.0 score) Let ࣛ be an alignment of the sequences A and B, let

PA be a nested structure of sequence A and let PB be a nested structure of sequence B.

Then the FA2.0-score of ࣛ, PA and PB is given as:

FA2.0-score (ࣛ, PA, PB) = ∑ ሾ߬ሺܽ௜, ௝ܽ; ܾ௞, ܾ௟ሻሿ ሺ௜,௝ሻא௉ಲ ,ሺ௞,௟ሻא௉ಳ
௪௛௘௥௘ ሺ௜,௝ሻ௔௟௜௚௡௘ௗ ሺ௞,௟ሻ௕௬ ࣛ

 + EA(PA) +

EB(PB) + ∑ ,ሺܽ௜ߪ ܾ௞ሻሺ௜,௞ሻࣛא

where ߬ and ߪ are the similarity parameters for substituting base-pairs and unpaired

bases respectively, which are similar to RIBOSUM matrices. E(PA) and E(PB) are

subset of Turner energies used as the energy parameters that compute the free energy

minimization [MSZ+T99], [ZMT99].

Definition 3.3.2.b: (FA2.0 problem) Given two sequences A and B as input. The FA2.0

problem is the problem to find an alignment ࣛ of the sequences A and B, and a nested

structure PA of sequence A and a nested structure PB of sequence B, such that the

basepairs are conserved in the aligned positions and FA2.0-score (ࣛ, PA, PB) is

maximized.

As mentioned above, that the branching structures are included in this version of

Foldalign.

Chapter 3: Methods

41

The FA2.0 cost (ܵ௔೔௔ೕ,௕ೖ௕೗) is a cost for the substitution of (ai, aj) from sequence A with

(bk, bl) from sequence B, and the two subsequences are folding simultaneously. It has a

dynamical computation relying on the five structural contexts (structure elements).

Definition 3.3.2.c: (FA2.0 recursion) Let two subsequences ai … aj and bk …bl be

given as input. FA2.0 cost (ܵ௔೔௔ೕ,௕ೖ௕೗) is calculated according to the structural context,

and with including branching structures. Then the maximum scoring subsequence

alignments of matrix D is produced by the following recursion according to Havgaard

et al. [HLS+G05] as follow:

௜௝,௞௟ܦ ൌ ݔܽ݉

ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,௕ೖ௕೗ , (a)

௜ሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵି௔ೕ,௕ೖ௕೗ ,

(b)
ሺ௜ାଵሻ௝,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔ି,௕ೖ௕೗ ,
ሺ௜ାଵሻሺ௝ିଵሻ,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,ି௕೗ ,
ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔௔ೕ,௕ೖି ,

ሺ௜ାଵሻሺ௝ିଵሻ,௞௟ܦ ൅ ܵ௔೔௔ೕ,ିି , (c) ܦ௜௝,ሺ௞ାଵሻሺ௟ିଵሻ ൅ ܵିି,௕ೖ௕೗ ,

ሺ௜ାଵሻ௝,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔ି,௕ೖି , (d)ܦ௜ሺ௝ିଵሻ,௞ሺ௟ିଵሻ ൅ ܵି௔ೕ,ି௕೗ ,

ሺ௜ାଵሻ௝,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔ି,ି௕೗ , (e) ܦ௜ሺ௝ିଵሻ,ሺ௞ାଵሻ௟ ൅ ܵି௔ೕ,௕ೖି ,

ሺ௜ାଵሻ௝,௞௟ܦ ൅ ܵ௔೔ି,ିି ,

(f)
௜ሺ௝ିଵሻ,௞௟ܦ ൅ ܵି௔ೕ,ିି ,
௜௝,ሺ௞ାଵሻ௟ܦ ൅ ܵିି,௕ೖି ,
௜௝,௞ሺ௟ିଵሻܦ ൅ ܵିି,ି௕೗ ,

ݔܽ݉
௜ழ௡ழ௝ିଵ
௞ழ௠ழ௟ିଵ

ሼܦ௜௡,௞௠ ൅ ሺ௡ାଵሻ௝,ሺ௠ାଵሻ௟ሽ (g)ܦ

where maximal Dij,kl refers to the most similar subsequences ai … aj and bk … bl, and

each of ai, aj, bk, bl are nucleotides at positions i, j, k, l, respectively.

The letters above from (a) to (f) on the right-side of recursion are the same as those in

the previous implementation, only (g) is added to allow for the bifurcation structures.

For each D-entry, the associated context is stored in a separate matrix.

Chapter 3: Methods

42

Generally, ܵ௔೔௔ೕ,௕ೖ௕೗ has a dynamical computation by relying on the five structural

contexts (structure elements). The parameters used in this computation are static such

as substitution costs of basepair (aligning part) and the energy parameters (folding

part). Now, the calculations of cost ܵ௔೔௔ೕ,௕ೖ௕೗ for each structural context are presented

according to Havgaard et al. [HLS+G05] as follows:

• Hairpin-loop: the calculation is always initialized by aligning two nucleotides

in the hairpin-loop context. The cost of the alignment between two hairpin-

loops is:

S hp = S substitution + S length + S stack

where S substitution = ∑ SSS (ai, bk) is the cost of combining the substitution for

each pair of nucleotides and gap cost for each gap that are included in the loop.

SSS (ai, bk) is the single-strand substitution cost, which correspondences to ߪ. S

length = S hp-length (j – i +1) + S hp-length (l – k + 1) is the cost that is dependent on

the loop size, which is computed from the energy parameters. For the hairpin-

loops that have more than three nucleotides long, the energy cost S stack = S hp-

stack (ai, aj, ai-1, aj+1) + S hp-stack (bk, bl, bk-1, bl+1) is combining of two independent

sums for stacking in the two hairpin-loops.

• Stem: A stem is the number of stacked basepairs, with long at least two

basepairs. A single basepair is not allowed and is recalculated as part of the

surrounding loop. The cost of the alignment between two stems is:

S bp = S substitution + S stack

where S substitution = ∑ SSS (ai, aj, bk, bl) is the cost of combining the substitutions

for the basepairs in one subsequence with the basepairs in other subsequence,

which correspondences to ߬. S stack is the stack energy cost which has the same

computation above but for two stems.

Chapter 3: Methods

43

The other structural contexts are computed in the same manner with some

addition costs of energy parameter that are added according to the requirement

of structural context.

• Internal-loop: An internal-loop is the single-stranded nucleotides on both sides

of RNA structure that are surrounded by stems. The cost of aligning two

internal-loops is:

S il = S substitution + S length + S asymmetry + S stack

• Bulge-loop: A bulge-loop is also single-stranded region but only on one side of

RNA structure that is surrounded by stems. The cost of aligning two bulge-

loops is:

S bl = S substitution + S length + S stack

• Multibranched-loop: A multibranched-loop is the region where more than two

stems meet. The cost of a multibranched-loop is:

S hp = S substitution + S mbl-closing + (n stem - 2) S stem + n singlenucleotides ൈ S nucleotide + S stack

All these costs are stored in either specific matrices or tables in the score matrix

according to structural context and its parameters. For more details, the reader is

referred to the paper Havgaard et al. [HLS+G05].

The two constraints that are used in the previous implementation of FA1.0, they are

also used with this implementation of FA2.0: λ and δ. These reduce the complexity for

each of time NA NB λ2 δ2 and memory NA NB λ δ, where NA and NB are the lengths of

A, B sequences respectively.

By dropping the cases (b) and (e) from the recursion above, the speed of this

implementation will be increased because the number of cases at each entry in

recursion will be reduced. This has no influence on the memory and time complexities

because there is no modification of the structure types which can be aligned, so that we

can obtain the alignments for the cases (b) and (e), by integrating some of the other

Chapter 3: Methods

44

cases of the recursion. For example, the case (b.1) can be obtained from combining the

cases (f.3) and (d.2), or from (e.2) and (f.4), or replacing of other cases.

The restriction has been placed on the case (g) when it is calculated, where the case (g)

is composed of two substructures, another optimization conforms to speed of this

implementation, if (i, n) and (k, m) are basepairs of the left substructure Din,km, and if j

is base-paired and l is base-paired of the right substructure D(n+1)j,(m+1)l).

This implementation handles with the problem that finds the common local structural

motifs of two RNA sequences with sequence similarity less than 40%, where these

sequences are not distinguishable of the folding energy to their surrounding sequence

context. It also represents an efficient way for executing simultaneous mutual scan for

two sequences to find the common local structural motifs.

3.3.3 Pairwise Foldalign 2.1

Now, we will introduce the last implementation of the Foldalign method that was

described by Havgaard et al. [HTG07], as a new heuristic in the previous

implementation (i.e. Foldalign 2.0). This heuristic is represented by the dynamical

pruning of the dynamic programming matrix, through excluding the subalignments that

have scores lower than length-dependent threshold (pruning threshold). This heuristic

increases the speed without reducing in the predictive performance. It represents a new

implementation in the Foldalign method that is used for pairwise local or global

structural alignments of the RNA sequences. In addition the memory requirement is

reduced by a constraint of branch points which uses the divide and conquers method.

This thesis is not interested in the latter.

Now the following definitions are presented for the pairwise Foldalign 2.1 according to

Havgaard et al. [HTG07] as follows:

Definition 3.3.3.a: (FA2.1-score) FA2.1 score has the same definition as the previous

Foldalign implementation (FA2.0 score).

Definition 3.3.3.b: (FA2.1 problem) FA2.1 problem has also the same definition as the

previous Foldalign implementation (FA2.0 problem).

Chapter 3: Methods

45

The cost of FA2.1 distinguishes also into several costs that are used to add a set of

nucleotides to the alignment. This cost is the same as FA2.0 cost which has a

dynamical computation depending on the five structural contexts (structural elements).

Definition 3.3.3.c: (FA2.1 recursion) Let two subsequences be given as input ai … aj

and bk …bl of sequences A and B respectively. This recursion seems the same recursion

as the previous version with only a few improvements or simplifications to the energy

model. Then maximum scoring subsequence alignments of D is produced according to

Havgaard et al. [HTG07] as follows:

௜,௝,௞,௟ܦ ൌ ݔܽ݉

௜ାଵ,௝ିଵ,௞ାଵ,௟ିଵܦ ൅ ܵ௕௣ሺܽ௜, ௝ܽ , ܾ௞, ܾ௟, ௜ାଵ,௝ିଵ,௞ାଵ,௟ିଵሻ (a)ߪ
௜ାଵ,௝ିଵ,௞,௟ܦ ൅ ܵ௕௣௜ூሺܽ௜, ௝ܽ , െ, െ, ௜ାଵ,௝ିଵ,௞,௟ሻ (b)ߪ
௜,௝,௞ାଵ,௟ିଵܦ ൅ ܵ௕௣௜௄ሺെ,െ, ܾ௞, ܾ௟, ௜,௝,௞ାଵ,௟ିଵሻ (c)ߪ
௜ାଵ,௝,௞ାଵ,௟ܦ ൅ ܵ௔௟ሺܽ௜, ܾ௞, ௜ାଵ,௝,௞ାଵ,௟ሻ (d)ߪ
௜,௝ିଵ,௞,௟ିଵܦ ൅ ܵ௔௥ሺ ௝ܽ, ܾ௟, ௜,௝ିଵ,௞,௟ିଵሻ (e)ߪ
௜ାଵ,௝,௞,௟ܦ ൅ ௚ܵ௟ூሺܽ௜, െ, ௜ାଵ,௝,௞,௟ሻ (f)ߪ
௜,௝ିଵ,௞,௟ܦ ൅ ௚ܵ௥ூሺ ௝ܽ, െ, ௜,௝ିଵ,௞,௟ሻ (g)ߪ
௜,௝,௞ାଵ,௟ܦ ൅ ௚ܵ௟௄ሺെ, ܾ௞, ௜,௝,௞ାଵ,௟ሻ (h)ߪ
௜,௝,௞,௟ିଵܦ ൅ ௚ܵ௥௄ሺെ, ܾ௟, ௜,௝,௞,௟ିଵሻ (i)ߪ
ݔܽ݉
௜ழ௠ழ௝
௞ழ௡ழ௟

ሼܦᇱ
௜,௠,௞,௡ ൅ ᇱܦ

௠ାଵ,௝,௡ାଵ,௟ ൅ ௠௕௟௛௘௟௜௫ሽ (j)ܥ

where ܦ௜,௝,௞,௟ is the alignment score, ߪ௜,௝,௞,௟ is the alignment state. In addition to these

matrices, there are four length matrices used in the implementation: ߤଵሺ௜,௝,௞,௟ሻ, ߤଶሺ௜,௝,௞,௟ሻ,

 ସሺ௜,௝,௞,௟ሻ which are the lengths of the single stranded regions external to theߤ ,ଷሺ௜,௝,௞,௟ሻߤ

last basepairs. Therefore, this version contains six of 4-D matrices that are required for

computing the recursion. ܥ௠௕௟௛௘௟௜௫ which is the cost for adding extra stems.

In case (j), the unpaired nucleotides of branched loops score the same as unpaired

nucleotides in the external loops. Hence, D' is the alignment score that is corrected for

external single stranded nucleotides.

As mentioned that cost of FA2.1 represents the costs of Sbp to SgrK which are computed

depending on the alignment state (σ) which includes five structural contexts: hairpin-

loop, stem, bulge-loop, internal-loop, and external/bifurcated-loop.

Chapter 3: Methods

46

The case (a) adds a basepair in both structures. The cases (b) and (c) add basepair

inserts in either of the structures. The cases (d) and (e) add aligned unpaired nucleotides

in either end of the alignment. The cases (f) and (i) add an unpaired nucleotide aligned

to a gap to the alignment. The case (j) is the bifurcation case which joins two

substructures into one in each of the structures.

The alignment score ܦ௜,௝,௞,௟ is the maximum alignment score over all the D-entries and

the alignment state ߪ௜,௝,௞,௟ becomes the state for the best structure alignment which is

computed according to the associated context of D-entry, where the context of each D-

entry is stored in a separate matrix. Analogously, this is done for the length matrices:

 ସሺ௜,௝,௞,௟ሻ which are the lengths of single stranded regionsߤ ,ଷሺ௜,௝,௞,௟ሻߤ ,ଶሺ௜,௝,௞,௟ሻߤ ,ଵሺ௜,௝,௞,௟ሻߤ

for the best alignment of (i, j, k, l). These lengths are updated according to the

associated context. For more details about the procedure of recursion, the reader is

referred to the supplementary material [PS1] for Havgaard et al. [HTG07].

The construction of Foldalign compares with the Sankoff algorithm, that Sankoff has

three matrices which distinguish the different states in the structure. In the Foldalign,

only one matrix uses several states which are distinguished in the structure. Therefore,

the maximum D-entry from the Foldalign recursion should give a best state which is

stored in a separate matrix.

Due to the general case of structure which is represented by matrix F in Sankoff

algorithm which is not carried in Foldalign as obvious state, therefore, this state is

corrected by the D'-entry, where ܦᇱሺ௜,௝,௞,௟ሻ ൌ ሺ௜,௝,௞,௟ሻܦ ൅ ܵᇱሺ ߪሺ௜,௝,௞,௟ሻሻ.

We applied some examples on this recursion where, without recalculation in the stem

state, the recursion does not work or may not get the optimal solutions according to the

observed states in this recursion. However, Foldalign 2.1 has been able practically (i.e.

when it was run) to solve these examples which would not work in an optimal way

without recalculation. This demonstrates the effect of the “potential basepair” state that

was added in the implementation for realizing the recalculation. Although these special

states are handled in this method still the method dose not guarantees an optimal

solution.

Chapter 3: Methods

47

The following two examples were run in Foldalign 2.1 and we got their solutions.

Example 1:

>Seq_1
CCAAAAAUGG
>Seq_2
CCAAAAAUGG

; ALIGN Seq_1 CCAAAAAUGG
; ALIGN Structure (((. . . .)))
; ALIGN Seq_2 CCAAAAAUGG

; ALIGNING Seq_1 against Seq_2
; STEM END 1 10 1 10 ; START 0 0 0 0 SCORE -20000
; BACKTRACK 115 115 (1 10, 1 10) 21 0 0 0 0 Basepair ik jl
; BACKTRACK 23 23 (2 9, 2 9) 21 0 0 0 0 Basepair ik jl
; BACKTRACK -45 -45 (3 8, 3 8) 20 0 0 0 0 Hairpin -> stem ik jl
; BACKTRACK 32 -72 (4 7, 4 7) 2 4 0 4 0 Hairpin ik
; BACKTRACK 24 -84 (5 7, 5 7) 2 3 0 3 0 Hairpin ik
; BACKTRACK 16 -94 (6 7, 6 7) 2 2 0 2 0 Hairpin ik
; BACKTRACK 8 -104 (7 7, 7 7) 1 1 0 1 0 Initial Hairpin ik
; BACKTRACK Branch end

Chapter 3: Methods

48

Example 2:

>Seq_1
GCGAAAAUGC
>Seq_2
GCGAAAAUGC

; ALIGN Seq_1 GCGAAAAUGC
; ALIGN Structure ((. ))
; ALIGN Seq_2 GCGAAAAUGC

; STEM END 1 10 1 10 ; START 0 0 0 0 SCORE -20000
; BACKTRACK 87 87 (1 10, 1 10) 21 0 0 0 0 Basepair ik jl
; BACKTRACK -9 -9 (2 9, 2 9) 20 0 0 0 0 Hairpin -> stem ik jl
; BACKTRACK 39 -57 (3 8, 3 8) 2 6 0 6 0 Hairpin ik
; BACKTRACK 36 -66 (4 8, 4 8) 2 5 0 5 0 Hairpin ik
; BACKTRACK 28 -76 (5 8, 5 8) 2 4 0 4 0 Hairpin ik
; BACKTRACK 20 -88 (6 8, 6 8) 2 3 0 3 0 Hairpin ik
; BACKTRACK 12 -98 (7 8, 7 8) 2 2 0 2 0 Hairpin ik
; BACKTRACK 4 -108 (8 8, 8 8) 1 1 0 1 0 Initial Hairpin ik
; BACKTRACK Branch end

As mentioned above, the dynamical pruning works to eliminate all subalignments that

are at the poorly levels, and that occurs by comparing the score Dij,kl of a subalignment

with a threshold of local alignment described as follows:

Dij,kl is pruned if Dij,kl < Θlocal (lA) or Dij,kl < Θlocal (lB)

which is equivalent to Dij,kl < min Θlocal ((lA), (lB))

where Θlocal is based on the length of the subsequences lA = (j – i +1) and lB = (l – k +

1), therefore, a linear form that is found for the proper length dependency is, Θlocal = a *

min {lA, lB} + b, where a and b are constants.

This speeds up the Foldalign 2.1 method, moreover the memory is also improved

because it does not need to store the discarding subalignments which are also not used

to calculate the longer alignments.

Chapter 3: Methods

49

Due to global alignment considering the whole length of sequence, a minimum number

of gaps must be added equal to the length difference between the two sequences. The

pruning for local alignment will eliminate all subalignments, when the difference

lengths are large. Therefore, the special pruning for global alignment is employed as

follows:

Dij,kl < Θglobal = Θlocal (lA, lB) + GE × min {abs(lA – lB), abs(NA – NB)}

Where Θglobal threshold for global alignment, GE is the cost of gap-elongation, Θlocal is

the threshold of local alignment and NA and NB are the sequence lengths of A and B

respectively. Here, other values for parameters a and b are used.

The dynamical Pruning represents as a general heuristic and it should be possible to be

employed with the other methods that implement the fold and alignment of RNA

sequences; it is considered a property in dynamic programming method that is applied

with algorithms exploiting dynamic programming. However, it does not ensure that it

provides an optimal solution, or in some cases no solution is found, therefore the

Foldalign in this case will realign without pruning.

This implementation still applies the old constraints λ and δ, which decrease the

complexity to ࣩ (NA NB λ2 δ2) for time and ࣩ (λ3 δ) for memory, where NA and NB are

the sequence lengths A and B respectively. Furthermore, the bifurcation constraint is

also employed in this implementation, which restricts the substructure types that are

combined in case (j), such that the first nucleotides (i and k) in the substructure Din,km

are base paired, and in substructure Dn+1j,m+1l, the pairs of bases (n + 1, j) and (m+1, l)

must be basepairs (i.e. they should form a stem context). Hence, this constraint restricts

all alignments that must be kept for positions (i + 2, …, i + λ) to those which have stem

context. This represents an optimization during the local alignment for saving memory.

When using the global alignment in this implementation, the complexity of time and

memory are reduced compared with the previous implementation. The global alignment

is aligning over the entire length of two sequences, such that the δ is becoming exactly

as the parameter M in Dynalign method by restricting the starting of a sub-alignment in

the second sequence (i.e. |i - k| ൑ ߜ). The idea is that since the δ-heuristic limits the

Chapter 3: Methods

50

length difference of sub-alignments, then the position k in the second sequence is

limited in relation to the position i in the first sequence. The complexity becomes ࣩ

(N௠௜௡ଷ δ3) for time and ࣩ (N௠௜௡ଶ δ2) for memory, where N௠௜௡ = min {NA, NB}. This

compared with the complexity of the previous implementation that applies the local

alignment, where λ refers to the length of the sequence.

The energy model in this Foldalign implementation changes as compared with the

previous implementation (2.0) in three points according to Havgaard et al. [HTG07]:

• The single-stranded nucleotides in external-loops are scored like the single-

stranded nucleotides in the multibranch-loops.

• Allowing insert the basepairs at all positions of a stem excepting the first

basepair.

• The single-stranded nucleotides in the multibranch-loops that are next to base-

paired nucleotides are no longer stacked, i.e. the dangling ends are no longer

used.

Chapter 3: Methods

51

3.4 PMcomp / LocARNA

This part will present another family of variants of the Sankoff algorithm for

simultaneous folding and aligning of two RNA sequences, which exploit the

probabilities of basepairs for RNA sequences as structural input. Therefore, they take

into account the information about both sequence and structure, where the secondary

structures are non-pseudoknoted. These methods are PMcomp [HBS04] and LocARNA

[WRH+SB07].

Before we start to show each of these methods separately, some principles are

introduced that are related to these methods.

McCaskill algorithm calculates the base pairing probabilities from the partition

functions of RNA sequences. It uses a statistical mechanics model to predict the

probabilities of individual basepairs in the secondary structure. [M90]

Definition 3.4: (Boltzmann weight, Partition function, Base pairing probability) Given

an RNA sequence S, the Boltzmann weight of a structure P of S is defined as:

஻ݓ
ሺௌሻሺܲሻ ൌ ݁ି ாೄሺ௉ሻ ௞ಳ ்⁄ , where ES(P) is the energy of a structure P, kB is Boltzmann

constant and T is the temperature. The partition function of S is defined as:

ܼ௉,ௌ = ∑ ஻ݓ
ሺௌሻሺܲሻ௉ ௢௙ ௌ . The probability of a structure P of S is defined as:

ሿܵ ݂݋ ሾܲ ݎܲ ൌ ஻ݓ
ሺௌሻ ሺܲሻ ܼ௉,ௌൗ .

This kind of probability can be computed efficiently by using McCaskill algorithm.

Each of these methods utilizes the basepair weights which are derived from the

matrices of basepair probability for each individual sequences, such as the weight ߰௜௝

for the basepair (i, j) of sequence S is described as:

߰௜௝ ൌ log
௜௝ݎܲ
଴݌

 log
1
଴݌

൘

Where ܲݎ௜௝ is the probability of a basepair (i, j) as calculated by McCaskill algorithm,

 .଴ is the expected probability for base pairing that is randomly occurring݌

Both of these methods calculate the pairwise alignment from the base pairing

probability matrices of the RNA sequences, where the McCaskill algorithm computes

Chapter 3: Methods

52

these matrices. Therefore, these matrices include the energy information for each

sequence (as shown above).

When these methods are compared with the Sankoff algorithm, they are based on the

input of base pairing probability matrices which contain the energy information about

RNA sequences and can be calculated independently.

These methods do not start directly from only the sequences but they require their base

pairing probability matrices which are important for the folding part in these methods.

Furthermore, these methods do not distinguish among all structure elements. Since, the

implementation of these methods depends on the simple scoring system, such that they

avoid implementing and computing the complete energy model of RNA folding during

alignment.

3.4.1 PMcomp

As we mentioned above, this method calculates the pairwise alignment from the

matrices of base pairing probability of the RNA sequences. These matrices are

computed by using the McCaskill’s algorithm. Thus, they include the energy

information about each sequence. Then PMcomp finds the “maximal weight” common

secondary structure together with the alignment between the sequences. This method

was proposed by Hofacker et al. [HBS04].

Before defining this method formally, one must show how to find the “maximum

weight” secondary structure that is common to two base pairing probability matrices:

Definition 3.4.1.a: (Consensus secondary structure “C. S. S.”, Maximum weight C. S.

S.) Let two sequences ଵܵ and ܵଶ be given as input with their base pairing probability

matrices P1 and P2 respectively. The consensus secondary structure ࣭is a set of pairs of

basepairs (i, j) and (k, l) of sequences ଵܵ and ܵଶ respectively. The maximum weight C.

S. S. is the consensus secondary structure ࣭ that maximizes:

 ∑ ൫߰௜௝ଵ ൅ ߰௞௟ଶ ൯൫ሺ௜,௝ሻ,ሺ௞,௟ሻ൯࣭א

where ߰௜௝1 and ߰௞௟2 are the weights of the basepairs (i, j) and (k, l) of sequences ଵܵ and

ܵଶ respectively, as described above in the weight’s equation. This definition does not

Chapter 3: Methods

53

consider solving the problem of simultaneous folding and aligning. Moreover, it

produced structures that are different from the structures that are formed in the

PMcomp method.

The PMcomp problem is defined with respect to its score according to Hofacker et al.

[HBS04]:

Definition 3.4.1.b: (PMcomp-score) Let two sequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ = ݏଶೖ,

ଶ ೗ݏ ,… be given as input with their base pairing probability matrices ܲݎଵ and ܲݎଶ

respectively. Let ࣛ be an alignment of sequences ଵܵ and ܵଶ, and let the consensus

secondary structure ࣭ of sequences ଵܵ and ܵଶ. The PMcomp-score of ࣛ and ࣭ is given

as:

PMcomp-score ሺࣛ, ࣭ ሻ ൌ ∑ ቂ߰௜௝ଵ ൅ ߰௞௟ଶ ൅ ߬ ቀݏଵ೔, ,ଶೖݏ ;ଵೕݏ ࣭אଶ೗ቁቃሺ௜௝,௞௟ሻݏ ൅ ߛ ௚ܰ௔௣ ൅

∑ ,ଵ೔ݏ൫ߪ ௌమאௌభ,௞אଶೖ൯௜ݏ
௔௡ௗ ௜,௞ ௔௟௜௚௡௘ௗ ௕௬ ࣛ

where ߬ and ߪ are scores of alignment contributions for substituting the basepairs and

unpaired bases respectively, ߛ is the gap penalty and Ngap is the number of gaps during

insertion and deletion of the alignment.

Definition 3.4.1.c: (PMcomp problem) Let two sequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ = ݏଶೖ,

 ଶݎܲ ଵ andݎܲ ଶ ೗be given as input with their base pairing probability matricesݏ ,…

respectively. The PMcomp problem finds the consensus secondary structure ࣭ of ଵܵ

and ܵଶ, and an alignment ࣛ of ଵܵ and ܵଶ with the number of gaps during insertion and

deletion of the alignment, such that PMcomp-score (ࣛ, ࣭) is maximized.

Now this method defines the best subsequence matching alignments by using dynamic

programming algorithm according to Hofacker et al. [HBS04]:

Definition 3.4.1.d: (PMcomp recursion) let two subsequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ =

 ଶݎܲ ଵ andݎܲ ଶ ೗ be given as input with their base pairing probability matricesݏ ,… ,ଶೖݏ

respectively, in addition to the ߬ and ߪ scores and the gap penalty ߛ. Then the output is

the maximum scoring subsequence matching of matrix S i, j; k, l that is obtained by the

following recursions:

Chapter 3: Methods

54

௜ܵ,௝,௞,௟ ൌ ݔܽ݉

௜ܵାଵ,௝;௞,௟ ൅ ߛ ,
௜ܵ,௝;௞ାଵ,௟ ൅ ߛ ,
௜ܵାଵ,௝,௞ାଵ,௟ ൅ ,ଵ೔ݏ൫ߪ ,ଶೖ൯ݏ
ݔܽ݉
௛ஸ௝,௤ஸ௟

൫ ௜ܵ,௛;௞,௤
ெ ൅ ܵ௛ାଵ,௝;௤ାଵ,௟൯

 ௜ܵ,௝;௞,௟
ெ ൌ ௜ܵାଵ,௝ିଵ,௞ାଵ,௟ିଵ ൅ ߰௜௝ଵ ൅ ߰௞௟ଶ ൅ ߬ ቀݏଵ೔, ;ଵೕݏ ,ଶೖݏ , ଶ೗ቁݏ

Initialization S i, j; k, l = |(j - i) - (l - k)| ߛ for j – i ൑ M + 1 or l – k ൑ M + 1, where M is

the minimum size of hairpin loop (usually M = 3).

As presented at the initialization case in the original presentation according to Hofacker

et al. [HBS04] is wrong, because S i, j; k, l must be the best score for ݏଵ೔, …, ݏଵೕand ݏଶೖ,

 ଶ ೗ . In the alignment one can match bases, insert, or delete, but cannot matchݏ ,…

basepairs due to short one of the two sequence lengths.

A maximal value of S i, j; k, l gives the most matching for the subsequences ݏଵ೔, …,

ଶ ೗. In addition, the score SMݏ ,… ,ଶೖݏ ଵೕandݏ
i, j; k, l be the best match subject with a

constraint that the basepairs (i, j) and (k, l) are matched.

The first two cases in the recursion account for gaps in one of the subsequences, the

third case refers to match the unpaired bases in both subsequences and the fourth case

(max-case) refers to the basepairs (i, h) and (k, q) in the subsequences ଵܵ and ܵଶ

respectively, which are matched. In addition, the restricted term of SM
i, j; k, l is

straightforward.

This recursion needs ࣩ(N4) for memory and ࣩ(N6) for time, where N is the sequence

length. PMcomp is equivalent to a special version of the Sankoff algorithm (Nussinov-

style), where:

௜௝ଵݎܲ ൌ
ଵೕݏ ଵ೔ andݏ ݂݅ 1 ܿܽ݊ ݉ݎ݋݂ ݏݎ݅ܽ݌݁ݏܾܽ

0 otherwise

Analogously for ܲݎ௞௟ଶ .

Chapter 3: Methods

55

There are two restrictions that reduce the complexity: the first restriction is that

matching of the basepairs (i, j) א ଵܵ and (k, l) א ܵଶ must be within the difference ∆ = |(j

- i) - (l - k)|, hence, the time complexity will decrease to ࣩ(N5). The second restriction

is that all partial alignments are limited within this difference, the complexity will

decrease to ࣩ(N4) for time and ࣩ(N3) for memory. If ∆ is high, there is no big decrease

of the computation effort. Whereas a lower value of ∆, many significant alignment

structures will be missing.

After filling the matrix S i, j; k, l, backtracking is used to compute the matched positions

of the sequences.

When ‘average’ basepair probability matrix that is described below according to

Hofacker et al. [HBS04] is found, the PMcomp method will extend to construct the

progressive multiple alignments by using the comparison of the base pairing probability

matrices, this is called PMmulti method. The average basepair probability matrix is

defined by:

Where ݅௣ and ݆௤ are the positions in sequence ଵܵ corresponding to the positions ݌ and

 .in the alignment. Analogously, ݇௣, ݈௤ are defined for ܵଶ ݍ

PMmulti method is represented by repeatedly calling for the PMcomp for calculating

all pairwise alignments, and then generates a guide tree from assembling the similarity

scores by applying the weighted pair group clustering method. Finally, it aligns all

alignments along guide tree.

3.4.2 LocARNA

This method is PMcomp-based that calculates the pairwise alignment of RNAs

(optionally local), but is more efficient for the time and memory complexities, such that

it reduces to ࣩ(N2) for memory and ࣩ(N4) for time. This is due to introducing the idea

ଶל௣,௤ଵݎܲ ൌ ൝ටܲݎ௜೛,௝೜
ଵ ௞೛,௟೜ݎܲ

ଶ

0
 for matches

otherwise

Chapter 3: Methods

56

of significant basepairs which are defined by using cutoff-probability, compared to

PMcomp method.

Formally, this method can be defined with respect to its score according to Will et al.

[WRH+SB07]:

Definition 3.4.2.a: (LocARNA-score) Let ࣛ be an alignment of sequences ଵܵ = ݏଵ೔,

 ,ଶ ೗, and let the consensus secondary structure ࣭ on ࣛ. Thenݏ ,… ,ଶೖݏ = ଵೕand ܵଶݏ ,…

the LocARNA score of ࣛ and ࣭ is given as:

LocARNA-score ሺࣛ, ࣭ሻ ൌ ∑ ൫߰௜௝ଵ ൅ ߰௞௟ଶ ൯ ൅ ∑ ,ଵ೔ݏ൫ߪ ࣭א஺ೞሺ௜௝;௞௟ሻאଶೖ൯ሺ௜,௞ሻݏ െ ߛ ௚ܰ௔௣

where ܣ௦ represents the single-stranded part of the alignment (i.e. the unpaired bases)

and the parameters (ߛ, Ngap, ߪ) are defined as in the PMcomp method. Note that the

LocARNA-score is essentially the same as the PMcomp-score. ߬ is omitted only for

presentation.

In this method, the weights ߰௜௝1, ߰௞௟2 are modified by introducing cutoff-probability.

This represents the first modification in LocARNA as compared with PMcomp, such

that:

where כ݌ is the cutoff probability, such that the weight be (െ∞) for the probability

lower than כ݌. This modification reduces the time complexity to ࣩ(N4), by making כ݌

constant for different lengths N. Then each base can take part in at most 1 ⁄כ݌ , so only

ࣩሺ1ሻ basepairs.

Definition 3.4.2.b: (LocARNA problem) Let two sequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ =

 ଶݎܲ ଵ andݎܲ ଶ ೗, be given as input with their base pairing probability matricesݏ ,… ,ଶೖݏ

respectively. The LocARNA problem calculates an alignment ࣛ of ଵܵand ܵଶ with the

number of gaps during insertion and deletion of the alignment and the consensus

secondary structure ࣭ on ࣛ, such that, ࣛ contains a set of match/mismatch pairs,

߰௜௝ ൌ ቐ
݃݋݈

௜௝ݎܲ
଴݌

/ ݃݋݈
1
଴݌

െ∞
 if ௜௝ݎܲ ൒ כ݌

otherwise

Chapter 3: Methods

57

࣭contains a set of the conserved basepairs and the LocARNA score (ࣛ, ࣭) is

maximized.

The second modification in the LocARNA, which improves the PMcomp method, is

modified the dynamic programming algorithm being used, in such a way that allows

considering only significant basepairs which are produced by applying cut-off

probability. Thus, the space complexity reduces to ࣩ(N2).

Now, the dynamic programming recursion is defined according to Will et al.

[WRH+SB07], as follows:

Definition 3.4.2.c: (LocARNA recursion) Let two sequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ =

 ଶ respectively, beݎܲ ଵ andݎܲ ଶ ೗,with their base pairing probability matricesݏ ,… ,ଶೖݏ

given with ߪ and ߛ. Then output is the maximum scoring subsequences similarity of

matrix D, that obtained by the following recursions for M and D:

௜௝;௞௟ܯ ൌ ݔܽ݉

௜௝ିଵ;௞௟ିଵܯ ൅ ,ଵ೔ݏሺߪ ଶೖሻݏ
௜௝ିଵ;௞௟ܯ ൅ ߛ
௜௝;௞௟ିଵܯ ൅ ߛ
௝ݔܽ݉ ′௟′ܯ௜௝ ′ିଵ;௞௟′ିଵ ൅ ௝ܦ ′௝;௟′௟

௜௝;௞௟ܦ ൌ ௜௝ିଵ;௞௟ିଵܯ ൅ ߰௜௝ଵ ൅ ߰௞௟ଶ

where maximal ܦ௜௝;௞௟ provides most similarity between the subsequences [ݏଵ೔, …, ݏଵೕ]

and [ݏଶೖ, …, ݏଶ ೗], with condition that the basepairs (i, j) and (k, l) are parts to form the

consensus secondary structure. ܦ௜௝;௞௟ are calculated and stored only for the considered

significant basepairs. Hence, the ܦ௜௝;௞௟ entries are computed with fix left ends i and k

and varying j and l. For computing all entries ܦ௜●;௞●, one needs only entries of ܯ௜௝;௞௟

for alignments that have left ends (i+1, k+1).

These matrices can be used for both of global and local alignments by calculating the

recursion of ܯ଴௝;଴௟ for the global alignment, where the optimal score of the global

alignment is over the entire sequence length (i.e. ܯ଴|ௌభ|; ଴|ௌమ|). This is the same as in

the PMcomp method. In the following, local alignment will be considered.

Chapter 3: Methods

58

The best local alignment score is obtained by finding the maximal value of

subsequence alignments. Therefore, ܯ଴௝;଴௟ recursion is extended to include the zero

entry that cutting off the prefix alignments that are not related to the local alignment,

i.e. the negative values which are dissimilar prefix alignments.

௜௝;௞௟ܯ ൌ ݔܽ݉

௜௝ିଵ;௞௟ିଵܯ ൅ ,ଵ೔ݏሺߪ ଶೖሻݏ

for i > 0 or j > 0
௜௝ିଵ;௞௟ܯ ൅ ߛ
௜௝;௞௟ିଵܯ ൅ ߛ
௝ݔܽ݉ ′௟′ܯ௜௝ ′ିଵ;௞௟′ିଵ ൅ ௝ܦ ′௝;௟′௟

଴௝;଴௟ܯ ൌ ݔܽ݉

0
଴௝ିଵ;଴௟ିଵܯ ൅ ,ଵ೔ݏሺߪ ଶೖሻݏ
଴௝ିଵ;଴௟ܯ ൅ ߛ
଴௝;଴௟ିଵܯ ൅ ߛ
଴௝ᇲିଵ;଴௟ᇲିଵܯ௝ᇲ௟ᇲݔܽ݉ ൅ ௝ᇲ௝;௟ᇲ௟ܦ

௜௝;௞௟ܦ ൌ ௜௝ିଵ;௞௟ିଵܯ ൅ ߰௜௝ଵ ൅ ߰௞௟ଶ .

LocARNA method is also like the PMcomp method in extending to construct the

progressive multiple alignments from the pairwise alignments, and this is called

mLocARNA method. This method has a different algorithm for calculating the

“average” basepair probability matrix ܲݎଵלଶ as found in the PMmulti for the alignment

of ଵܵ and ܵଶ. As a result of PMmulti, most basepairs are eliminated during the

alignment for many sequences due to the second case in its definition that is related to

the gaps. Therefore, mLocARNA introduces the new definition that prevents

undesirable effect for PMmulti

:

௣௤ଵݎܲ
೚ଶ ൌ ටܲݎതതത௣௤ଵ ൈ തതത௣௤ଶݎܲ ,

where

Chapter 3: Methods

59

തതത௣௤ଵݎܲ ൌ
ݔܽ݉ ቀ݌଴, ௜೛௜೜ݎܲ

ଵ ቁ for a match p, q
 ଴ otherwise݌

Analogously, for the definition ܲݎതതത௣௤ଶ .

60

Chapter Four

Results

4.1 Results

The previous chapter demonstrates the theoretical model of the methods that were

implemented with different restrictions or heuristics to make the original algorithm

“Sankoff Algorithm” more practical. In this chapter, examples will be given of testing

the programs of these methods on a collection of RNA families and the computational

results that have been obtained will be displayed.

The following table gives some examples of different length datasets of RNA families

that were used in our tests, such as tRNA which represents a small RNA sequence and

therefore should be an easy example of all programs, 5S_rRNA is slightly harder and

Cobalamin is quite challenging, because it’s much longer.

All calculations performed on the programs, were performed in the same environment

(with memory 3.7 GB, CPU 2.33 GHz and under Linux operating system).

We tested the programs on their some special parameters by setting them to some

interested values. These interested values were compared with the user time. In this

thesis, the focus is on the time behavior against some different parameters of the

programs because we are interested in comparing the speed of these programs

corresponding to the different values of their parameters. All programs were applied to

three examples of different length datasets of RNA families which are shown in the

following table.

Chapter 4: Results

61

Table 4.1: This table shows three examples of different length datasets of RNA
families with their sequence similarity

RFAM Sequences
Number of
nucleotides

APSI
(Average
Pairwise
Sequence
Identity)

tRNA

>Z28209.1_4569‐4498

56

GCCCUUUUGGCCAAGUGGUAAGGCAUCG
CACUCGUAAUGCGGGGAUCGUGGGUUCA
AUUCCCACAGAGGGCA

72

>M68929.1_166929‐166856
GGGCUUAUAGUUUAAUUGGUUCAAACGC
ACCGCUCAUAACGGUGAUAUUGUAGGUU
CGAGUCCUACUAAGCCUA

 74

5S_rRNA

>X52300.1_5‐122

37

CCCCGUGCCUUUAGCGCCUCGGAACCACC
CCACUCCAUGCCGAACUGGGUCGUGAAAC
GUGGCAGCGCCUAUGAUACUUGGACCGC
AGGGUCCUGGAAAAGUCGGUGCAGUGCG
GGGG

118

>M19950.1_1‐120
GGUUGCGGCCAUAUCUAGCAGAAAGCAC
CGUUUCCCGUCCGAUCAACUGUAGUUAA
GCUGCUAAGAGCCUGACCGAGUAGUGUA
GAGGGCGACCAUACGCGAAACUCAGGUG
CUGCAAUC

120

Cobalamin

>AP001508.1_5769‐5939

56

ACUUUAAUAGGCUUCUUAGGUGCCUCAU
UUGUAGGAGAAUAGGGAAGUUCUGAAAC
GACGCGGAGCCCGCCACUGUAGUCGAGG
AGCUGCUACAAUACCACUGGGAAACUGG
GAAGGUGUAGCAUGCGAUGAAUCGGAGC
CAGGAGACCUGCCUAAGAAGAUGCGCUG
UCA

171

>AE017037.1_59439‐59627
CCUUUCAAAAGGAAAAUAGGUACACGAA
CAUUUCGUUUCGUGUUUAAAAGGGAAGC
UUGGUGAAACUCCAACACGGUCCCGCCAC
UGUAAAUGCUGAGAUUUCUUUUUGAUA
CCACUGUGAAAACGGGAAGGUAAAAGAA
AUUAUAUGAAGCAUAAGUCAGGAGACCU
GCCUGUUUUAACAACACUGAU

189

Chapter 4: Results

62

4.1.1 The results of Foldalign version 2.0.3

Since the first version of the Foldalign method (i.e. Foldalign version 1.0) is really

outdated now, we start with the second version of the Foldalign method (i.e. Foldalign

version 2.0.3). The program of Foldalign version 2.0.3 is available online at

[http://foldalign.kvl.dk]. The selected parameters from this version to our test are

defined according to the manual of this program as follows:

-max_diff <number> this parameter sets the maximum length difference (i.e. delta-

heuristic) to <number>. It is essential for memory and time consumption. In this thesis,

the focus is on the time behavior against different delta values in testing the speed of

the program. A default value of this parameter is infinity.

- global this parameter turns on the global alignments.

- nobranch this parameter turns off the branching-structure.

For this program, these parameters were tested and are displayed in two tables

according to the parameter (-nobranch), in addition to the global parameter and

different values of delta (i.e. parameter -max_diff) in both tables. Therefore, the

observation on the time behavior against these parameters differs. In general, the user

time in the table of branch case (table 4.1.1.b) is much higher than non-branch case

(table 4.1.1.a) over all datasets of RNA families but in different ratios depending on the

sequence lengths. For example, the tRNA dataset is much faster than the other datasets

in both tables (i.e. in branch case and non-branch case), where the speed differs by a

factor about 2 between -max_diff 15 and 45 for Table/Figure 4.1.1.a, and this is nearly

the same factor for Table/Figure 4.1.1.b but only at slower speed. For 5S-rRNA, a

factor is different between these two tables, where this factor is about 2.5 between -

max_diff 15 and 45 for Table/Figure 4.1.1.a, and this factor is less than 4 for

Table/Figure 4.1.1.b. This means the effect is stronger for longer sequences in

branching structure. In other cases, Cobalamin has no possibility to aligning at smaller

delta values (i.e. parameter -max_diff), such as -max_diff = 15 which was run in our

test. Since the global alignment must work on the entire length of sequences, the length

difference between two sequences must be less than or equal to delta value. Whereas

the length difference between the Cobalamin sequences is 18 nucleotides which is more

than the maximum length difference (-max_diff 15), then it was not worked at this delta

Chapter 4: Results

63

value. In contrast with tRNA and 5S_rRNA datasets that have length differences less

than or equal to delta value (i.e. -max_diff = 15). Now in the following tables and

figures (Tables/Figures 4.1.1.a and b), the user time is increased by increasing the delta

values over all datasets of RNA families.

Tables 4.1.1.a: This table shows the time behavior (in second) of the global alignments
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) without branching structures (i.e. turns on the parameter -nobranch).

RNA Families Options Run Time

tRNA

‐max_diff ‐global ‐nobranch User Time (sec.)
15 TRUE TRUE 5.60
25 TRUE TRUE 8.27
35 TRUE TRUE 10.77
45 TRUE TRUE 11.28

5S_rRNA

‐max_diff ‐global ‐nobranch User Time (sec.)
15 TRUE TRUE 29.71
25 TRUE TRUE 47.75
35 TRUE TRUE 62.70
45 TRUE TRUE 75.67

Cobalamin

‐max_diff ‐global ‐nobranch User Time (sec.)
15 TRUE TRUE not possible
25 TRUE TRUE 203.74
35 TRUE TRUE 279.44
45 TRUE TRUE 349.29

Tables 4.1
(i.e. turns
max_diff)

RNA Fa

tRN

5S_rR

Cobala

Figure 4
alignment
parameter
nobranch)

1.1.b: This t
on the para

) with branch

amilies

NA

RNA

amin

.1.1.a: This
ts (i.e. turns
r -max_diff)
).

table shows t
ameter -globa
hing structure

‐max_diff
15
25
35
45

‐max_diff
15
25
35
45

‐max_diff
15
25
35
45

s figure sho
on the para

) without br

64

the time beha
al) against th
es (i.e. turns

Options
‐global
TRUE
TRUE
TRUE
TRUE
‐global
TRUE
TRUE
TRUE
TRUE
‐global
TRUE
TRUE
TRUE
TRUE

ows the tim
ameter -globa
ranching str

avior (in seco
he different
off the param

‐nobran
FALSE
FALSE
FALSE
FALSE

‐nobran
FALSE
FALSE
FALSE
FALSE

‐nobran
FALSE
FALSE
FALSE
FALSE

me behavior
al) against th
ructures (i.e

ond) of the g
delta values
meter -nobra

nch Us
E
E
E
E
nch Us
E
E
E
E
nch Us
E
E
E
E

(in second
he different

e. turns on

Chapter 4: R

global alignm
(i.e. parame

anch).

Run Time
ser Time (sec

8.03
13.20
16.68
18.58

ser Time (sec
60.55
122.10
179.88
233.49

ser Time (sec
not possible

775.52
1268.85
1801.33

d) of the g
delta values
the parame

Results

ments
eter -

c.)

c.)

c.)

lobal
s (i.e.
ter -

Figure 4
alignment
parameter

4.1.2 T

This versi

faster. T

[http://fold

our test, t

(i.e. Folda

version (F

program a

-max_diff

heuristic)

alignment

nucleotide

.1.1.b: This
ts (i.e. turns
r -max_diff)

The result

ion refers to

The program

dalign.kvl.dk

the first two

align 2.0.3),

Foldalign 2.1

as follows:

f <number>

to <number

ts where the

es, -max_diff

s Figure sho
on the para
with branchi

ts of Fold

the last ver

m of Fol

k]. The follo

parameters

plus the ne

1.0). These p

 this param

r>. A defaul

length diffe

ff is set to 1.1

65

ows the tim
ameter -globa
ing structure

dalign ve

sion of the F

ldalign ver

owing param

are the same

ew paramete

arameters ar

meter sets th

lt value here

rence betwe

1 times the le

me behavior
al) against th
s (i.e. turns o

ersion 2.

Foldalign me

rsion 2.1.0

meters were s

e as in the p

er which rep

re defined ac

he maximum

e for this pa

en the input

ength differen

r (in second
he different
off the param

1.0

ethod, which

is availa

selected from

previous vers

presents the h

ccording to th

m length diffe

arameter is 2

sequences i

nce.

Chapter 4: R

d) of the g
delta values

meter -nobran

h is known m

able online

m this version

sion of Fold

heuristic for

he manual of

erence (i.e. d

25. In the gl

is greater tha

Results

lobal
s (i.e.
nch).

much

e at

n for

align

r this

f this

delta-

lobal

an 25

Chapter 4: Results

66

-global this parameter turns on the global alignments.

-no_pruning this parameter turns off the pruning.

In general, this version is more efficient as compared with the previous version of

Foldalign. The observed time behavior was much faster in the pruning case against the

different delta values (i.e. parameter -max_diff). In this program, these parameters are

displayed into two tables according to the parameter (-no_pruning), in addition to the

global parameter and the different delta values (i.e. parameter -max_diff) in both tables.

For the pruning case in table 4.1.2.b, the user time was much lower than no-pruning

case in table 4.1.2.a over all datasets of RNA families with different ratios. For

example, in the Table/Figure 4.1.2.a the parameter -max_diff seems to have no effect

on tRNA in absolute time, however the speed differs by a factor of about 2.5 between -

max_diff 15 and 45. For Cobalamin this factor is about 4. This means the effect is

definitely there already for tRNA, however is stronger for longer sequences. However,

in the Table/Figure 4.1.2.b, pruning makes the parameter -max_diff less important,

where the speed of tRNA has a very slight difference nearly by a factor about 1.4

between -max_diff 15 and 45. For Cobalamin this factor is more than 2, again the effect

is stronger for longer sequences. In this program, Cobalamin dataset has possibility to

align over all different delta values which were selected in our test as compared with

the previous version. As mentioned above, the delta value (i.e. parameter -max_diff) is

set to 1.1 times the length difference during the global alignments where the length

difference between the input sequences is more than delta value. (This is due to the

improvement performed on the delta-parameter, mentioned before in the theoretical

part of this version about the delta heuristic during the global alignment the delta-

parameter can be utilized also for restricting the start coordinates of a sub-alignment in

the second sequence [HTG07]).

Therefore, this helps to speed up the implementation of this version comparing with the

implementation of the previous version.

Chapter 4: Results

67

Tables 4.1.2.a: This table shows the time behavior (in second) at the global alignments
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) without pruning (i.e. turns on the parameter -no_pruning).

RNA Families Options Run Time

tRNA

‐max_diff ‐global ‐no_pruning User Time (sec.)
15 TRUE TRUE 2.14
25 TRUE TRUE 3.81
35 TRUE TRUE 4.81
45 TRUE TRUE 5.39

5S_rRNA

‐max_diff ‐global ‐no_pruning User Time (sec.)
15 TRUE TRUE 10.09
25 TRUE TRUE 22.14
35 TRUE TRUE 32.92
45 TRUE TRUE 41.41

Cobalamin

‐max_diff ‐global ‐no_pruning User Time (sec.)
15 TRUE TRUE 50.57
25 TRUE TRUE 84.55
35 TRUE TRUE 148.26
45 TRUE TRUE 209.96

Tables 4.1.2.b: This table shows the time behavior (in second) at the global alignments
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) with pruning (i.e. turns off the parameter -no_pruning).

RNA Families Options Run Time

tRNA

‐max_diff ‐global ‐no_pruning User Time (sec.)
15 TRUE FALSE 0.56
25 TRUE FALSE 0.71
35 TRUE FALSE 0.77
45 TRUE FALSE 0.79

5S_rRNA

‐max_diff ‐global ‐no_pruning User Time (sec.)
15 TRUE FALSE 1.43
25 TRUE FALSE 2.01
35 TRUE FALSE 2.45
45 TRUE FALSE 2.70

Cobalamin

‐max_diff ‐global ‐no_pruning User Time (sec.)
15 TRUE FALSE 27.77
25 TRUE FALSE 39.44
35 TRUE FALSE 51.75
45 TRUE FALSE 59.63

Figure 4
alignment
parameter

Figure 4
alignment
parameter

.1.2.a: This
ts (i.e. turns
r -max_diff)

.1.2.b: This
ts (i.e. turns
r -max_diff)

s figure sho
on the para
without prun

s figure sho
on the para
with pruning

68

ows the tim
ameter -globa
ning (i.e. turn

ows the tim
ameter -globa
g (i.e. turns o

me behavior
al) against th
ns on the par

me behavior
al) against th
off parameter

(in second
he different
rameter -no_p

(in second
he different
r -no_prunin

Chapter 4: R

d) of the g
delta values

_pruning).

d) of the g
delta values

ng).

Results

lobal
s (i.e.

lobal
s (i.e.

Chapter 4: Results

69

4.1.3 The results of Dynalign

This program includes all restrictions or heuristics which occurred with Dynalign

method. The program is available online at http://rna.urmc.rochester.edu/dynalign.html.

The selected parameter of this program to run our test is defined according to the

manual of this program as follows:

imaxseparation this parameter is a user-specified parameter, M, which was defined as

the measure of maximum permissible insertion parameter in the Dynalign method (i.e.

correction or recast implementation of parameter M). As mentioned before in the

theoretical part of Dynalign method, there is no analytic guidance to select the values of

this parameter. Therefore, the imaxseparation parameter is also used in this program to

turn on a probabilistic alignment constraint by entering -99 described by Harmanci et

al. [HSM07].

Furthermore, there are other parameters which have effect on the speed of the

implementation that are not of interested to this thesis. One of these parameters is

“singlefold_subopt_percent” which controls a pre-filter step. Dynalign first calls a

single sequence secondary structure prediction algorithm. Base pairs for single

sequences that result only in relatively high free energy structures are forbidden in the

subsequent Dynalign calculation. So this saves calculation time. This is described by

Uzilov et al. [UKM06]. Therefore, singlefold_subopt_percent parameter sets the

threshold for what constitutes a "high" free energy. By default, it is 30% or greater

above the lowest folding free energy change. In our test, we fix this parameter to

default value of 30.

In the following table (table 4.1.3), the program is run at different values of parameter

M (i.e. parameter imaxseparation) which was used as a maximum insertion parameter

as well as to turn on a probabilistic alignment constraint by entering -99. The strength

of the latter depends on the similarity of the sequences. Therefore, in our dataset

examples of RNA families, we selected sequences which have approximately the same

similarity and this is shown in the last column in table 4.1.1. The time behavior was

increased over all datasets of RNA families in different ratios by increasing the values

of parameter M (i.e. parameter imaxseparation), where M is used as a maximum

insertion parameter in Dynalign. The effect of increasing time is definitely clear for

Chapter 4: Results

70

tRNA dataset, however is stronger for the longer sequences like Cobalamin. For a

parameter imaxseparation which was used to turn on a probabilistic alignment

constraint by entering -99, the effect differed according to the different datasets which

were used. For tRNA, the user time is less than or nearly has no significant effect on

increasing time. In contrast, 5S-rRNA and Cobalamin which have significant

increasing in the user time.

In the following figure (Figure 4.1.3), we can see the time behavior (in second) against

different values of parameter M (i.e. parameter imaxseparation), where M is used as a

maximum insertion parameter in Dynalign. The user time is increased by increasing the

values of parameter imaxseparation over all datasets of RNA families in different

ratios.

Table 4.1.3: This table shows the time behavior (in second) against the different values
of parameter M (i.e. parameter imaxseparation) which was used as a maximum
separation parameter for the first heuristic and was also used by entering -99 to turning
on a probabilistic alignment constraint for last heuristic in Dynalign method.

RNA Families Options Run Time

tRNA

imaxseparation User Time (sec.)
‐99 1.02
4 1.23
6 3.14
10 10.11
14 20.18

5S_rRNA

imaxseparation User Time (sec.)
‐99 88.13
4 7.76
6 23.31
10 85.44
14 184.43

Cobalamin

imaxseparation User Time (sec.)
‐99 89.22
4 26.85
6 81.43
10 331.82
14 779.89

Figure 4.
values of
maximum

4.1.4 T

Since Lo

performed

[http://ww

run our te

the manua

--min-prob

default va

--max-diff

default va

--max-diff

structural

.1.3: This fi
f parameter

m separation p

The result

ocARNA is

d our test

ww.bioinf.un

est for illustr

al of this pro

b this param

alue for this p

ff-am this par

alue is -1 whi

ff-match this

positions. A

igure shows
M (i.e. para
parameter fo

ts of Loc

PMcomp-b

on the Lo

i-freiburg.de

rating the tim

gram as follo

meter sets t

parameter is

rameter sets

ich represent

s parameter

A default valu

71

the time be
ameter imax

or the first he

cARNA

ased metho

ocARNA p

e/Software/L

me behavior

ows:

the minimal

0.0005.

the maxima

ts “turn-off”

sets the ma

ue is also -1 w

ehavior (in s
xseparation)
euristic in Dy

od it is mo

rogram wh

ocARNA/].

in this progr

l probability

al difference

option.

aximal diffe

which repres

second) agai
which was

ynalign meth

ore efficient

ich is avai

The parame

ram, are defi

y (i.e. cutoff

for sizes of

erence for s

sents “turn-of

Chapter 4: R

inst the diff
used only

od.

. Therefore,

ilable onlin

eters selecte

ined accordin

ff-probability

f matched arc

sizes of mat

ff” paramete

Results

ferent
as a

, we

ne at

ed to

ng to

y). A

cs. A

tched

er.

Chapter 4: Results

72

 In the following Table 4.1.4.a, shows the time behavior against different cut-off

probability values (i.e. parameter --min-prob) and turn off of the two parameters (--

max-diff-am, --max-diff-match) by setting them -1, is increased by decreasing the cut-

off probability values which controls the per-filtering the number of base pairs as

mentioned before in theoretical part of LocARNA. However, this increasing of the user

time differs depending on the dataset lengths. For example, the parameter --min-prob

seems to have almost no effect on tRNA in absolute time; however the speed differs by

a factor of about 2 between --min-prob 0.05 and 0.00005. For Cobalamin this factor is

more than 9.5, where the parameter --min-prob at smaller values has a significant

effect, such as at --min-prob 0.0005 and 0.00005. This means the effect is stronger for

longer sequences, especially for the smaller values of --min-prob.

Therefore, this can be expected from the time behavior corresponding to the strength of

the cut-off probability heuristic (i.e. parameter --min-prob) that has a significant

influence on the longer sequences like Cobalamin or on the infinite sequence lengths.

Furthermore, this cut-off probability heuristic (i.e. parameter --min-prob) has much

larger effect than ∆-parameters (i.e. the parameters --max-diff-am and --max-diff-

match) on the time behavior over all our datasets, especially for the longer sequences

like Cobalamin.

Figure 4.1.4.a shows the time behavior (in second) against the different values of

parameter --min-prob and with turn off the other parameters (--max-diff-am, --max-

diff-match), which is increased by decreasing the parameter --min-prob over all

datasets but in different ratios.

Table 4.1
values of
parameter

RNA Fam

tRNA

5S_rRN

Cobalam

Figure 4.
values of
parameter

1.4.a: This t
f cut-off pro
rs (‐‐max‐diff

milies

A

‐‐mi
0
0.
0.0
0.0

NA

‐‐mi
0
0.
0.0
0.0

min

‐‐mi
0
0.
0.0
0.0

1.4.a: This
f cut-off pro
rs (‐‐max‐diff

table shows
obability (i.e
f‐am, ‐‐max‐

n‐prob ‐‐m
0.05
.005
0005
00005
n‐prob ‐‐m
0.05
.005
0005
00005
n‐prob ‐‐m
0.05
.005
0005
00005

figure show
obability (i.e
f‐am, ‐‐max‐

73

the time be
e. parameter
diff‐match) b

Options
max‐diff‐am

‐1
‐1
‐1
‐1

max‐diff‐am
‐1
‐1
‐1
‐1

max‐diff‐am
‐1
‐1
‐1
‐1

s the time b
e. parameter
diff‐match) b

ehavior (in s
r --min-prob
by setting the

s
‐‐max‐dif

‐1
‐1
‐1
‐1

‐‐max‐dif
‐1
‐1
‐1
‐1

‐‐max‐dif
‐1
‐1
‐1
‐1

behavior (in
r --min-prob
by setting the

second) agai
b) and turn
em to -1.

ff‐match
1
1
1
1
ff‐match
1
1
1
1
ff‐match
1
1
1
1

second) aga
b) and turn
em to -1.

Chapter 4: R

inst the diff
off each of

Run Time
User Time (s

0.17
0.20
0.25
0.34

User Time (s
0.35
0.43
0.55
0.85

User Time (s
1.10
1.78
5.47
10.54

ainst the diff
of each of

Results

ferent
f the

e
sec.)

sec.)

sec.)

ferent
f the

Chapter 4: Results

74

In Table 4.1.4.b.1),shows the time behavior against different values of ∆match-parameter

(i.e. parameter --max-diff-match) and turn off ∆am-parameter (i.e. parameter --max-diff-

am) by setting it to -1 in addition to fixing the cut-off probability value to default value

(i.e. parameter --min-prob = 0.0005), which is increased by increasing the values of

parameter --max-diff-match. However, this increasing of the user time differs

depending on the dataset lengths. For example, the parameter --max-diff-match seems

to have almost no effect on tRNA in absolute time; however the speed differs by a

factor of about 1.3 between --max-diff-match 15 and 60. For Cobalamin this factor is

more than 3.2. This means the effect is also stronger for longer sequences. Figure

4.1.4.b.1) shows this case.

Analogously, table 4.1.4.b.2) shows the behavior time against different values of ∆am-

parameter (i.e. parameter --max-diff-am) and with turn off ∆match-parameter (i.e.

parameter --max-diff-match) by setting it to -1 in addition to fixing the cut-off

probability value to default value (i.e. parameter --min-prob = 0.0005), which is

increased by increasing the values of parameter --max-diff-am. However, this

increasing of the user time also differs depending on the dataset lengths. For example,

the parameter --max-diff-am seems to have almost no effect on tRNA in absolute time;

however the speed differs by a factor of less than 1.2 between --max-diff-am 15 and 60.

For Cobalamin this factor is more than 2. Again, the effect is stronger for longer

sequences. Figure 4.1.4.b.2) shows this case.

Table 4.1.4.c, shows the test results of the time behavior against different values of

parameter --max-diff-am and by varying the values of parameter --max-diff-match to

two times the values of parameter --max-diff-am in addition to fixing the cut-off

probability value to default value (i.e. parameter --min-prob = 0.0005). The time

behavior is again increased by increasing the values of parameter --max-diff-am but

such increasing differs on increasing in table 4.1.4.b.2) in different ratios. For example,

the parameters --max-diff-am and --max-diff-match seem to have almost no effect on

tRNA in absolute time; however the speed differs by a factor of more than 1.2 between

--max-diff-am 15 and 60, and --max-diff-match 30 and 120. For Cobalamin this factor

is about 3, again the effect is stronger for longer sequences. Figure 4.1.4.c shows this

case.

Chapter 4: Results

75

It can be seen that the strength of the ∆am-parameter (i.e. parameter --max-diff-am) has

larger effect than ∆match-parameter (i.e. parameter --max-diff-match) on the time

behavior.

Table 4.1.4.b.(1):This table shows the time behavior (in second) against the different
values of ∆match-parameter (i.e. parameter ‐‐max‐diff‐match) and turn off ∆am-parameter
(i.e. parameter --max-diff-am) by setting it to -1 in addition to fixing the cut-off
probability value to default value (i.e. parameter --min-prob = 0.0005).

RNA Families Options Run Time

tRNA

‐‐min‐prob ‐‐max‐diff‐am ‐‐max‐diff‐match User Time (sec.)

0.0005 ‐1 15 0.19

0.0005 ‐1 30 0.22

0.0005 ‐1 60 0.25

5S_rRNA

‐‐min‐prob ‐‐max‐diff‐am ‐‐max‐diff‐match User Time (sec.)

0.0005 ‐1 15 0.33

0.0005 ‐1 30 0.38

0.0005 ‐1 60 0.48

Cobalamin

‐‐min‐prob ‐‐max‐diff‐am ‐‐max‐diff‐match User Time (sec.)

0.0005 ‐1 15 1.17

0.0005 ‐1 30 2.03

0.0005 ‐1 60 3.77

Chapter 4: Results

76

Table 4.1.4.b.(2): This table shows the time behavior (in second) against the different
values of ∆am-parameter (i.e. parameter ‐‐max‐diff‐am) and turn off ∆match-parameter
(i.e. parameter --max-diff-match) by setting it to -1 in addition to fixing the cut-off
probability value to default value (i.e. parameter --min-prob = 0.0005).

RNA
Families

Options Run Time

tRNA

‐‐min‐
prob

‐‐max‐diff‐
am

‐‐max‐diff‐
match

User Time
(sec.)

0.0005 15 ‐1 0.21
0.0005 30 ‐1 0.22
0.0005 60 ‐1 0.24

5S_rRNA

‐‐min‐
prob

‐‐max‐diff‐
am

‐‐max‐diff‐
match

User Time
(sec.)

0.0005 15 ‐1 0.36
0.0005 30 ‐1 0.40
0.0005 60 ‐1 0.46

Cobalamin

‐‐min‐
prob

‐‐max‐diff‐
am

‐‐max‐diff‐
match

User Time
(sec.)

0.0005 15 ‐1 2.17
0.0005 30 ‐1 3.14
0.0005 60 ‐1 4.45

Figure 4.
values ∆m

(i.e. param
probability

Figure 4
different v
parameter
cut-off pro

1.4.b.(1):Th
match-paramete
meter --max
y value to de

.1.4.b.(2): T
values of ∆
r (i.e. parame
obability val

is figure sho
er (i.e. param

x-diff-am) by
efault value (

This figure
am-parameter
eter --max-d
lue to default

77

ows the time
meter ‐‐max
y setting it
(i.e. paramet

shows the
r (i.e. param

diff-match) b
t value (i.e. p

behavior (in
x‐diff‐match)

to -1 in ad
er --min-prob

time behav
meter ‐‐max‐d

y setting it t
parameter --m

n second) aga
) and turn o
ddition to fi
b = 0.0005).

vior (in seco
diff‐am) and
to -1 in addit
min-prob = 0

Chapter 4: R

ainst the diff
off ∆am-param
ixing the cu

ond) against
d turn off ∆
tion to fixing

0.0005).

Results

ferent
meter
ut-off

t the
∆match-
g the

Table 4.1
parameter
parameter
(i.e. param
default va

RNA Fam

tRNA

5S_rRN

Cobalam

Figure 4.
parameter
parameter
parameter
value (i.e.

.4.c: This tab
r (i.e. parame
r (i.e. parame
meter --max-
alue (i.e. para

milies

A

‐‐mi
0.0
0.0
0.0

NA

‐‐mi
0.0
0.0
0.0

min

‐‐mi
0.0
0.0
0.0

.1.4.c: This
r (i.e. param
r --max-diff-m
r --max-diff-
 o parameter

ble shows th
eter --max-di
eter --max-di
diff-am) in a
ameter --min

n‐prob ‐‐m
0005
0005
0005
n‐prob ‐‐m
0005
0005
0005
n‐prob ‐‐m
0005
0005
0005

figure show
meter --max-

match) were
-am) in addit
r --min-prob

78

he time behav
iff-am) and w
iff-match) to
addition to fix
n-prob = 0.00

Options
max‐diff‐am

15
30
60

max‐diff‐am
15
30
60

max‐diff‐am
15
30
60

ws the time b
-diff-am) wh
e varied to tw
tion to fixing
= 0.0005).

vior against d
with varying
 two times th
xing the cut-

005).

s
‐‐max‐dif

30
60
12

‐‐max‐dif
30
60
12

‐‐max‐dif
30
60
12

behavior aga
here the val
wo times the
g the cut-off

different valu
the values o

he values of
-off probabil

ff‐match
0
0
20
ff‐match
0
0
20
ff‐match
0
0
20

ainst differen
lues of ∆matc

values of ∆a

f probability

Chapter 4: R

ues of ∆am-
of ∆match-
∆am-paramet
ity value to

Run Time
User Time (s

0.20
0.22
0.25

User Time (s
0.33
0.40
0.46

User Time (s
1.43
2.66
4.26

nt values of
ch-parameter
am-parameter

y value to de

Results

ter

e
sec.)

sec.)

sec.)

∆am-
(i.e.

r (i.e.
efault

Chapter 4: Results

79

4.2 Discussion of Results

The dataset examples that were tested by all programs, they are three different dataset

types of RNA families which have different lengths and approximately the same

similarity. The different sequence lengths of these examples give an intuition about the

speed influences which interested us for comparing between the programs. Different

time behaviors are observed in each example of dataset against the options of each

program. In addition to set the alignment type to global alignment which is used in all

programs, alignment type corresponds in the Sankoff algorithm. Some methods like

Foldalign 2.0, 2.1 versions and LocARNA implement local alignment but can also be

applied for global alignment.

In general, each parameter has a significant influence on the time depending on

program type and sequence lengths.

Since the global alignment is studied here, the ߣ-heuristic in the Foldalign 2.0, 2.1

programs is not used. We analyzed only the ߜ-heuristic (the length difference between

two sequences which being aligned). However, we tested how fast the stem-loop

structure as compared with branching structure by turning on the option -nobranch in

the Foldalign 2.0. Moreover, the pruning-heuristic in Foldalign 2.1 which was much

faster as compared with no pruning.

As mentioned before in the theoretical part of the Foldalign method the recursions of

2.0 and 2.1 versions are pretty much the same except for the few improvements or

simplifications in the energy model. The main difference between the 2.0 and 2.1

versions is the use of the pruning heuristic which throws away all alignments with a

score below a cut off.

It is assumed at some examples in Foldalign 2.1 that we could not get an optimal

solution, but when these examples are applied, Foldalign did solve them. As it seems,

this is explained by recalculation of stems. Without such recalculation the example

would not work. Therefore, we should expect in most cases to get an optimal solution,

but it is not guaranteed.

The parameters of LocARNA program have great influence on the run time, where the

two parameters (--max-diff-match and --max-diff-am) can be compared with the

Chapter 4: Results

80

parameter M-heuristic and ߜ-heuristic respectively. In addition it uses the cutoff

probability-heuristic, which filters the base pairs.

As seen from our results, LocARNA represents the fastest method even when turning

off its stronger parameters, and that because it considers as a simplified method of the

Sankoff algorithm. In contrast with Dynalign which is used significant heuristics but it

is still slow and that because it has the full energy model. Foldalign 2.1 is faster than

Dynalign due to its special scoring scheme, but it still slower than LocARNA even

using the stronger heuristics.

Since the used dataset of RNA families are only three examples, the accuracy

estimation of the alignments cannot calculated because it is required the significant

numbers of sequences.

81

Chapter Five

Conclusion

5.1 Conclusion

After looking into the original form of the Sankoff algorithm for simultaneous Folding

and Alignment of RNA sequences, as well as the different methods are implemented to

this algorithm by using diverse restrictions on either folding or alignment parts. These

methods are tools used for pairwise structural alignment of RNA sequences. In this

thesis, we have concentrated on the heuristics of these methods that make the Sankoff

algorithm applicable in practice.

The comparison of these methods to the original form “Sankoff Algorithm” is

described as follows: Dynalign is the method closest to the Sankoff algorithm. It has

several heuristics but in this thesis we are interested in the most significant two

heuristics which are parameter M and probabilistic alignment constraint. Foldalign is

the first implementation of the simultaneous Folding and Alignment of RNA

sequences. It represents a very special method based on energy model that includes a

scoring system of one matrix and different states; the most significant heuristics that are

used for the Foldalign method, are ߣ and ߜ-restrictions with stem-loop for the Foldalign

1.0, these restrictions with branching-loop for Foldalign 2.0 and the pruning for

Foldalign 2.1. PMcomp and LocARNA are a simplification of the Sankoff algorithm,

which are based on the probabilities of base pairs of RNA sequences as a structure

model. The strongest heuristics used in LocARNA, are the cutoff-probability, ∆am and

∆match- parameters for arc matching and matched structural positions respectively.

Chapter 5: Conclusion

82

The heuristics of these methods are considered strong heuristics which have significant

influence on the speed. The comparisons among the heuristics can give such ideas to

combine between the heuristics of these methods in such a way that implement either a

new method or the improved versions of the current methods on the basis of the

original form “Sankoff Algorithm”.

The traditional M parameter in Dynalign method is comparable to ∆match- parameter in

LocARNA, as shown here:

Dynalign: |i - k| ൑ M,

LocARNA: |i - k| ൑ ∆match and |j - l| ൑ ∆match,

but with some differences. For the Dynalign method, the constraint of M parameter has

to be satisfied for all alignment edges (i, k). In contrast, in the LocARNA method, the

constraint of ∆match-parameter has to be satisfied only for all structural alignment edges.

As well as, for the ߜ-restriction in Foldalign method is comparable to ∆am- parameter in

LocARNA, as shown here:

Foldalign: |(j – i) – (l - k)| ൑ ߜ,

LocARNA: |(j – i) – (l - k)| ൑ ∆am,

but also for the same reason there is a difference. For the Foldalign method, the ߜ-

restriction has to be satisfied for all sub-alignments. In contrast, in the LocARNA

method, the constraint of ∆am-parameter has to be satisfied only for all structural sub-

alignments.

Chapter 5: Conclusion

83

5.2 Future Work

There are many possible ways for extending Sankoff-style methods further. One can

find new methods or improved versions of the current methods on the basis of the

original form “Sankoff Algorithm” for simultaneous Folding and Alignment of RNA

sequences, by combining some heuristics of the current methods, such that it gives the

good accurate alignments as well as significantly fast and requiring low memory.

If we use the idea of probabilistic alignment constraint of Dynalign in the LocARNA

method, we expect that the new generated improved version of LocARNA will be

much faster and taking into consideration the preservation of the accurate alignments.

The same positive effect is expected, if we use the pruning idea of the Foldalign 2.1 in

the LocARNA method.

On the other side, if we use the idea of significant base pairs of LocARNA in the

Dynalign or Foldalign (especially for Foldalign 2.1), we expect that the new generated

versions for Dynalign or Foldalign 2.1 will improve to be more efficient methods much

faster and still have accurate alignments.

Bibliography

84

Bibliography

[BW04] Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA.
Journal of Bioinformatics and Computational Biology (JBCB), 2 no. 4 pp. 681-698,
2004.

[CB2000] P. Clote and R. Backofen. Computational Molecular Biology: An
Introduction, pages 1–20. John Wiley and Sons Ltd, 2000.

[CK91] Chiu DK, Kolodziejczak T: Inferring consensus structure from nucleic acid
sequences. Comput Appl Biosci 1991, 7:347-352.

[DE06] Dowell R, Eddy S (2006) Efficient pairwise RNA structure prediction and
alignment using sequence alignment constraints. BMC Bioinformatics 7: 400.

[DEK+M99] Durbin R, Eddy SR, Krogh A, Mitchison G: Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids Cambridge, UK:
Cambridge University Press; 1999.

[G99] Gotoh O: Multiple sequence alignment: algorithms and applications. Adv
Biophys 1999, 36:159-206.

[GG04] Gardner, P.P. and Giegerich, R. 2004. A comprehensive comparison of
comparative RNA structure prediction approaches. BMC Bioinformatics 5: 140.

[GHB+S97] Gorodkin J, Heyer L, Brunak S, Stormo G: Displaying the information
contents of structural RNA alignments. Comput Appl Biosci 1997, 13:583-586.

[GHS97a] Gorodkin J, Heyer L J, Stormo G D. Finding common sequence and
structure motifs in a set of RNA sequences. Nucleic Acids Res., 1997, 25(18): 3724-
3732.

[GHS97b] Gorodkin J., Heyer,L.J. and Stormo,G.D. (1997) Finding the most
significant common sequence and structure motifs in a set of RNA sequences. Nucleic
Acids Res., 25, 3724–3732.

[GPH+PS92] Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD: Identifying
constraints on the higher-order structure of RNA: continued development and
application of comparative sequence analysis methods. Nucleic Acids Res 1992,
20:5785-5795.

[H05] Holmes I. Accelerated probabilistic inference of RNA structure evolution.
BMC Bioinformatics. 2005 Mar 24; 6:73.

[HBS04] Hofacker, I.L., Bernhart, S.H., and Stadler, P.F., Alignment of RNA base
pairing probability matrices, Bioinformatics, 20(14):2222–2227, 2004.

[HFB+S94] Hofacker IL, Fontana W, Bonhoeffer S, Stadler PF: Fast folding and
comparison of RNA secondary structures. Monatshefte fur Chemie 1994, 125:167-188.

[HFS02] Hofacker I, Fekete M, Stadler P: Secondary structure prediction for aligned
RNA sequences. Journal of Molecular Biology 2002, 319(5):1059-1066.

Bibliography

85

[HLS+G05] Havgaard J, Lyngsø R, Stormo G, Gorodkin J (2005) Pairwise local
structural alignment of RNA sequences with sequence similarity less than 40%.
Bioinformatics 21: 1815–1824.

[HSM07] Harmanci AO, Sharma G, Mathews DH: Efficient pairwise RNA structure
prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics
2007, 8:130.

[HTG+K03] Hcِhsmann M, Tlِler T, Giegerich R, Kurtz S: Local similarity of RNA
secondary structures. Proc of the IEEE Bioinformatics Conference 2003:159-168.

[HTG07] Havgaard JH, Torarinsson E, Gorodkin J: Fast pairwise structural RNA
alignments by pruning of the dynamical programming matrix. PLoS Comput Biol 2007,
3:1896-1908.

[JLM+Z02] Jiang T, Lin G, Ma B, Zhang K: A general edit distance between RNA
structures. Journal of Computational Biology 2002, 9(2):371-388.

[KE03] Klein R, Eddy S: RSEARCH: Finding homologs of single structured RNA
sequences. BMC Bioinformatics 2003, 4:44.

[KH03] Knudsen B, Hein J: Pfold: RNA secondary structure prediction using
stochastic context-free grammars. Nucleic Acids Research 2003, 31(13):3423-3428.

[M90] McCaskill JS: The Equilibrium Partition Function and Base Pair Binding
Probabilities for RNA Secondary Structure. Biopolymers 1990, 29:1105-1119.

[MSZ+T99] Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. (1999). Expanded
sequence dependence of thermodynamic parameters provides improved prediction of
RNA secondary structure. J. Mol. Biol. 288, 911-940.

[MT02] Mathews DH, Turner DH. Dynalign: An Algorithm for Finding the Secondary
Structure Common to two RNA Sequences. J Mol Biol. 2002; 317: 191–203. doi:
10.1006/jmbi.2001.5351.

[MT78] Michael S. Waterman and Temple F. Smith. RNA secondary structure: a
complete mathematical analysis. Math. Biosci., 42(3–4):257–266, 1978.

[N80] Ruth Nussinov and Ann B. Jacobson. Fast algorithm for predicting the secondary
structure of single stranded RNA. Proc. Natl. Acad. Sci. (USA), 77(11):6309–6313,
1980.

[NHH00] Notredame C, Higgins D, Heringa J: T-COFFEE: A novel method for fast
and accurate multiple alignment. Journal of Molecular Biology 2000, 302:205-217.

[NW70] Needleman, S. B. & Wunsch, C. D. (1970). A general method applicable to
the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48,
443-453.

[PS1] Protocol S1: Supplementary Material for “Fast pairwise local structural RNA
alignments by pruning of the dynamical programming matrix” Jakob H. Havgaard,
Elfar Torarinsson, Jan Gorodkin.

Bibliography

86

[PTW99] Pace, N.R., Thomas, B.C., and Woese, C.R. 1999. Probing RNA structure,
function, and history by comparative analysis. In The RNA world, 2nd ed. (eds. R.F.
Gesteland et al.), pp. 113–141. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor, NY.

[S85] Sankoff D, Simultaneous solution of the RNA folding, alignment, and proto-
sequence problems. SIAM J Appl Math 1985, 45:810-825.

[S88] Shapiro BA: An algorithm for comparing multiple RNA secondary structures.
Comput Appl Biosci 1988, 4:387-393.

[SB03] Siebert S, Backofen R: MARNA A server for multiple alignment of RNAs. In
Proceedings of the German Conference on Bioinformatics 2003:135-140.

[SW81] Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular
subsequences. J. Mol. Biol., 147, 195–197.

[SZ90] Shapiro B, Zhang K: Comparing multiple RNA secondary structures using tree
comparisons. CABIOS 1990, 6:309-318.

[T79] Tai K: The tree-to-tree correction problem. Journal of the ACM 1979, 26:422-
433.

[THG94] Thompson J, Higgins D, Gibson T: CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, positions-
specific gap penalties and weight matrix choice. Nucleic Acids Research 1994,
22:4673-4680.

[UKM06] Uzilov A, Keegan J, Mathews D: Detection of non-coding RNAs on the
basis of predicted secondary structure formation free energy change. BMC
Bioinformatics 2006, 7:173.

[WP08] from Wikipedia: http://en.wikipedia.org/wiki/RNA#cite_note-The_Cell-19.
URL

[WRH+SB07] Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R: Inferring
noncoding RNA families and classes by means of genome-scale structure-based
clustering. PLoS Comput Biol 2007, 3(4):400.

[WZ01] Wang Z, Zhang K: Alignment between two RNA structures. Lecture Notes in
Computer Science 2001, 2136:690-703.

[XSB+KSJ98] Xia, T., SantaLucia, J., Jr, Burkard, M. E., Kierzek, R., Schroeder, S. J.
& Jiao, X., et al. (1998). Parameters for an expanded nearest-neighbor model for
formation of RNA duplexes with Watson-Crick pairs. Biochemistry, 37, 14719-14735.

[ZMT99] Zuker,M., Mathews,D.H. and Turner,D.H. (1999) Algorithms and
thermodynamics for RNA secondary structure prediction: a practical guide. In
Clark,J.B.B. (ed.), RNA Biochemistry and Biotechnology. NATO ASI Series, Kluwer
Academic Publishers, Dordrecht, NL, pp. 11–43.

[ZS81] Zuker M, Stiegler P: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research 1981, 9:133-148.

[ZSh89] Zhang K, Shasha D: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing 1989, 18(6):1245-1262.

List of Figures

87

List of Figures

Figure 1.1: Three automated approaches for producing the aligned structure of
RNA sequences. 2

Figure 2.1.a: The RNA basepairs. 6

Figure 2.1.b: The RNA structure is represented at different levels. 7

Figure 2.3.a: RNA secondary structures elements. 15

Figure 2.3.b: RNA secondary structure representations. 15

Figure 3.1.a: This figure shows two equivalents, but they have highly dissimilar
secondary structures. 21

Figure 4.1.1.a: The time behavior of the global alignments against the different
delta values without branching structures. 64

Figure 4.1.1.b: The time behavior of the global alignments against the different
delta values with branching structures. 65

Figure 4.1.2.a: The time behavior of the global alignments against the different
delta values without pruning. 68

Figure 4.1.2.b: The time behavior of the global alignments against the different
delta values with pruning. 68

Figure 4.1.3: The time behavior against the different values of parameter M
which was used only as a maximum separation parameter for the first heuristic in
Dynalign method. 71

Figure 4.1.4.a: The time behavior against the different values of cut-off
probability and turn off the other parameters. 73

Figure 4.1.4.b.(1): The time behavior against the different values ∆match-
parameter and turn off ∆am-parameter, in addition to fixing the cut-off probability. 77

Figure 4.1.4.b.(2): The time behavior against the different values of ∆am-
parameter and turn off ∆match-parameter, in addition to fixing the cut-off
probability. 77

Figure 4.1.4.c: The time behavior against different values of ∆am-parameter,
where the values of ∆match-parameter are varied two times the values of ∆am-
parameter in addition to fixing the cut-off probability. 78

List of Tables

88

List of Tables

Table 4.1: Three examples of different length datasets of RNA families with their
sequence similarity. 61

Tables 4.1.1.a: The time behavior of the global alignments against the different
delta values without branching structures. 63

Tables 4.1.1.b: The time behavior of the global alignments against the different
delta values with branching structures. 64

Tables 4.1.2.a: The time behavior at the global alignments against the different
delta values without pruning. 67

Tables 4.1.2.b: The time behavior at the global alignments against the different
delta values with pruning. 67

Table 4.1.3: The time behavior against the different values of parameter M which
was used as a maximum separation parameter for the first heuristic and was also
used by entering -99 to turn on a probabilistic alignment constraint for last
heuristic in Dynalign method. 70

Table 4.1.4.a: The time behavior against the different values of cut-off
probability and turn off the other parameters. 73

Table 4.1.4.b.(1): The time behavior against the different values of ∆match-
parameter and turn off ∆am-parameter, in addition to fixing the cut-off probability. 75

Table 4.1.4.b.(2): The time behavior against the different values of ∆am-parameter
and turn off ∆match-parameter, in addition to fixing the cut-off probability. 76

Table 4.1.4.c: The time behavior against different values of ∆am-parameter, where
the values of ∆match-parameter are varied two times the values of ∆am-parameter, in
addition to fixing the cut-off probability. 78

	First Pages f3.pdf
	Chapter One f3.pdf
	Chapter Two f3.pdf
	Chapter Three f6.pdf
	Chapter Four f3.pdf
	Chapter Five f3.pdf
	Bibliography f4.pdf
	List of Figures f3.pdf
	List of Tables f3.pdf

