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Abstract

The combination of the alignment and secondary structure prediction solutions of two RNA
sequences can significantly improve the accuracy of the structural predictions. The
algorithm which simultaneously solves these problems tends to be computationally
expensive like the original form “Sankoff Algorithm” [S85]. Thus, the methods which
addressed this problem impose constraints that reduce the computational complexity by
restricting the folding and/or alignment and thus make the Sankoff algorithm more

practical.

In this thesis, reviewing the different Sankoff-style methods in such a way that compares
them corresponding to the Sankoff algorithm, through the parallels and differences. As well
as, the focus is on the heuristics (i.e. the imposed constraints on the alignments and/or the

structures) and comparing between them.
In practical, the work discusses:

- Sankoff algorithm which is the original form of simultaneous Folding and
Alignment of RNA sequences,

- Dynalign method which is the direct implementation of Sankoff algorithm,

- Foldalign method which is the first implementation of simultaneous Folding and
Alignment of RNA sequences,

- PMcomp/LocARNA which are a simplification of the Sankoff algorithm.

In this work, practical results are obtained for three dataset examples of RNA families that
have different sequence lengths, which indicate to the different influences on the speed of
each program depending on the type and strength of each heuristic in these methods. Thus,
the conclusion is combining some heuristics of the current methods in such a way that can
improve the computation efficiency as well as accuracy as a new method or new versions

of the current methods.
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Chapter One

Introduction

1.1 Motivation

The dynamic programming comparison for the sequences finds widespread applications
in the field of molecular biology, through the detection and evaluation of similarities

among a number of nucleic acid (DNA, RNA) sequences, as well as protein sequences.

This thesis will concentrate on the RNA sequences, precisely for the RNA secondary
structure which is essential for biological function. However, it is still difficult to
determine experimentally the RNA structure. The most popular algorithm to predict the
structure is the Minimum Free Energy (MFE) which folds a single sequence. This
method has been implemented via Mfold [ZS81] and RNAfold [HFB+S94].
Nevertheless, the accuracy of MFE structure prediction is still restricted in practice. In
general, the comparative methods [PTW99] are also used for determining RNA

structure but at the best accuracy.

Actually, there are three automated approaches for analyzing RNA sequences and
structures, which are illustrated below in Figure 1.1 [GGO04]. For Plan A, the aligned
sequences are obtained by using a standard multiple sequence alignment algorithms,
such as ClustalW [THGY94], t-coffee [NHHO0O0], prrn [G99]. Then a consensus
secondary structure is inferred by attempting to detect the covariation of base paired
sites in the alignment. The mutual information measure is frequently used to this
[CK91], [GPH+PS92] and [GHB+S97]. The tools which have been developed recently
are used a combination of energetic and a covariance terms [HFS02], or evolutionary
Stochastic Context-Free Grammar [KHO3]. This plan is at the step of multiple sequence
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Chapter 1: Introduction

alignment, the well preserved sequence is produced. Although this shows a very
successful approach, but it is still restricted with the sequence homology that should be
a high enough in the alignment step that helps to find structurally the consistent

mutations.
| Homologous RNA sequences
Plan A | Plan B Plan C
Fald
Sequence | Sankoff | Sequences
alignmant Fedelalign crystallegraphy/MNKR
feroffen dymalign ' MFE prediclion
E".IEtﬂrl'u' | CEH T 3
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Fold . Structure
alignment : A alignment
plokd \\\ P rnaloresier
ﬁ';'l‘i'al'mq “t ¥ f marma

' Aligned Structure s'

Figure 1.1: Three automated approaches for producing the aligned structure of RNA
sequences. [GG04]

For plan B, the Sankoff algorithm was the first strict mathematical treatments of
simultaneous alignment and folding for RNA sequences, which was proposed by David
Sankoff [S85]. This algorithm is computationally expensive (i.e. it requires a lot of
computational resources O(N*") for time and O(N®") for memory, where N is the
sequence length and n is the number of sequences). Therefore, several restricted
versions are implemented of the Sankoff algorithm impose some realistic constraints on
the size and/or shape of the substructures to reduce the computational complexities for
time and memory. These restricted versions can be divided into two groups according

to which scheme are used:

1) The energy-based methods which also can be distinguished into two groups:
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a) The methods implementing more or less a complete energy model of the
folding part, such as Foldalign [GHS97a, GHS97b, HLS+G05, HTGO07] which
is the first implementation of simultaneous Folding and Alignment of RNA
sequences and Dynalign [MT02, HSMO07] which is the method of direct
Sankoff algorithm.

b) The methods suppose that a structure model of the input sequences is given in
the form of weights for each base pair, such as PMcomp [HBS04] and
LocARNA [WRH+SB07] which are a simplification of the Sankoff algorithm.

There are other Sankoff-style methods based on the energy model, but in this thesis we
are only interested in the above methods, in addition to showing the heuristics for each

one.

2) The probabilistic methods that based on the Stochastic Context Free Grammars
(SCFG) parameters which are estimated from multiple sequence alignments. These
methods that we did not discussed in this thesis, like Stemloc [HO05] which is a pairwise
RNA structural alignment prediction program based on SCFG, it uses “fold” and
“alignment” envelopes to reduce the computation and memory. There is another

method known as also RNA structural alignment “Consan” [DEO06].

Finally, plan C is represented by aligning RNA secondary structures rather than
sequences. Due to the nature of the nested branching of RNA structures, these are
appropriately represented as trees. Since there is no ability to find sequence
conservation through alignment step, fold the sequences separately by using the
methods of single sequence structure prediction and then directly align the result
structures. There are several methods for aligning structures of RNA. In the measuring
the similarity by edit operations, the structure comparisons have been generalized to
trees ([T79], [S88], [SZ90], [ZSh89], [JLM+Z02], [WZ01], [SB03]), other methods
align locally (JHTG+KO03], [BWO04]). Since the main weakness of this approach is the
single sequence structure predictions are inaccurate in many times, that leads to affect
on all further analyses. Hence, this approach is too strong to be used when the reliable

structures are provided.
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1.2 Contribution

As mentioned above, that the original form of simultaneous Folding and Alignment of
RNA sequences is the Sankoff algorithm. Due to the expensive computations of this

algorithm, some restricted versions of the Sankoff algorithm are implemented.

The main contribution of this thesis is to review the different Sankoff-style methods
and concentrate on their heuristics which used to make the Sankoff algorithm
applicable in practice. In addition to compare these methods corresponding to the
original form “Sankoff Algorithm”, on the basis of the consideration of various aspects,

such as the system scoring scheme, the computation time and memory requirements.

Furthermore, this thesis gives also the results which are obtained from running the
programs of these methods under some special selected parameters (which represent
the heuristics) of these programs to compare the speed of these methods, as well as to

compare and analyze the identified heuristics.

1.3 Overview

Now an overview of the chapters that make up our work is given. Chapter 2 introduces
the background of the RNA biology and the required preliminaries for the purposes of
this thesis. Chapter 3 reviews the Sankoff-style methods and shows the points of the
parallels and differences corresponding to the Sankoff algorithm. In Chapter 4, the used
dataset examples of RNA families are given. In addition the obtained results from these
methods are presented and discussed. Finally, Chapter 5 summarizes the conclusions of

this thesis and gives an outlook for the future work in this area.




Chapter Two

Background and preliminaries

This chapter will give the background and preliminaries needed for the purposes of this
thesis, by introducing the methods of RNA sequence comparisons and the secondary
structure prediction that represent the important information before going to the

methods in the next chapter.

2.1 Biology of RNA

Ribonucleic Acid (RNA) is a single-stranded molecule which is composed of a long
series of the linked nucleotides by the phosphodiester linkages. Each of these
nucleotides is made up of a ribose sugar, a phosphate group and a nitrogenous base.
There are four possible bases which are generally adenine (A), cytosine (C), guanine
(G) and uracil (U). Due to the hydrogen bonds between the certain basepairs, a stable
structure will be formed. These basepairs are formed between (C-G) and (A-U) of
Watson-Crick basepairs and the Wobble basepairs between (G-U). Figure 2.1.a below

shows these types of basepairs in RNA.

There are different kinds of RNA: messenger RNA (mRNA) carries information from
DNA about a protein sequence to structures called ribosomes, Transfer RNA (tRNA) is
a small RNA chain consisting of about 80 nucleotides that serves as adapter between
mRNA and amino acids, Ribosomal RNA (rRNA) which is the main component of the
ribosomes [WP08].




Chapter 2: Background and preliminaries

) Watson-Crick basepairs.

i) Wobble basepairs.

Figure 2.1.a: The RNA basepairs i) Watson-Crick basepairs, ii) Wobble basepairs.
Image Source: “BC 5254/GCS 719, Computer Applications in Biomedical Research”
http://www.finchcms.edu/cms/biochem/Walters/rna_folding.html.

An RNA structure is represented at different levels:

- Primary structure: It represents by a linear sequence of nucleotides over the
alphabet > = {A, C, G, U}. These nucleotides (bases) are connected together
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by covalent phosphodiester bonds. Part (i) in Figure 2.1.b shows the primary

structure.

- Secondary structure: As mentioned above due to the hydrogen bonds between
the certain pairs of bases, a stable structure will be formed. The basepairs are
formed by Watson-Crick base pairing G-C and A-U, and Wobble base pairing
G-U. Section 2.3 will talk about the secondary structure in more details. Figure

2.1.b shows in part (ii) the secondary structure.

- Tertiary structure: It is the three-dimensional structure of molecule which is
relevant to the hydrogen bond occurrences between bases. Its elements involve
an interaction between the distinct elements of secondary structure.
Pseudoknots are example of tertiary structure. The tertiary structure shows in
part (iii) Figure 2.1.b.

This thesis will treat the secondary structures of RNA.

nucleotide sequence
single stranded helix

) Primary structure i) Secondarv structure i) Tertiary structure

Figure 2.1.b: The RNA structure is represented at different levels. Image Source:
Mathias Mohl, Sebastian Will, Rolf Backofen. “Fixed Parameter Tractable Alignment
of RNA Structures Including Arbitrary Pseudoknots”. Proceedings of the 19th Annual
Symposium on Combinatorial Pattern Matching (CPM 2008):69-81.
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Chapter 2: Background and preliminaries

2.2 Sequence Alignment

Sequence Alignment is one of the important terms for sequence comparison that
compares the similarities among sequences. Sequence similarity often indicates

functional and structural similarity.

Definition 2.2: (Alignment) Let two sequences S, and S, be over an alphabet Y with —
¢ >, such that S;, S, € >*. An Alignment A is a pair (S7,S;) with 57, S, € 3 U {-
B* such that:

1. The length of the aligned sequences are equal, i.e. |S{| = |S5]
2. There is no position i such that: S;, = —= 53,

3. The sequences S; and S give the same sequences S; and S, respectively, if all

gaps are removed.

Where the gaps are located in a sequence alignment for a base in one sequence there is
no analogous base in the other sequence.

Note: for the RNA sequence alignment, an alphabet over ) = {A, C, G, U}.

There are several types of sequence alignment and the Global alignment is one of these
types. Global alignment represents the best alignment over the entire length of the two
sequences and is suitable when both have similar length with enough degree of
similarity throughout. A general global alignment technique is called the Needleman-
Wunsch algorithm [NW70] which is based on dynamic programming that we will
discuss it later in this chapter. Here, we refer to the pairwise sequence alignment which

finds the best matching alignment between two sequences.

Example: Let S; = AGACUAGACAU and S, = CGAGACGU over Y = {A, C, G, U},
the possible global pairwise sequence alignment which satisfies the above conditions,

is:
Si = AGACUAGACAU

S, = CGA---GACGU
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In addition to this sequence alignment, there is also another form that is comparison-

dependent on the shape of the structures, this is called Structural alignment.

2.2.1 Edit Distance

Edit Distance is also one of definitions for comparing sequences that is a metric for
measuring the amount of differences between two sequences. The edit distance between
two sequences is given by the minimum number of edit operations that require
transforming one sequence into the other. It is defined according to Clote et al.
[CB2000] as follows:

Definition 2.2.1.a: (Edit Distance) Given a cost function w: (3 U{-}) x & u{-}) -
R and two sequences S; and S, over a finite alphabet Y where S;, S, € >'*, the cost of
E = ey, €, ..., & of edit operations is defined as w (E) = Y./, w (e;). Then the edit

distance of §;, S, is defined as:
dy (S1,S2) = min {w (E)| Sy =¢ S,}

There is another type of cost that gives mismatch cost x and gap cost y that are defined

according to Sankoff [S85] as follows:

Definition 2.2.1.b: (Another representation for the cost of Edit distance) Let S; =

S1,---S1,, and S, = s, ...s, be two sequences. An alignment of S; and S, is defined by
two integer sequences 1 <i; <i, < <i,<mand1<j; <j, <-- <j. <n. Let

& be the number of pairs (i, ji), such that S1;, F S2j,- The cost of the alignment is:

(m+n-—-2r)y+ s8x

The case of s replaces each S1, by 82, if they are not equal, and r indicate the

number of all pairs in the alignment sequences.

The definitions 2.2.1.a and 2.2.1.b are equivalent, such that:
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( .
X if sy # S2;

L

w(sl.,szj) =<y Iifs,=—or Sz, = =

(0 otherwise

2.2.2 Needleman-Wunsch Edit Distance Algorithm

In global sequence alignment, an attempt to align the entirety of two different
sequences is made up to and includes the ends of sequence as mentioned before. The
solving method for an edit distance problem is Needleman-Wunsch algorithm (1970)
which was the first application of dynamic programming algorithm to biological
sequence comparison [NW70]. The idea is to use dynamic programming to efficiently

implement a recursion.

Definition 2.2.2: (Needleman-Wunsch Edit Distance algorithm) Given a metric cost
function w, and two input sequences S; and S, over an alphabet Y. The Needleman-
Wunsch algorithm defines the matrix D[i, j]with 0 < i < |S;| and 0 < j < |S,| by the

recursion formula to obtain an optimal alignment as described:

Dli—1,j — 1] + w (S [i], S:[GD,
Vi,j>0:Dl[i,j]l =min < D[i—1,j] + w(S,[i], —),

D[i,j — 1] + w(=, S [jD.

With Initialization
D[0,0] =0,
D[i,0] = Yoy w (Sy[k], ),

D[0,j] = X1 _, w (=, S, [kD.

10
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The filled matrix is from top left D[1,1] to bottom right D[|S, ], |S,|]. Suppose we have
filled in the three entriesD[i —1,j],D[i —1,j —1]and DI[i,j — 1] to the up and
diagonally above and left of D[i, j] respectively, that we have an optimal alignment for
each of those three pairs, and then minimizing overall these pairs. We can either align

S, [i] with S, [j], or align S, [i] with a new gap, or align S, [j] with a new gap.

After filling the matrix, the corresponding alignment is obtained from a trace back step

through the filled matrix.

2.2.3 Smith-Waterman algorithm

This algorithm is a dynamic programming algorithm for the local sequence alignment
[SW81]. Local sequence alignment is suitable for comparing with the sequences have
short similar subsequences over two different lengths of sequences. The Smith-
Waterman algorithm guarantees that finding the optimal local alignment accordance to
the scoring system (substitution matrix and gap penalty) being applied, where the

substitution matrix is a similarity between each pair of bases.

Definition 2.2.3: (Smith-Waterman algorithm) Given two input sequences S; = sy, ...
sy, and S, = s, ... s, over an alphabet ) and the scoring function « between the

sequence alignments. The Smith-Waterman algorithm defines the matrix H[i, j] with
0<i<n and0<j<m, by the following recursion equations to produce the

maximum similarity score:

( 0 \
HG-1j-1)
HG ) = |+ (s1052) >
max for1<i<n,1<j<m
H({i-1,j)+ w(sli, —)
(Hij— 1) +w (=55) )

With initialization, H[i,0] = H[0,j]=0 for 0 <i<n,0<j<m

11



Chapter 2: Background and preliminaries

This algorithm differs from Needleman-Wunsch algorithm by including a zero value

for the negative similarity (i.e. out the range of subsequences).

2.2.4 Multiple Sequence Alignment

Multiple sequence alignment is an extension of pairwise alignment to incorporate more
than two sequences at a time. In general, the input set of query sequences are assumed
to have an evolutionary relationship by which they share a lineage and are descended
from a common ancestor.

The most widely used approach to multiple sequence alignments uses a heuristic search
known as progressive technique (also known as the hierarchical or tree method), that
builds up a final Multiple Sequence Alignment by combining pairwise alignments

beginning with the most similar pair and progressing to the most distantly related.

All progressive alignment methods require two stages: a first stage in which the
relationships between the sequences are represented as a tree, called a guide tree, and a
second stage in which the Multiple Sequence Alignment is built by adding the
sequences sequentially to the growing Multiple Sequence Alignment according to the
guide tree. The most important heuristic is to align the most similar pairs of sequences
first. Typically guide trees are used to efficiently model this principle in progressive
alignment algorithm. The most popular example for this alignment is: ClustalW
[THGY4].

2.3 RNA Secondary Structure

As mentioned before that RNA is usually a single-stranded linear molecule, but this is
not the case in a biological system. RNA strand folds back on to itself via the base pair
interactions to form secondary and tertiary structures which are essential for correct
biological function. These functions include: (MRNA) genetic information copied from
DNA to be used as a template for the synthesis of protein, (tRNA) serves as an adaptor
which decodes the genetic code and (rRNA) catalyzes the protein synthesis. Therefore,
the importance of the RNA secondary structures is found in many biological processes.

12



Chapter 2: Background and preliminaries

Furthermore, the efficiency in the structure prediction can provide the essential

directions for experimental investigations.

The folding for an RNA molecule depends on the sequence nucleotides, by the
complementary base pairing on it. A formal definition for an RNA secondary structure

is given according to [MT78] as follows:

Definition 2.3: (RNA Secondary Structure) Let S € {A, C, G, U} be an RNA
sequence. An RNA secondary structure over the sequence S is defined as a set of the

base pairs P as follows:

P=A(@J)|1<jA SandS; forma complementary pair (Watson-Crick) or a non-

standard pair (Wobble basepair)}
Where V (i, j)€ P and V (i', ])€ P, P must satisfy the following condition:

- i=1 ¢<]=]', each base can have at most one bond with one other base.
A structure P is called nested structure, if it satisfies the following condition:

- i<i"implies (' < j) V (j < i") must be satisfied.

Otherwise P is called crossing.

RNA secondary structure consists of contiguous basepairs which are called helices, and
different kinds of loops that are the unpaired bases surrounded by helices. Hence, the

secondary structure can be divided into various structural elements.

A base pair (i', j') € P is called Accessible from (i, j) € P, if i <i’' <] <jand if there
is no other base pair (i”, j”") € P such that, i <i”" <1'<J <" <].

- A hairpin loop is formed when RNA strand folds back on itself. It is defined as
follows: a base pair (i , j) € P closes a hairpin loop if Vi <i'<j <j: (i",])
€ P.

13
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A stack loop is formed in the case two adjacent base pairs. It is defined as
follows: a base pair (i, j) € P closes a stacking if (i +1, j -1)€ P. Several

numbers of stacking basepairs are called stem.

An internal loop is at least one unpaired base on each strand of the loop
separating two paired regions. It is defined as follows: two base pairs (i , j) € P
and (i, j") € P form an internal loop (i , j, i’, J) if they satisfy the following

conditions:

i<i'<j <]
@i"-1)+(j-J) > 2 (no stack)

There is no base pair (i", j”") between (i, j) and (i', ).

A bulge has unpaired base on only one strand of the loop. It is called left or
right bulge if j = j + 1 or i’ =i + 1 respectively. The other strand has

uninterrupted base pairing.

All these elements of the secondary structure represent the non-branching structures.

A multi-branched loop is the double-stranded regions which are coming
together with separations of any number of unpaired bases, sometimes called

bifurcated structures.

An external loop is a number of single-stranded bases (unpaired bases) and
basepairs which are not accessible from any basepair. There is no contribution

to the total free energy in these regions.

Note that, the closing pair (i, j) of the k-loop is not itself defined to form part of that

loop in the decomposition of the structure. Figure 2.3.a. shows the RNA secondary

structure elements.

14
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Internal loop External Multi-loop

N

/ Bulge

Stem Hairpin loop

Figure 2.3.a: RNA secondary structures elements. Image Source: Internal loops in
RNA secondary structure prediction, Lyngsg, Zuker, and Pedersen (1999).

There are different approaches for RNA secondary structure representations, such as
RNA secondary structure graph and in bracket notation. They are showed in Figure
2.3.b.

Brackets grg e R e
UEUE(ENN)ERAENINDIN) P

=i Classical

Figure 2.3.b: RNA secondary structure representations. Image Source: Jérdme
Waldispuhl. “18.417: Introduction to Computational Structural Biology”,
Department of Mathematics, MIT

15
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2.4 RNA Secondary Structure Prediction

There are two main approaches used to predict the secondary structure:

1. Comparative Sequence Analysis: It is the gold standard which determines an
RNA secondary structure when a crystal structure is absent. It uses multiple
sequence alignments of homologues sequences to predict the structure. Hence,

it needs aligning many sequences with identical function. [PTW99]

2. Dynamic Programming (DP): This algorithm is used to solve the optimization
problems by dividing the problem into independent sub problems. Each sub
problem is solved only once, and its solution is stored in a table such that re-
computing the solution is avoided. It contains several approaches that are used

to predict an RNA secondary structure:

Nussinov algorithm [N8O0] represents one of the first attempts of RNA secondary
structure prediction. It determines the maximum number of basepairs in non crossing

structure. It can be defined as follows:

Definition 2.4.a: (Nussinov matrix) Let S be an RNA sequence. The Nussinov matrix

N; ; is defined as follow:
N; j = max {|P| P is a nested structure of the subsequence s; ... s;}

where1<i<|Slandi—1<j <|S| A j > 1, thisimplies to the following recursion

equations:
Initialization: N;_;;=0,N;;=0 Vv 1<i<|S],
Recursion: Vi<

Nij_1,

Ni,j = max maxisk<j Ni,k—l + 1+ Nk+1,j—1 )

Where s, and s; complementary

Now after filling this matrix, we will get the best structure by using a trace back

procedure. The Nussinov algorithm detects mostly just one variant from various

16
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possibilities for base pairing, it also does not consider the size of internal loops, the

stacking of base pairs and the strength of base pair.

The second approach which is achieved by using DP is Zuker algorithm [ZS81] that we
treated in this thesis. It computes the Minimum Free Energy secondary structure and it

distinguishes among all possible basepair loops.
Before discussing this algorithm, we need to identify the definition of Free Energy.

Definition 2.4.b: (Free Energy) The Gibbsian Free Energy G in a system (e.g. of gas

molecules in equilibrium or in a dilution of molecules) holds:
G=U-TS
where U is the enthalpy, T is the absolute temperature (in Kelvin) and S is the entropy.
Two terms determine the free energy of molecule:
- Enthalpy: from secondary structure basepairs.
- Entropy: “disorder in unpaired regions”.

Usually the difference AG = AH — T AS, can be experimentally measured = flexible

rules.

where AG is approximated as the sum of contributions from loops of base pairs and

other secondary structures.

Definition 2.4.c. (Energy contribution for loops) the energy contribution of the

secondary structure elements are defined as follows:
e Hairpin loop (i, j),
e Stacking (i, ], 1 +1,j- 1),
o Internal loop (i, j, i', j").

Assume that E(£) describes the energy contribution for each of the above three
structure element loops, and the simplified energy contribution for the multi-loops

is:

e Multi-loop: E(#) =a+ bk + ck’,

17
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where a, b, ¢ are weights, a is the energy contribution of closing basepair, b and ¢
are constants for k = number of helices and k' = number of single-stranded

positions, respectively.
The complete free energy is measured, by taking the summation of energy loops:

E(P) =X jer E(P;j) , where E(P;) is the energy contribution of the secondary
structure element P which is closed by basepair(i, j). The energy of such structure P, of
sequence X, is called “Turner Free Energy”, and the total free energy is called “Turner
Free Energy Model”.

Now for the Zuker algorithm that the widely used computational approach for
predicting RNA secondary structures from single sequences, which is based on
thermodynamic models that associates the free energy values from each possible
secondary structure of a strand. The secondary structure is with the lowest possible free
energy value, the minimum free energy (MFE) structure is predicted to be the most

stable secondary structure of the strand.
Now, the Zuker matrices are defined according to Sankoff [S85] as follows:

Definition 2.4.d: (Matrix F(i, j), Matrix C(i, j)) Let F(i, j) be the minimum energy
possible for a secondary structure P on the partial sequence i, ..., j. Let C(i, j) be the

minimum energy given that (i, j) € P, where C(i, j) = oo if no such structure exists.

( E(®), £ is the hairpin closed by (i, j),
C(@i,j) ) min{E(¥) + C(p,q)}, £ a2-loop closed by (i, j) with
= min (p, q) accessible, u=p-i+j-q-2<U,

min 1{G(i +1,h)+Ghh+1,j—1)+a},
i

\i<h<

where E () is represent Turner Free Energy. G is a matrix for multiple loops defined as

follows:

18
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(C(@i,)) +c,

G(i,j) = min< G(i,h)+(—hb,
min mint GG, h) +G(h +1,),
L (h—i+1Db+Gh+1,)),
Cc@,j),

F(i,j) = min
_n}lig{F(i, h) + F(h + 1,j)},
ish<j

As usual, by applying trace back step to the filled matrices, we can get the minimum

free energy secondary structure.
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Chapter Three

Methods for Simultaneous
Alignment and Folding

This chapter will introduce the methods that are used to solve the problem of
simultaneous Folding and Alignment for RNA sequences. We will start with the
original work “Sankoff Algorithm” and then present the variants to this algorithm,

which are restricted implementations to reduce the computational complexity.

3.1 Sankoff Algorithm

The last chapter discusses “Sequence Alignment” by explaining how to calculate the
optimal alignment distance between two different sequences; it also talks about
“Folding of RNA sequence” and through such approach which achieved to predict the
RNA secondary structure by Dynamic Programming, the Minimum Free Energy
secondary structure can be computed. As we see, all these problems have optimal

dynamic programming solutions.

Sankoff algorithm [S85] solves these problems which have dynamic programming
solutions simultaneously for two sequences with length N and at time proportional to
O(N6) and storage O(N4). The following steps are included to describe Sankoff
algorithm according to Sankoff [S85]:

First, equivalent structures must be defined for two RNA sequences; the branching
configuration represents an invariant part of the identity structure. It is determined by

two structure elements, which are the external pairs and multiple loops.
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Definition 3.1.a: (Equivalent Structures) Let iy <i, < ... <ipand j; <j, < ... <jm be
positions in the sequences S;and S, respectively, of all elements that are either an
external pair or an accessible pair in a multiple loop of the nested structures P, of
sequence S; and P, of sequence S, . The Equivalent Structures for P, and P, according
to the branching configurations require that n = m and (i, ig) € P; if and only if (jr, j;) €

P,.

According to the definition there are no restrictions on the number and type of 2-loops
that are nested in each external pair and in each multiple loop accessible pair, and also
on the number of unpaired bases in any k-loop and unpaired external bases. Therefore,
the equivalence between the structures represents an essential part for finding two
sequences which have a common folding, but it is still not sufficient, as shown in

Figure 3.1.a.

Figure 3.1.a: This figure shows two equivalents, but they have highly dissimilar
secondary structures. [S85]

Second, the same secondary structures of two sequences are needed to provide the high
similarities and not just the equivalent branching configurations. To assess the
similarities between two equivalent structures, the idea of Alignment will be
introduced. The equivalence between the structures of two sequences is guaranteed,

through the constrained alignments between these structures.
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Definition 3.1.b: (Constrained Alignment) Leti; <i, < ... <ijand j; <j, < ... <], be
positions in the sequences S; and S, respectively. The Constrained Alignment on the
structures P, and P, of these sequences respectively is: i; aligned with j; and i, with j,

s i With jin.

Thus, any K-loop in one structure is aligned with a single K-loop of the other structure,
or may be deleted or inserted in some cases. Now, one can see the following cases that
describe the constrained alignment between two structures according to Sankoff [S85]

as follows:

- External pairs and accessible pairs in multiple loops: all external pairs and
accessible pairs in multiple loops are aligned and not inserted or deleted; such

that each of them will have its correspondence in the other structure.

- 2-Loops: it has no constraint against the insertion or the deletion to their

accessible pairs; hence it is free to be different from one structure and the other.

- Hairpins: a hairpin in the structure is aligned with its correspondence in the
other structure, such that the equivalent structures will have the same number

of hairpins and at the same locations on the structures.

Third, we can now clearly determine our target of finding the “equivalent structures”
and “constrained alignment” in such a way that makes the whole configuration of
structure and alignment, optimal. However, the expectation to find the equivalent
structures which are thermodynamically optimal in each sequence separately is difficult
to get. Even if it is found like this case, an appropriate constrained alignment between
them might not inevitably be the minimum cost among all possible pairs of the

equivalent structures.

Definition 3.1.c;: (Sankoff-score) Let A be an alignment of the sequences S; and S,
and let P, be a nested structure of sequence S; and let P, be a nested structure of

sequence S,. The Sankoff-score of A, P,and P, is given as:
Sankoff-score (A, P;, P,) = Edit-Distance (A) + E; (P;) + E, (P,)

Definition 3.1.c,: (Sankoff problem) Given two sequences S; and S, as input. The
Sankoff problem is the problem to find the lowest free energy secondary structure

common to a nested structure P; of sequence S; and a nested structure P, of sequence
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S,, and an alignment A of the sequences S; and S,, such that the two structures P, and
P, are equivalent and the alignment between these structures is constrained, and

Sankoff-score (A, Py, P,) is minimized.

Therefore, to optimize this problem, we use a new objective function which represents
a trade-off between the free energy and alignment cost for the two sequences. The
following definitions are used to find the optimizing structure and alignments for two

sequences, which are defined according to Sankoff [S85] as follows:

Definition 3.1.c3: (Matrix D(iy, J1; iz, J2)) The extension of the definition D(i, j)
(which is defined in the previous chapter) is, the minimal Edit Distance cost of
an alignment between partial sequences sis, ...,Sjs and S, ..., Sj,

If iy > js, then the cost for inserting the entire sequence is S, ..., Sz

If i, > j,, then the cost for deleting the entire sequence is Sj, ..., Sj1

Definition 3.1.c4: (Matrix F(iy, ji; iz, j2), Matrix C(iy, j1; iz, j2)) Let F(iy, j1; i2, J2)
be the minimum cost possible for a pair of equivalent secondary structures Py
and P, on positions iy, ..., j; and i,, ..., jo of sequences S; and S, respectively,
where the cost is the sum of the free energy and the constrained alignment cost.
Let C (iy, j1; 2, J2) be the minimum cost given that (iy, j1) € Py and (iy, j2) € P>
without considering the costs of aligning s; , s;,, s;,and s;,, If no such pair of

structures exists, set C = co. Then recursion C is:
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C(i1;j1i iz'l'z)

[ E(£) +E(£) + D@y + 1,j1 — Lip + 1,j, — 1), £1, 2 hairpins closed by
(i1, j1), (iz, jo) respectively,

min{E(f1) + E(f3) + C(p1,q1; P2, 92) + Dy + L,py; iz + 1,p2)
+ D(q1,j1 — 1,42, J. — D},
€1, €, are 2-loops closed by (i1, j1),
- min< (i2, j2) with (1, A1), (P2, G2) accessible,
Pi—bt+th—q—2=5Up,—i+j,—q:—2=<U,

o, = Zalh
or one of { 1=@ and (p, ) = (is, i)
t2=0 and (p2, q2) = (i2, j2),
; <}Ilnil} _1{G(i1 + 1, hl' iz + 1, hz) + G(hl + 1,j1 - 1, hz + 1,j2 - 1) + Za}
iy<hy<jp—1

The first and second options in this matrix refer to the fact that all terms in hairpin or in
2-loop are aligned with their corresponding or, in the case of 2-loop, that the entire loop

is deleted or inserted. The third option is, G, be matrix used for multiple loops.
Recursion for G and F:

(C(iy, ju; ig,J2) + 2¢ + D(iy, i3 i, 5) + Dy, jas jorJi2) »
(G(iy, hy;ip hy) + Gy — hy + jo — hy)b

G(l l )=mm< +D(h1+1,]1,h2+1,]2),
vtz min. min { G(iy, hy; iy, hy) + G(hy +1,j3;hy + 1, 75),

i1<h1<j1
i,<h,<j, (hl - il + 1 + hz - iz + 1)b
+ G(hl + 1,j1; hz + 1,j2)
\ \ + D(iy, hys iz, hy),

(C(iy,jr; i j2) + Dy, ix; iz, i5) + DU jis o j2)

min {F(iy,hy;i,,h,)+F(hy+1,j;h, +1,j,)},
F(iy, ju; iy, jo) = min 4 i15h1<j1{ (i1, hqs iz, hy) (hy J15 2 J2)}
i25h2<j2

\D(ipjl; iz']'z) ,

The initial conditions are C (i, i; iz, i2) = 00 and G (iy, iy; i, j2) = G (i, ju; iz, i2) = oo.
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The first case of matrix G refers to the fact that corresponding accessible pairs are
aligned in multiple loops, and the same for external pairs in the first option of matrix F.
The second and fourth options in G refer to corresponding multiple loops aligned and
the same for the last option of F for the corresponding external regions. The last and
first options in F indicate the two cases, zero external pairs and one such pair, which

are found in both structures respectively.

As we showed above, that these matrices include all configurations in a structure such
that the corresponding accessible pairs for the multiple loops and the accessible terms
for the external regions are aligned; also the corresponding closing pair of hairpins is
aligned, but for the loops of index 2 they are either aligned, completely inserted or
deleted.

Before illustrating the correctness of these recurrences which identify the optimal
structures, we just want to indicate that the recursions of Zuker algorithm (that are

defined in the previous chapter) are an important part to construct the above recursions.

Now, the following Figures illustrate the correctness of the Sankoff algorithm

recursions:
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Finally, it can be seen that Sankoff algorithm is considered an ideal approach, but it has
high computational complexity. For this reason, several methods have emerged which
implement Sankoff algorithm but with pragmatic restrictions to make it practical to use

and these methods are presented in the following parts of this chapter.
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3.2 Dynalign

The previous part shows the simultaneous RNA sequences Alignment and Folding by
presenting the Sankoff Algorithm which represents the original form to solve these
problems simultaneously. Since, it is computationally over expensive (as we have
seen), so there are several methods which implement Sankoff Algorithm under various
restrictions to make it more practical to use. Dynalign indicates one of these methods
that suggested by Mathews et al. [MTO02].

The main idea of Dynalign is to find the secondary structure common to two sequences.
This method depends on the dynamic programming algorithm suggested by Sankoff,
which finds lowest free energy secondary structure common for two RNA sequences
and the sequence alignment that supports this structure. The restriction used in this
method, is parameter M which restricts the maximum distance between the positions of
aligned nucleotides of two sequences. Therefore, the computational complexity will be
more tractable with this restriction, O(MN®) for the time and 0(M?°N?) for the memory,
where M is the maximum separation parameter which restricts the set of sequence

alignments which are considered and N is the length of the shorter sequence [MT02].
The general description of Dynalign is given according to Mathews et al. [MT02] as:

“Dynalign is a computer algorithm that improves the accuracy of structure prediction
by combining free energy minimization and comparative sequence analysis to find a
low free energy structure common to two sequences without requiring any sequence

identity”.

When they write about “comparative sequence analysis”, they refer to finding a
structure common to two or more sequences. This is the method, which is not yet
automated, by which most RNA secondary structures are solved. Thus, the comparative
sequence analysis here shows the comparison between two structures during the

alignment.

Definition 3.2: (Dynalign problem) Let two sequences S; and S, be given as input. The
Dynalign problem finds the lowest free energy secondary structure common to S; and
S,, and the sequence alignment between S, and S, that supports this structure, such that
the basepairs of S; and S, are preserved in the same aligned positions in the alignment,

and it minimizes AG® Which is the total free energy of the system, where:
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AGCty = AG®S; + AG®s, + k AGogap

Where AG°®s; and AG°s, are forms of “Turner Free Energy Model” (i.e. the
conformational free energies) for the sequences S; and S, respectively, which are
computed by the nearest-neighbor approximation [MSZ+T99] (another typology of free
energy that refers to a “special case” of the Sankoff). AG®y,, is the gap penalty that

applies to each gap in the alignment and k is the number of gaps.

This method does not explicitly score the sequence identity, because as shown from the
equation above AG°y is not based on the matching nucleotides that occurred in the
sequence alignment. Generally, this method can be used to predict the structures for
homologous sequences that do not have the sequence identity but only the structure

conservation.

One should see, the analogy between Dynalign method and Sankoff algorithm in
principle: It is shown in Sankoff algorithm minimizes the total cost of combining the
free energy minimization of the RNA secondary structure for two sequences (Folding),
and the minimum alignment cost by the optimal distance between the structures
(Alignment). Therefore, Sankoff algorithm depends on the matching nucleotides in the
Alignment. The Dynalign method minimizes the total free energy as shown above, by
combining the free energy minimization for two sequences (Folding), and the energy
contribution of gap which is multiplied by the number of gaps (Alignment). So it does

not depend on the matching nucleotides.

Dynalign is one of the practical implementations of the Sankoff algorithm, which is a
dynamic programming algorithm solution for both of sequence alignment and RNA
secondary structure prediction for two sequences. Therefore, it guarantees an optimal
solution which is one important point in the dynamic programming algorithm for

supporting optimal solution.

The restriction of this method is a parameter M which restricts the depth of a search for
the alignments between two sequences. This restriction modifies the definition 3.2 and

the restriction can be shown as follows:
Foralli€ S;, k € S; and (i, k) is a pair in alignment: |i — k| < M.

The computational complexity will be tractable with this restriction, such that O(M3N?)

for time and O(M?N?) for storage, where a parameter M decreases the set of alignments
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which are considered and N is the length of shorter sequence, compared with Sankoff
algorithm, O(Ns) for time and O(N*) for storage, where N is also the length of the

smaller of the two sequences.

In the Dynalign implementation, another scheme for a parameter M is used to recast the
parameter M implementation in such a way that scales with the difference in sequence
length for the two sequences, where the nucleotide i from the first sequence and the

nucleotide k from the second sequence:
li x (N2/Nq) -kl <M

where N is the length of the first sequence and N; is the length of the second sequence.
This restriction allows aligning the ends of the sequences (i = N;and k = N,) at any M
and any difference of the sequence length. This restriction can be chosen for
significantly smaller M sizes than the shorter sequence length N, hence, it reduces the
computation complexity. The Results chapter will show that this scheme for parameter

M was used in the Dynalign program.

Dynalign does not depend on the scoring of base matches as we have showed:;
therefore, it has no problem for compensating base changes. Unlike to the Sankoff
algorithm that includes a scoring function for the matching nucleotides in the

alignment.

In practice, both of Sankoff algorithm and Dynalign method have limitation on the
sequence length because of computational complexity. No prediction of pseudoknots

occurs in each of Sankoff algorithm and Dynalign method.

Dynalign has three matrices like Sankoff, but with different names. In this method, the
maximum distance restriction between aligned nucleotides by parameter M,
computationally leads to simplify the structure calculation. These matrices that
including multi-branch loops are defined according to Mathews et al. [MT02] as

follows:

- Definition 3.2.a: (Matrix V(i, j, k, 1)) Matrix V(i, j, k, 1) is the minimal sum of
the free energies for the two sequences that cover nucleotides i, ..., j in the first
sequence and k, ..., | in the second sequence, such that (i, jand (k, I) are

basepairs and i aligned with k and j aligned with |, plus any gap penalties for
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interior nucleotides in the sequence alignment. It is recursively computed as

minimum of the three cases:

V, for hairpin loops which is closed by the basepairs (i, j) and (k, I),

V, is the lowest sum of the free energies for one of these loops: a helix
extension, bulge loop, or internal loop in the common structure.

V3 is also the lowest sum of free energies for a multi-branch loop that
closed by the basepairs (i, j) and (k, ). It has 16 cases that are
computed to all possible combinations of whether or not that i+1 and j-
1 are dangling ends on the basepair (i, j), and whether k+1 or I-1 are

dangling ends on the basepair (k, 1.

This matrix corresponds to the C-matrix in Sankoff, but in the case of a

multi-branch loop, in contrast to Sankoff, it includes all possible cases for

determining the dangling ends on both the closing basepairs.

Definition 3.2.b: (Matrix W(i, j, k, 1)) Matrix W(i, j, k, I) is the minimal sum of

the free energies for the nucleotides i, ..., j of the first sequence and k, ..., | of

the second sequence and i aligned with k and j aligned with |, plus any gap

penalties for interior nucleotides in the sequence alignment. It is the minimum

of three cases:

W, for adding unpaired nucleotides to a multi-branch loop, and
similarly to Vs, it has also 16 possible cases.

W, for helix termini.

W; for bifurcation in the structure. It’s necessary for considering multi-

branch loops with more than three branching helices.

This matrix corresponds to the G-matrix in Sankoff, but in the case of

adding unpaired nucleotides, in contrast to Sankoff, it includes all possible

cases for determining the unpaired nucleotides of the dangling ends.

Definition 3.2.c: (Matrix W5(i, k)) Matrix W5(i, k) is the minimal sum of free

energies for the nucleotides 1, ...,i of the first sequence and 1, ..., k of the

second sequence, plus any gap penalties for nucleotides in sequence alignment.

It is the minimum of the four cases, which assuming that several consecutive

helices in both structures are not closed by basepairs.
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This matrix corresponds to the F-matrix in Sankoff, but in contrast to Sankoff,
one of the cases also has 16 possible cases for allowing the dangling ends on

the helices closed by such basepair.

In recent years, there have been some developments for this method that reducing the
computational complexity for time and memory requirements, and in addition to

improve the accuracy in the structure prediction.

In Dynalign method, the restriction is the parameter M, as discussed before that defines
as a measure of maximum insertion length. This parameter controls the trade-off
between the computation and accuracy. Whereas a small value of M is desired to
decrease the computation time, the accuracy of the secondary structure prediction will
also be decreased. Therefore, the determination value of M is essential for the structure
prediction accuracy. A large value of M is desired for the longer sequences, since they
need longer insertions, while more computation time will be required. Due to this
limitation in the Dynalign method, for selecting the values of parameter M, a new
methodology is suggested in Dynalign by Harmanci et al. [HSMO7].

This new methodology imposes constraints on the alignment in Dynalign, and these
constraints are defined by a probabilistic analysis. A posteriori probability that is used
for the nucleotide alignments, estimates the confidence in local accuracy of the
sequence alignment, and it is efficiently computed by Hidden Markov Model
[DEK+M99]. These estimations restrict the choices of the dynamic programming step
by the constraint windows. In high confidence regions, strong constraints are imposed
on the possibilities in dynamic programming steps by cutting off the computation
which is not required. Otherwise, the low confidence regions, allow many possibilities
in the dynamic programming steps.

The used formulation of Hidden Markov Model (HMM) computes the posteriori
symbol-to-symbol alignment probabilities for the homologous sequences which are
represented by Pr(i < k | S;, S;), i.e. the probability of co-incidence between one
nucleotide position i of sequence S; with other nucleotide position k of sequence S,
[DEK+M99].

There are three conditions satisfying the co-incidence between two nucleotide positions
(one of each sequence) according to Harmanci et al. [HSMO7], these conditions are as

follows:
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- Nucleotide positions i and k are aligned,

- Nucleotide position i occurs in an “insertion” in sequence S; and nucleotide
position k in sequence S, aligns with nucleotide position i from sequence S,
where i_denotes the largest position index less than i in sequence S; that aligns
with a nucleotide position from sequence S,.

- Nucleotide position k occurs in an “insertion” in the sequence S, and nucleotide
position i in sequence S; aligns with nucleotide position k from sequence S,,
where k denotes the largest position index less than k in sequence S, that aligns

with a nucleotide position from sequence S;.

The effective computation of a posteriori probability of the co-incidence between
nucleotide positions is done by using the HMM forward-backward algorithm, which is

described according to Harmanci et al. [HSMO07] as follows:

Lom Am (i, k) Bm (i, k)

Pr(i o kl1S,S;) = Prs.S,)
1,92

Where the sum is over m = {ALN, INS1, INS2}, which represents the set of three
possible states for the nucleotides co-incidence. Each state defines the alignment
according to the nucleotide positions between two sequences. So the aligned nucleotide
positions and an insertion of the sequence S; and an insertion of the sequence S,, are
representing the states ALN, INS1, INS2 respectively. The forward variable on(i, k)
keeps track of events before alignment position (i, k) and the backward variable Bx(i, k)
keeps track of events after alignment position (i, k). Pr(S;,S,) is the probability of

emission of the observed sequences.

A low value of the posterior co-incidence probability Pr(i < k | S;, S,) is that a
nucleotide position i in sequence S; not probable to co-incident with nucleotide position
k in sequence S,. Therefore, the suggestion is to impose constraint on the alignments in
Dynalign by excluding all alignments that are not probable through having very small
value of the posterior co-incidence probability. So this occurs by defining an alignment
constraint by comparing the posterior co-incidence probability with an appropriate low
threshold Pynesnoid, @and according to Harmanci et al. [HSMO7] an alignment constraint

set is defined as follows:

C= {(I, k) | (Pr(l —k | Sly SZ) > Pthreshold}
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Where C represents an alignment constraint set and its elements describe the pairs of
nucleotide positions that may co-incident between the sequences. Otherwise, they are

rejected.

The threshold value Pyyresnols has analogous to a parameter M. It controls a trade-off
between computation and accuracy. A low value of Pyyesor, @ Strong confidence is
determined and hence the constraint sets will include all actual alignments, but more
computation is required for the choices that are increased. For a high value of Pinreshold,
the computation requirements are decreased because an alignment constraint set will be
restricted. A higher Pyresnois, May be very restrictive such that it prevents the optimal
alignment to be included in the set of alignments that is considered due to the alignment

constraint set. Hence, the prediction accuracy will be reduced in Dynalign.

The alignment constraints are effectively determined by providing an appropriate
HMM parameter and threshold values. An appropriate threshold probability is chosen
according to the several experiments performed on the sequences in the

implementation, which is depended on the similarity of sequences.

This new methodology for Dynalign produces a significant improvement in accuracy

and speed, compared to the previous heuristic of Dynalign.
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3.3 Foldalign

This part will discuss another method which represents the first practical
implementation of Sankoff algorithm for simultaneous folding and alignment of RNA
sequences, this is called Foldalign method. This method has three versions, according

to the heuristics and improvements that have been added.

3.3.1 Pairwise Foldalign 1.0

This method utilizes a simplified version of Sankoff Algorithm but neglects the
branching structures; this version is called pairwise Foldalign 1.0 [GHS973],
[GHS97b]. Therefore, it lowers the calculation time from O(N6) to O(N%) for two
sequences, where N is the sequence length. This method combines both of sequence
similarity and structure, such that, it is based on the local sequence alignment by using
the definition of (Smith-Waterman algorithm) for the aligning part, and optimizes the
number of basepairs in the structures by using the definition of (Nussinov algorithm),

rather than free energies for the folding part.

Now one must to show the analogies of the Sankoff algorithm between the Foldalign
method which simplifies and extends the basic Sankoff algorithm. As is known the
Sankoff algorithm minimizes the total cost of combination of both the minimum
Alignment cost and the minimum free energy structures for two sequences; the
Foldalign method is focused on the local sequence alignment (that is mentioned before,
in the preliminaries chapter), therefore, it applies the definition of (Smith-Waterman
algorithm) which finds the maximum score local alignment for two sequences. So, it
maximizes a score that combines sequence similarity and structure. For this case, it
employs the Nussinov algorithm that maximizes the number of basepairs to score the
structure. Now, this gives the ability to exploit pairwise Foldalign 1.0 for determining

the maximum scoring local alignment RNA sequences.

Now, the following definitions of the pairwise Foldalign 1.0 according to Gorodkin et
al. [GHS97a], [GHS97b] are presented as follows:

Definition 3.3.1.a: (FAL.0 scoring matrix) The FA1.0 scoring matrix (S,«) is 25 x 25

matrix for the four bases that also include the gaps, where the indices i, j, k, | € {A, C,
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G, U, -} and its values in R. It combines the two independent contributions that will be

discussed later in the FA1.0 scoring matrix construction.

Definition 3.3.1.b: (FA1.0-score) Let A be an alignment of the sequences A and B, let
Pa be a nested structure of sequence A and let Pg be a nested structure of sequence B.

We assume a fixed FA1.0 scoring matrix S. The FAL1.0-score of A, P, and Pg is given

as:

FA1.0 — score(A, Py, Pg) = Z Saiby ajb, T Z a(ay, by)
(iL)EPa pE[L... | 4[]
(k,l)e Pp

and (i,k)eA,(j,1)Ee A

where ¢ is the similarity score for all subalignments, and Sagb asb; is a cost for

aligning i with k and j with I when (i, j) and (k, 1) are basepairs.

For example:

N

A1 Cy; Gz Uy —Gs— U

A =
C1C2Gg—A4 GS A6 G7
\_/

o(A,C) + o(CC)+ o(G,G) + o(U,—-) + o(—,A) + 6(G,G) + o(—A) + o(U,G)

+ Cacuc + Cccae
A= {(1:1): (2,2), (3,3), (5'5)1 (6'7)}

Definition 3.3.1.c: (FAL1.0 problem) Given two sequences A and B as input, the FA1.0
problem is the problem to find an alignment A of the sequences A and B, and a nested
structure P of sequence A and a nested structure Pg of sequence B, such that the
basepairs of the structures P, and Pg are preserved in the aligned positions, and with a

constraint of non-branching structures and FA1.0-score (A, P4, Pg) is maximized.

As is shown the recursion of Nussinov algorithm (in the preliminaries chapter) allows
for branching structures. Here, in order to reduce the time complexity for the Foldalign

method, the case related for the branching structures is dropped.
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Formally, this method finds the best subsequence alignment between two sequences by
using the 4-D dynamic programming algorithm according to Gorodkin et al. [GHS97b]

as follows:

Definition 3.3.1.d: (FAL.0 recursion) Let two subsequences a; ... g and by ...b;, and a

fixed FAL1.0 scoring matrix (Saiaj_bkbl), be given with a non-branching structures

constraint, then the output is the highest scoring subsequence alignment of matrix D,

that is produced by the following recursion:

[ DarG-n.0e+00-0 + Sasampn ()

Di(j—1),(e+1)t-1) T S=-a;byb; »
Div1)jk+1)-1) T Sa;—bib; » ()
Di+1)(j-1)k-1) T Sayaj-b; »
Di+1y(j-1),(k+1)t T Sayajby—

Disnyj-vm t Sazaj—-

(c)
Dij,(k+1)(l—1) + 5——,bkbz ’
D. . = max
ij,kl < D(i+1)j,(k+1)l + Sai—,bk_ ’ (d)
Dig-vyka-1) * S-aj-p;.
D+1yjka-1) + Sa—-b; » ()
Dij-v),e+11 + S-ajby—»
Dis1yjpa + Sa;——-
Di(j—l),kl + S—aj,—— ’ (f)

Dij eyt + S——pp—»
Djjra-1) +S-—-p,

where a maximum value of Dj,q gives the maximal similarity between the

subsequences a; ... a;and by ...,

The different classes are represented by the letters from (a) to (f) on the right side of the
above recursion, according to the number of gaps and its distribution within the
alignment. As is shown, in this recursion the branching structures are not allowed, in

order to reduce the time complexity.
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Note that zero value is found in the recursion of local sequence alignment, but it is not
included in this recursion because the matrix Djj,q contains alignment scores over all
the subsequences, a; ... a; and by ... by, also because the negative values are allowed to

be included within the complete alignment.

Definition 3.3.1.e: (FAL.0 scoring matrix construction) Sy, is the FAL.0 scoring
matrix that is constructed for the subsequences i, ..., jand k, ..., I, from two terms of
the independent contributions, so S describes the sum of the two matrices A and B, as
follows: S=A+B,

Where S is a scoring matrix 1.0 that substitutes any pair of bases with the other
including gaps, A is a matrix for sequence alignment and B is a matrix for basepairs

alignment.

First, a matrix A will be constructed from two independent matrices, such that, it
contains all pairs that are possible in one sequence of positions (i, j) and in other
sequence of positions (k, 1), by combining the cost of (A o)i that aligns i with k and the

cost (A o); that aligns with I, as shown in:
A = (A )ik + (A o)l

where Ajj« represents the score matrix for aligning any two bases in one sequence with
any two bases in the other sequence with gaps including. (Ao)i and (Ao); are similarity

substitution matrices.

Now, to build the score matrix B for base pairing, a simple description is introduced as

follows ©:
ikjo 17 (i, J) and (K, 1) can basepairs

Bij,kl =
0 otherwise

®) There is another presentation for the score matrix B, and one example for the matrix S, [GHS97b].

where ( is a base pairing alignment matrix that gives a score for substituting a basepair
of one sequence to a basepair of other sequence, its values gives reason to occurring

compensating mutations in the final matrix S.
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The 4-D dynamic programming of pairwise Foldalign 1.0 will extend to contain
alignment for two entities (individual sequences and/or aligned sequences) in a set of
RNA sequences, without overlapping of sequences between them; therefore, the
Greedy algorithm will be used for this extension to construct the multiple alignments
from pairwise comparisons that are optimized by the pairwise Foldalign 1.0 for the

preservation of both sequence and structure.

However, in a set of n sequences, there might be some of these sequences not-related to
the rest or might be functionally related but denote the two or more of structural classes
that do not provide a single common motif over all sequences. The overall method (i.e.
pairwise Foldalign 1.0 and Greedy algorithm) distinguishes that there are m < n
sequences including the most significant common motif in the alignment, while the rest
of sequences might refer to other structural class. Hence, it considers that there are 2"
subsets for n sequences, and it identifies the subset which is the most significant

common motif, while neglecting the other non-useful subsets.

The Greedy algorithm is described in two steps according to Gorodkin et al. [GHS97b]

as follows:

e Comparing all individual sequences with each other, and then comparing all
pairwise alignments with all individual sequences, as long as in each
comparison a sequence does not appear more than once.

o All triplet alignments align with individual sequences, and all pairwise
alignments compare with each other, again as long as in each comparison a

sequence does not appear more than once.

By continuing with this algorithm, all sequences will be compared at the end of the
alignment. It requires time O(N*n") where N is the sequence length for n sequences (i.e.
exponential time), and as mentioned above some of sequences (subsets) are improbable
to be involved in the final aligned subset, therefore, such procedure requires discarding
non-useful alignments (aligned subsets).

There are two limitations on the comparisons that are used to optimize this algorithm;
therefore, they reduce the time complexity to O(N*n®). These are: (1) a single sequence
which always one of the two entities, and (2) there is “threshold” number of the highest

scoring alignments at each round that is stored.
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Explanation: Considering “threshold” 30, and comparing each single sequence with
each pairwise alignment create triplet alignments and only the 30 of the best scoring
alignments are stored to comparing again with single sequences to create four
sequences alignments. With these limitations on the comparisons the complexity

becomes O(N*n?).

In addition to tractability over the Greedy algorithm, Foldalign method has another
advantage that it can find the subsets (aligned sequences) with most significant
alignments. The disadvantage of the Foldalign method is that there is no guarantee to

find the optimal solution, as in Sankoff algorithm.
During the implementation of the pairwise Foldalign 1.0, two limitations are showed,

these are defined as follows:

o Definition 3.3.1.f: (3-restriction) The maximum scoring alignments Dj;,q for
the subsequences i, ..., jand k, ..., | are calculated, if restricting the maximum
length of difference between these two subsequences being aligned by o

nucleotides.
Only Dijj,u, where |(j—i+1)-(1-k+1)] <3 issatisfied, are calculated.
Otherwise Dijjq = - oo, if |(j—i+1)-(1-k+1)] >é.

e Definition 3.3.1.g: (A-restriction) The maximum scoring alignments Dy, for
the subsequences i, ..., jand k, ..., | are calculated, if restricting the maximum
RNA-motif length by A nucleotides.

-1+ <x
(I-k+1)<Ax
where i, j, k, I, are indices of Djj,q.

Since these two heuristics have effect on the alignment length of the problem that is
solved, they will reduce the time and memory complexities.
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3.3.2 Pairwise Foldalign 2.0

The main limitation of the pairwise Foldalign 1.0 implementation includes only the
stem-loop structures because of the computational complexity. Therefore, several

improvements are applied to extend and improve the Foldalign method.

Now a new Foldalign implementation suggested by Havgaard et al. [HLS+GO05] will be
discussed. This pairwise Foldalign 2.0 implementation extends from the previous
implementation to include: the bifurcated structures, structural parameters provided in
the scoring scheme that employs for free energy minimization (similar to energy terms
in Dynalign) [MSZ+T99] [XSB+KSJ98], and also contains computation of the
substitution matrices that is similar to RIBOSUM [KEO3].

Now, we present the following definitions for the pairwise Foldalign 2.0 according to
Havgaard et al. [HLS+GO05] as follow:

Definition 3.3.2.a: (FA2.0 score) Let A be an alignment of the sequences A and B, let

P be a nested structure of sequence A and let Pg be a nested structure of sequence B.

Then the FA2.0-score of A, P, and Pg is given as:

FA2.0-score (A, Pa, Pe) =X (ij)ers (kD)ePs [t(ay, aj; b, b)] + Ea(Pa) +
where (i,j)aligned (k,l)by A

Es(Ps) + X(ikyeu (@i by)

where T and ¢ are the similarity parameters for substituting base-pairs and unpaired
bases respectively, which are similar to RIBOSUM matrices. E(P,) and E(Pg) are
subset of Turner energies used as the energy parameters that compute the free energy
minimization [MSZ+T99], [ZMT99].

Definition 3.3.2.b: (FA2.0 problem) Given two sequences A and B as input. The FA2.0
problem is the problem to find an alignment A of the sequences A and B, and a nested
structure P, of sequence A and a nested structure Pg of sequence B, such that the
basepairs are conserved in the aligned positions and FAZ2.0-score (A, Pa, Pg) is

maximized.

As mentioned above, that the branching structures are included in this version of

Foldalign.
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The FA2.0 cost (Saiaj,bkbl) is a cost for the substitution of (a;, a;) from sequence A with

(bk, by) from sequence B, and the two subsequences are folding simultaneously. It has a

dynamical computation relying on the five structural contexts (structure elements).

Definition 3.3.2.c: (FA2.0 recursion) Let two subsequences a; ... g and by ...b, be
given as input. FA2.0 cost (Saiaj.bkbz) is calculated according to the structural context,
and with including branching structures. Then the maximum scoring subsequence

alignments of matrix D is produced by the following recursion according to Havgaard
et al. [HLS+GO05] as follow:

( Dirvy-nw+na-1) T Saiajpen (@)

Di(j-1),(e+1)t-1) T S=-a;byb; -
Di+1)jte+1)t-1) T Saz—byby - (b)
D(i+1)(j-1)ka-1) T Sa;aj~b; »
D(iv1)(j-1),(e+ 1)t T Sazajby-

Disnyj-vm t Sajaj—-

(c)
Dij k+1y-1) + S——byb; »
D(iv1yjes1yt T Saj—bj— - @
Dijja =max { D;_1)ra-1) + S_aj~b;»
Dsyjra-1) + Saj— by » @©
Di(j—1),(ke+ 1)1 + S=-a; by »
Ds1yjr + Saj-——
Di¢j-1)k1 +S-q;—-> (f)

Dij k+1)1 + S—— b »
Dijra-1 +S——-p,»

\ i<Trrzlgjx—1 {Dinjem + D (n+1)j,(m+1)l} (@)
k<m<l-1

where maximal Djj,«q refers to the most similar subsequences a; ... a; and by ... by, and
each of a, a;, by, by are nucleotides at positions i, j, k, |, respectively.

The letters above from (a) to (f) on the right-side of recursion are the same as those in
the previous implementation, only (g) is added to allow for the bifurcation structures.

For each D-entry, the associated context is stored in a separate matrix.
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Generally, Saiaj,bkbl has a dynamical computation by relying on the five structural

contexts (structure elements). The parameters used in this computation are static such
as substitution costs of basepair (aligning part) and the energy parameters (folding

part). Now, the calculations of cost Saiaj,bkbz for each structural context are presented

according to Havgaard et al. [HLS+GO05] as follows:

e Hairpin-loop: the calculation is always initialized by aligning two nucleotides
in the hairpin-loop context. The cost of the alignment between two hairpin-
loops is:

S hp = S substitution T S length +S stack

where S gustiwtion = 2. Sss (@i, by) is the cost of combining the substitution for
each pair of nucleotides and gap cost for each gap that are included in the loop.
Sss (ai, by) is the single-strand substitution cost, which correspondences to g. S
length = S hp-tength (J =1 +1) + S ppotengin (I = K + 1) is the cost that is dependent on
the loop size, which is computed from the energy parameters. For the hairpin-
loops that have more than three nucleotides long, the energy cost S gk = S np-
stack (@i, @, i1, Aj+1) + S np-stack (Dk, D1, i1, Di+1) IS combining of two independent

sums for stacking in the two hairpin-loops.

e Stem: A stem is the number of stacked basepairs, with long at least two
basepairs. A single basepair is not allowed and is recalculated as part of the

surrounding loop. The cost of the alignment between two stems is:

S bp = S substitution T S stack

where S gpstittion = 2, Sss (@i, @j, by, by) is the cost of combining the substitutions
for the basepairs in one subsequence with the basepairs in other subsequence,
which correspondences to 7. S s, IS the stack energy cost which has the same

computation above but for two stems.
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The other structural contexts are computed in the same manner with some
addition costs of energy parameter that are added according to the requirement

of structural context.

e Internal-loop: An internal-loop is the single-stranded nucleotides on both sides
of RNA structure that are surrounded by stems. The cost of aligning two
internal-loops is:

S il = S substitution T S length +S asymmetry +S stack

e Bulge-loop: A bulge-loop is also single-stranded region but only on one side of
RNA structure that is surrounded by stems. The cost of aligning two bulge-
loops is:

S bl = S substitution T S length +S stack

e Multibranched-loop: A multibranched-loop is the region where more than two

stems meet. The cost of a multibranched-loop is:

S hp =S substitution T S mbl-closing + (n stem ~ 2) S stem T N singlenucleotides X S nucleotide S stack

All these costs are stored in either specific matrices or tables in the score matrix
according to structural context and its parameters. For more details, the reader is
referred to the paper Havgaard et al. [HLS+GO05].

The two constraints that are used in the previous implementation of FAL.0, they are
also used with this implementation of FA2.0: A and 4. These reduce the complexity for
each of time N Ng A? 8% and memory Na Ng A 8, where Na and Ng are the lengths of

A, B sequences respectively.

By dropping the cases (b) and (e) from the recursion above, the speed of this
implementation will be increased because the number of cases at each entry in
recursion will be reduced. This has no influence on the memory and time complexities
because there is no modification of the structure types which can be aligned, so that we

can obtain the alignments for the cases (b) and (e), by integrating some of the other
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cases of the recursion. For example, the case (b.1) can be obtained from combining the

cases (f.3) and (d.2), or from (e.2) and (f.4), or replacing of other cases.

The restriction has been placed on the case (g) when it is calculated, where the case (g)
is composed of two substructures, another optimization conforms to speed of this
implementation, if (i, n) and (k, m) are basepairs of the left substructure Djq,km, and if j

is base-paired and | is base-paired of the right substructure D(y+1)j,@m+1)-

This implementation handles with the problem that finds the common local structural
motifs of two RNA sequences with sequence similarity less than 40%, where these
sequences are not distinguishable of the folding energy to their surrounding sequence
context. It also represents an efficient way for executing simultaneous mutual scan for

two sequences to find the common local structural motifs.

3.3.3 Pairwise Foldalign 2.1

Now, we will introduce the last implementation of the Foldalign method that was
described by Havgaard et al. [HTGO7], as a new heuristic in the previous
implementation (i.e. Foldalign 2.0). This heuristic is represented by the dynamical
pruning of the dynamic programming matrix, through excluding the subalignments that
have scores lower than length-dependent threshold (pruning threshold). This heuristic
increases the speed without reducing in the predictive performance. It represents a new
implementation in the Foldalign method that is used for pairwise local or global
structural alignments of the RNA sequences. In addition the memory requirement is
reduced by a constraint of branch points which uses the divide and conquers method.

This thesis is not interested in the latter.

Now the following definitions are presented for the pairwise Foldalign 2.1 according to
Havgaard et al. [HTGO7] as follows:

Definition 3.3.3.a: (FA2.1-score) FA2.1 score has the same definition as the previous
Foldalign implementation (FA2.0 score).

Definition 3.3.3.b: (FA2.1 problem) FA2.1 problem has also the same definition as the

previous Foldalign implementation (FA2.0 problem).
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The cost of FA2.1 distinguishes also into several costs that are used to add a set of
nucleotides to the alignment. This cost is the same as FA2.0 cost which has a

dynamical computation depending on the five structural contexts (structural elements).

Definition 3.3.3.c: (FA2.1 recursion) Let two subsequences be given as input a; ... g
and by ...b, of sequences A and B respectively. This recursion seems the same recursion
as the previous version with only a few improvements or simplifications to the energy
model. Then maximum scoring subsequence alignments of D is produced according to
Havgaard et al. [HTGO7] as follows:

[ Div1j-1k+11-1  Spp(@i @, by, by, Oi1 j—1e+1,-1) (a)
Diy1,j-1k1 + Sppir (@i, @y = =, Oi41,j-1,k,1) (b)
Dy jk+1,1-1 F Svpik(— = b, by, 04 j rer1,0-1) (©
Diy1jk+1,1 + Sar(@i b, Oi1,jk+1,0) (d)
D;j_1ki-1+ Sar(@j, by, 0y j-141-1) (e)

Dj k1 = max < Div1,jky + Squ(@i = Gi1,j k1) )
Dij—1p1+ Sgri(@j,— 0 j—14,1) (@)
Djjk+1,1 + Sqik (= bi, 03 j kv 1,1) (h)
Dijxi-1+ Sgr(— b1, 0y jki-1) ()
i@rgicj{D,i,m,k,n + D’m+1,j,n+1,l + Cmblhelix} (J)
\ k<n<l

where D; ; ., is the alignment score, g; ; ., is the alignment state. In addition to these
matrices, there are four length matrices used in the implementation: pi; j k1), H2(ij k1)
H3i,jke,l)s Maijk,y Which are the lengths of the single stranded regions external to the

last basepairs. Therefore, this version contains six of 4-D matrices that are required for

computing the recursion. Cp,pineiix Which is the cost for adding extra stems.

In case (j), the unpaired nucleotides of branched loops score the same as unpaired
nucleotides in the external loops. Hence, D' is the alignment score that is corrected for

external single stranded nucleotides.

As mentioned that cost of FA2.1 represents the costs of Sy, to Sqrk Which are computed
depending on the alignment state (c) which includes five structural contexts: hairpin-

loop, stem, bulge-loop, internal-loop, and external/bifurcated-loop.
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The case (a) adds a basepair in both structures. The cases (b) and (c) add basepair
inserts in either of the structures. The cases (d) and (e) add aligned unpaired nucleotides
in either end of the alignment. The cases (f) and (i) add an unpaired nucleotide aligned
to a gap to the alignment. The case (j) is the bifurcation case which joins two

substructures into one in each of the structures.

The alignment score D; . ; is the maximum alignment score over all the D-entries and
the alignment state a; ; ,, becomes the state for the best structure alignment which is
computed according to the associated context of D-entry, where the context of each D-
entry is stored in a separate matrix. Analogously, this is done for the length matrices:
B j ) B2ei,j k00 H3G,) k0 Badi,jkp Which are the lengths of single stranded regions
for the best alignment of (i, j, k, I). These lengths are updated according to the
associated context. For more details about the procedure of recursion, the reader is

referred to the supplementary material [PS1] for Havgaard et al. [HTGO7].

The construction of Foldalign compares with the Sankoff algorithm, that Sankoff has
three matrices which distinguish the different states in the structure. In the Foldalign,
only one matrix uses several states which are distinguished in the structure. Therefore,
the maximum D-entry from the Foldalign recursion should give a best state which is

stored in a separate matrix.

Due to the general case of structure which is represented by matrix F in Sankoff
algorithm which is not carried in Foldalign as obvious state, therefore, this state is

corrected by the D'-entry, where D’(l-,j,k,l) = D jrn + S'( O(i,j kD))

We applied some examples on this recursion where, without recalculation in the stem
state, the recursion does not work or may not get the optimal solutions according to the
observed states in this recursion. However, Foldalign 2.1 has been able practically (i.e.
when it was run) to solve these examples which would not work in an optimal way
without recalculation. This demonstrates the effect of the “potential basepair” state that
was added in the implementation for realizing the recalculation. Although these special
states are handled in this method still the method dose not guarantees an optimal

solution.
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The following two examples were run in Foldalign 2.1 and we got their solutions.

Example 1:

>Seq_1

CCAAAAAUGG

>Seq_2

CCAAAAAUGG

; ALIGN Seq_1 CCAAAAAUGG

; ALIGN Structure  ((( ... . )))

; ALIGN Seq_2 CCAAAAAUGG

; ALIGNING Seq_1 against Seq_2

; STEMEND 1101 10; START 0000 SCORE -20000

; BACKTRACK 115 115 (1 10, 1 10) 21 0 0 0 0 Basepair ik jl
; BACKTRACK 2323(29,29)210000 Basepair ik jl

; BACKTRACK -45 -45 (3 8, 3 8) 20 0 0 0 0 Hairpin -> stem ik jl
; BACKTRACK 32-72(47,47) 24040 Hairpin ik

; BACKTRACK 24 -84 (57,57) 23030 Hairpin ik

; BACKTRACK 16-94(67,67) 22020 Hairpin ik

; BACKTRACK 8-104 (7 7,77)110 10 Initial Hairpin ik

: BACKTRACK Branch end
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Example 2:

>Seq_1
GCGAAAAUGC
>Seq_2
GCGAAAAUGC

; ALIGN Seq_1 GCGAAAAUGC
; ALIGN Structure  (( ... ... ))
; ALIGN Seq_2 GCGAAAAUGC

; STEMEND 1101 10; START 0000 SCORE -20000

; BACKTRACK 8787 (110,110) 21000 0 Basepair ik jl

; BACKTRACK -9-9(29,29) 200000 Hairpin -> stem ik jl
; BACKTRACK 39-57(38,38) 2606 0 Hairpin ik

; BACKTRACK 36 -66 (4 8,48)2505 0 Hairpin ik

; BACKTRACK 28 -76 (58,58) 2404 0 Hairpin ik

; BACKTRACK 20-88 (6 8,6 8) 23030 Hairpin ik

; BACKTRACK 12-98 (7 8,7 8) 220 20 Hairpin ik

; BACKTRACK 4-108 (88,88) 11010 Initial Hairpin ik

: BACKTRACK Branch end

As mentioned above, the dynamical pruning works to eliminate all subalignments that
are at the poorly levels, and that occurs by comparing the score Dj;,iq of a subalignment

with a threshold of local alignment described as follows:

Dij,i s pruned if Dij,iu < Oiocar (1a) O Dijua < Opocar (I8)
which is equivalent to Djj,.u < Min Ojecar ((1a), (I8))
where ®ycq IS based on the length of the subsequences I = (j—i+1)and lg = (I -k +
1), therefore, a linear form that is found for the proper length dependency is, ®jocal = 8@ *
min {l, I} + b, where a and b are constants.
This speeds up the Foldalign 2.1 method, moreover the memory is also improved

because it does not need to store the discarding subalignments which are also not used

to calculate the longer alignments.
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Due to global alignment considering the whole length of sequence, a minimum number
of gaps must be added equal to the length difference between the two sequences. The
pruning for local alignment will eliminate all subalignments, when the difference
lengths are large. Therefore, the special pruning for global alignment is employed as

follows:

Dijit < Ogiobat = Orocar (la, I8) + Ge x min {abs(la — Ig), abs(Na — Ng)}

Where ©qiopa threshold for global alignment, Gg is the cost of gap-elongation, ®jgca IS
the threshold of local alignment and N, and Ng are the sequence lengths of A and B

respectively. Here, other values for parameters a and b are used.

The dynamical Pruning represents as a general heuristic and it should be possible to be
employed with the other methods that implement the fold and alignment of RNA
sequences; it is considered a property in dynamic programming method that is applied
with algorithms exploiting dynamic programming. However, it does not ensure that it
provides an optimal solution, or in some cases no solution is found, therefore the

Foldalign in this case will realign without pruning.

This implementation still applies the old constraints A and &, which decrease the
complexity to @ (Na Ng A2 8%) for time and © (A* 5) for memory, where N and Ng are
the sequence lengths A and B respectively. Furthermore, the bifurcation constraint is
also employed in this implementation, which restricts the substructure types that are
combined in case (j), such that the first nucleotides (i and k) in the substructure Din,km
are base paired, and in substructure Dy.j,m+1, the pairs of bases (n + 1, j) and (m+1, I)
must be basepairs (i.e. they should form a stem context). Hence, this constraint restricts
all alignments that must be kept for positions (i + 2, ..., i + A) to those which have stem

context. This represents an optimization during the local alignment for saving memory.

When using the global alignment in this implementation, the complexity of time and
memory are reduced compared with the previous implementation. The global alignment
is aligning over the entire length of two sequences, such that the & is becoming exactly
as the parameter M in Dynalign method by restricting the starting of a sub-alignment in

the second sequence (i.e. |i - k| < §). The idea is that since the &-heuristic limits the

49



Chapter 3: Methods

length difference of sub-alignments, then the position k in the second sequence is
limited in relation to the position i in the first sequence. The complexity becomes O
(N3,..8% for time and O (N2, &° for memory, where N,,;, = min {Na, Ng}. This
compared with the complexity of the previous implementation that applies the local

alignment, where A refers to the length of the sequence.

The energy model in this Foldalign implementation changes as compared with the

previous implementation (2.0) in three points according to Havgaard et al. [HTGO7]:

e The single-stranded nucleotides in external-loops are scored like the single-
stranded nucleotides in the multibranch-loops.

e Allowing insert the basepairs at all positions of a stem excepting the first
basepair.

e The single-stranded nucleotides in the multibranch-loops that are next to base-
paired nucleotides are no longer stacked, i.e. the dangling ends are no longer

used.
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3.4 PMcomp / LocARNA

This part will present another family of variants of the Sankoff algorithm for
simultaneous folding and aligning of two RNA sequences, which exploit the
probabilities of basepairs for RNA sequences as structural input. Therefore, they take
into account the information about both sequence and structure, where the secondary
structures are non-pseudoknoted. These methods are PMcomp [HBS04] and LocARNA
[WRH+SBO07].

Before we start to show each of these methods separately, some principles are

introduced that are related to these methods.

McCaskill algorithm calculates the base pairing probabilities from the partition
functions of RNA sequences. It uses a statistical mechanics model to predict the

probabilities of individual basepairs in the secondary structure. [M90]

Definition 3.4: (Boltzmann weight, Partition function, Base pairing probability) Given

an RNA sequence S, the Boltzmann weight of a structure P of S is defined as:

wés)(P) = e Es(P)/ksT \where Eg(P) is the energy of a structure P, kg is Boltzmann

constant and T is the temperature. The partition function of S is defined as:

Zps = Xpofs W;S)(p). The probability of a structure P of S is defined as:

Pr[Pof S1= w> (P)/Zps.
This kind of probability can be computed efficiently by using McCaskill algorithm.

Each of these methods utilizes the basepair weights which are derived from the
matrices of basepair probability for each individual sequences, such as the weight ;;

for the basepair (i, j) of sequence S is described as:

Y 8 Po gPo

Where Pr;; is the probability of a basepair (i, j) as calculated by McCaskill algorithm,

Do IS the expected probability for base pairing that is randomly occurring.

Both of these methods calculate the pairwise alignment from the base pairing

probability matrices of the RNA sequences, where the McCaskill algorithm computes
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these matrices. Therefore, these matrices include the energy information for each

sequence (as shown above).

When these methods are compared with the Sankoff algorithm, they are based on the
input of base pairing probability matrices which contain the energy information about

RNA sequences and can be calculated independently.

These methods do not start directly from only the sequences but they require their base
pairing probability matrices which are important for the folding part in these methods.
Furthermore, these methods do not distinguish among all structure elements. Since, the
implementation of these methods depends on the simple scoring system, such that they
avoid implementing and computing the complete energy model of RNA folding during

alignment.

3.4.1 PMcomp

As we mentioned above, this method calculates the pairwise alignment from the
matrices of base pairing probability of the RNA sequences. These matrices are
computed by using the McCaskill’s algorithm. Thus, they include the energy
information about each sequence. Then PMcomp finds the “maximal weight” common
secondary structure together with the alignment between the sequences. This method

was proposed by Hofacker et al. [HBS04].

Before defining this method formally, one must show how to find the “maximum

weight” secondary structure that is common to two base pairing probability matrices:

Definition 3.4.1.a: (Consensus secondary structure “C. S. S.”, Maximum weight C. S.
S.) Let two sequences S; and S, be given as input with their base pairing probability
matrices P* and P? respectively. The consensus secondary structure Sis a set of pairs of
basepairs (i, j) and (k, 1) of sequences S; and S, respectively. The maximum weight C.

S. S. is the consensus secondary structure § that maximizes:

Yapen)es Wi+ ¥i)

where 1/11';1 and 1,2 are the weights of the basepairs (i, j) and (k, 1) of sequences S; and

S, respectively, as described above in the weight’s equation. This definition does not
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consider solving the problem of simultaneous folding and aligning. Moreover, it
produced structures that are different from the structures that are formed in the

PMcomp method.

The PMcomp problem is defined with respect to its score according to Hofacker et al.
[HBS04]:

Definition 3.4.1.b: (PMcomp-score) Let two sequences S; = sq,, ..., sljand Sy = Sz,

.., S, be given as input with their base pairing probability matrices Prl and Pr?

respectively. Let A be an alignment of sequences S; and S,, and let the consensus
secondary structure § of sequences S; and S,. The PMcomp-score of A and § is given

as:

PMcomp-score (A,S ) = Xijkes [wilj + i+t (Sli’slj; 52k'521)] + YNgap +

Z i€S;,KES, O'(Sli, Szk)
and i,k aligned by A

where T and o are scores of alignment contributions for substituting the basepairs and
unpaired bases respectively, y is the gap penalty and Ng,, is the number of gaps during

insertion and deletion of the alignment.

Definition 3.4.1.c: (PMcomp problem) Let two sequences S; = s, ..., sljand Sz =Sz,
..., S7,be given as input with their base pairing probability matrices Prl and Pr?
respectively. The PMcomp problem finds the consensus secondary structure S of S;

and S,, and an alignment A of S; and S, with the number of gaps during insertion and

deletion of the alignment, such that PMcomp-score (A, §) is maximized.

Now this method defines the best subsequence matching alignments by using dynamic

programming algorithm according to Hofacker et al. [HBS04]:

Definition 3.4.1.d: (PMcomp recursion) let two subsequences S; = sy, ..., sljand S, =

S2, ---» Sz, De given as input with their base pairing probability matrices Pr! and Pr?
respectively, in addition to the T and o scores and the gap penalty y. Then the output is
the maximum scoring subsequence matching of matrix S ; j. | that is obtained by the

following recursions:
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Si+1,j;k,l + Y,

Si,j;k+1,l + Y,

Si+1,j,k+1,l + O-(Sli' SZk)l
M

max (S:3..,, +S .
hsj'qsl( i,h;k,q h+1,J,q+1,l)

Mo _ 1 2 .
Sijikl = Sit1j—1k+11-1 TV TP +7 (51i:51j: Szk:szl) ’

Si,j,k,l = max

Initialization S .« 1 =|(j-1)-(I-K)|y for j—i<M+1lor I-k<M+1, where Mis

the minimum size of hairpin loop (usually M = 3).

As presented at the initialization case in the original presentation according to Hofacker

et al. [HBS04] is wrong, because S ; j; k1 must be the best score for sy, ..., sljand 52

TR In the alignment one can match bases, insert, or delete, but cannot match

basepairs due to short one of the two sequence lengths.

A maximal value of S ; .« | gives the most matching for the subsequences s, ...,
sljand Sz, -+ S2,- In addition, the score S™. i « 1 be the best match subject with a

constraint that the basepairs (i, j) and (k, 1) are matched.

The first two cases in the recursion account for gaps in one of the subsequences, the
third case refers to match the unpaired bases in both subsequences and the fourth case
(max-case) refers to the basepairs (i, h) and (k, g) in the subsequences S; and S,
respectively, which are matched. In addition, the restricted term of S ;. « | is

straightforward.

This recursion needs O(N*) for memory and O(N°) for time, where N is the sequence
length. PMcomp is equivalent to a special version of the Sankoff algorithm (Nussinov-

style), where:
1 if sy, and S1; can form basepairs

0 otherwise

Analogously for Pr?.
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There are two restrictions that reduce the complexity: the first restriction is that
matching of the basepairs (i, j) € S; and (k, I) € S, must be within the difference A = |(j
- i) - (I - k)|, hence, the time complexity will decrease to @(N°). The second restriction
is that all partial alignments are limited within this difference, the complexity will
decrease to O(N*) for time and O(N®) for memory. If A is high, there is no big decrease
of the computation effort. Whereas a lower value of A, many significant alignment

structures will be missing.

After filling the matrix S . « 1, backtracking is used to compute the matched positions

of the sequences.

When ‘average’ basepair probability matrix that is described below according to
Hofacker et al. [HBS04] is found, the PMcomp method will extend to construct the
progressive multiple alignments by using the comparison of the base pairing probability
matrices, this is called PMmulti method. The average basepair probability matrix is
defined by:

prlez — { Prii,,jqpnfp,lq for matches
Pa
0 otherwise

Where i,, and j, are the positions in sequence S; corresponding to the positions p and

q in the alignment. Analogously, k,, [, are defined for S,.

PMmulti method is represented by repeatedly calling for the PMcomp for calculating
all pairwise alignments, and then generates a guide tree from assembling the similarity
scores by applying the weighted pair group clustering method. Finally, it aligns all

alignments along guide tree.

3.4.2 LocARNA

This method is PMcomp-based that calculates the pairwise alignment of RNAs
(optionally local), but is more efficient for the time and memory complexities, such that

it reduces to O(N?) for memory and O(N*) for time. This is due to introducing the idea
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of significant basepairs which are defined by using cutoff-probability, compared to

PMcomp method.

Formally, this method can be defined with respect to its score according to Will et al.
[WRH+SBO07]:

Definition 3.4.2.a: (LocARNA-score) Let A be an alignment of sequences S; = s,
sljand Sy =S, ---» Sz, and let the consensus secondary structure § on A. Then,

the LocARNA score of A and S is given as:
LocARNA-score (A, S) = Xijknes(Wij + Vi) + Z(ikyea, 0(S1,52,) = ¥YNgap

where Ag represents the single-stranded part of the alignment (i.e. the unpaired bases)
and the parameters (y, Ngap, o) are defined as in the PMcomp method. Note that the
LocARNA-score is essentially the same as the PMcomp-score. t is omitted only for

presentation.

In this method, the weights wijl, Yy, are modified by introducing cutoff-probability.

This represents the first modification in LocARNA as compared with PMcomp, such
that:
og— / log— if Pr;: > p*
T Po Po y =P

—o0 otherwise

where p* is the cutoff probability, such that the weight be (—oo) for the probability
lower than p*. This modification reduces the time complexity to O(N*), by making p*
constant for different lengths N. Then each base can take part in at most 1/p*, so only
0(1) basepairs.

Definition 3.4.2.b: (LocARNA problem) Let two sequences S; = sy, ..., sljand S, =
S2,0 -+ Sz, D€ given as input with their base pairing probability matrices Pr! and Pr?
respectively. The LocARNA problem calculates an alignment A of S;and S, with the

number of gaps during insertion and deletion of the alignment and the consensus

secondary structure § on A, such that, A contains a set of match/mismatch pairs,
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scontains a set of the conserved basepairs and the LocARNA score (A, §) is

maximized.

The second modification in the LocARNA, which improves the PMcomp method, is
modified the dynamic programming algorithm being used, in such a way that allows
considering only significant basepairs which are produced by applying cut-off

probability. Thus, the space complexity reduces to O(N?).

Now, the dynamic programming recursion is defined according to Will et al.
[WRH+SBO07], as follows:

Definition 3.4.2.c: (LocARNA recursion) Let two sequences S; = s, ..., sljand S, =
Sg, -++» S2,,With their base pairing probability matrices Prl and Pr? respectively, be

given with ¢ and y. Then output is the maximum scoring subsequences similarity of

matrix D, that obtained by the following recursions for M and D:

M;;_160-1 + 0(S1, S2,.)
Mij_10 +V
Mijiki—1 +v

max;yM;ji_y.'—1 + Dy

M;j.i = max

Dija = Mij_10-1 + i + iy

where maximal D;,;; provides most similarity between the subsequences [sy,, ..., 51,-]
and [s,,, ..., so,], with condition that the basepairs (i, j) and (k, I) are parts to form the
consensus secondary structure. D;;.; are calculated and stored only for the considered
significant basepairs. Hence, the D;j,; entries are computed with fix left ends i and k
and varying j and . For computing all entries Dk, ONe needs only entries of M;;,,

for alignments that have left ends (i+1, k+1).

These matrices can be used for both of global and local alignments by calculating the

recursion of Mo, for the global alignment, where the optimal score of the global
alignment is over the entire sequence length (i.e. Mg, ; s,)- This is the same as in

the PMcomp method. In the following, local alignment will be considered.
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The best local alignment score is obtained by finding the maximal value of
subsequence alignments. Therefore, M, .o, recursion is extended to include the zero
entry that cutting off the prefix alignments that are not related to the local alignment,

i.e. the negative values which are dissimilar prefix alignments.

M;j_1;0-1 + 0(81, S2,)
Mij 100 TV
Mij-1 +V

max; M _ye—1 + Dy

M;j.p = max fori>0o0rj>0

P

0

My;—1,01-1 + 0(51, 52,,)
Moj,o0 = max < Moj_1,00 +¥

Moj,01-1 +v
\max;ryMojr_y;017—1 + Djrjry
Dijja = Mij_10-1 + ¥i; + i

LocARNA method is also like the PMcomp method in extending to construct the
progressive multiple alignments from the pairwise alignments, and this is called
mLocARNA method. This method has a different algorithm for calculating the
“average” basepair probability matrix Pr'°2 as found in the PMmulti for the alignment
of S; and S,. As a result of PMmulti, most basepairs are eliminated during the
alignment for many sequences due to the second case in its definition that is related to
the gaps. Therefore, mLocARNA introduces the new definition that prevents

undesirable effect for PMmulti

1°2 _ f—1 D72
Pry” = |Pryq X Prgy ,

where
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1
ﬁ;q _ max (Po, Pripiq) for a match p, g
Po otherwise

Analogously, for the definition Prz,.

59



Chapter Four

Results

4.1 Results

The previous chapter demonstrates the theoretical model of the methods that were
implemented with different restrictions or heuristics to make the original algorithm
“Sankoff Algorithm” more practical. In this chapter, examples will be given of testing
the programs of these methods on a collection of RNA families and the computational

results that have been obtained will be displayed.

The following table gives some examples of different length datasets of RNA families
that were used in our tests, such as tRNA which represents a small RNA sequence and
therefore should be an easy example of all programs, 5S_rRNA is slightly harder and

Cobalamin is quite challenging, because it’s much longer.

All calculations performed on the programs, were performed in the same environment

(with memory 3.7 GB, CPU 2.33 GHz and under Linux operating system).

We tested the programs on their some special parameters by setting them to some
interested values. These interested values were compared with the user time. In this
thesis, the focus is on the time behavior against some different parameters of the
programs because we are interested in comparing the speed of these programs
corresponding to the different values of their parameters. All programs were applied to
three examples of different length datasets of RNA families which are shown in the

following table.
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Table 4.1: This table shows three examples of different length datasets of RNA
families with their sequence similarity

>728209.1_4569-4498
GCCCUUUUGGCCAAGUGGUAAGGCAUCG
CACUCGUAAUGCGGGGAUCGUGGGUUCA 72
AUUCCCACAGAGGGCA
>M68929.1_166929-166856

GGGCUUAUAGUUUAAUUGGUUCAAACGC
ACCGCUCAUAACGGUGAUAUUGUAGGUU 74
CGAGUCCUACUAAGCCUA

56

>X52300.1_5-122
CCCCGUGCCUUUAGCGCCUCGGAACCACC
CCACUCCAUGCCGAACUGGGUCGUGAAAC
GUGGCAGCGCCUAUGAUACUUGGACCGC 118
AGGGUCCUGGAAAAGUCGGUGCAGUGCG
GGGG

37
>M19950.1_1-120

GGUUGCGGCCAUAUCUAGCAGAAAGCAC
CGUUUCCCGUCCGAUCAACUGUAGUUAA
GCUGCUAAGAGCCUGACCGAGUAGUGUA 120
GAGGGCGACCAUACGCGAAACUCAGGUG
CUGCAAUC

>AP001508.1_5769-5939

ACUUUAAUAGGCUUCUUAGGUGCCUCAU
UUGUAGGAGAAUAGGGAAGUUCUGAAAC
GACGCGGAGCCCGCCACUGUAGUCGAGG
AGCUGCUACAAUACCACUGGGAAACUGG 171
GAAGGUGUAGCAUGCGAUGAAUCGGAGC
CAGGAGACCUGCCUAAGAAGAUGCGCUG
UCA

56
>AE017037.1_59439-59627

CCUUUCAAAAGGAAAAUAGGUACACGAA
CAUUUCGUUUCGUGUUUAAAAGGGAAGC
UUGGUGAAACUCCAACACGGUCCCGCCAC
UGUAAAUGCUGAGAUUUCUUUUUGAUA 189
CCACUGUGAAAACGGGAAGGUAAAAGAA
AUUAUAUGAAGCAUAAGUCAGGAGACCU
GCCUGUUUUAACAACACUGAU
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4.1.1 The results of Foldalign version 2.0.3

Since the first version of the Foldalign method (i.e. Foldalign version 1.0) is really
outdated now, we start with the second version of the Foldalign method (i.e. Foldalign
version 2.0.3). The program of Foldalign version 2.0.3 is available online at
[http://foldalign.kvl.dk]. The selected parameters from this version to our test are

defined according to the manual of this program as follows:

-max_diff <number> this parameter sets the maximum length difference (i.e. delta-
heuristic) to <number>. It is essential for memory and time consumption. In this thesis,
the focus is on the time behavior against different delta values in testing the speed of

the program. A default value of this parameter is infinity.

- global this parameter turns on the global alignments.
- nobranch this parameter turns off the branching-structure.

For this program, these parameters were tested and are displayed in two tables
according to the parameter (-nobranch), in addition to the global parameter and
different values of delta (i.e. parameter -max_diff) in both tables. Therefore, the
observation on the time behavior against these parameters differs. In general, the user
time in the table of branch case (table 4.1.1.b) is much higher than non-branch case
(table 4.1.1.a) over all datasets of RNA families but in different ratios depending on the
sequence lengths. For example, the tRNA dataset is much faster than the other datasets
in both tables (i.e. in branch case and non-branch case), where the speed differs by a
factor about 2 between -max_diff 15 and 45 for Table/Figure 4.1.1.a, and this is nearly
the same factor for Table/Figure 4.1.1.b but only at slower speed. For 5S-rRNA, a
factor is different between these two tables, where this factor is about 2.5 between -
max_diff 15 and 45 for Table/Figure 4.1.1.a, and this factor is less than 4 for
Table/Figure 4.1.1.b. This means the effect is stronger for longer sequences in
branching structure. In other cases, Cobalamin has no possibility to aligning at smaller
delta values (i.e. parameter -max_diff), such as -max_diff = 15 which was run in our
test. Since the global alignment must work on the entire length of sequences, the length
difference between two sequences must be less than or equal to delta value. Whereas
the length difference between the Cobalamin sequences is 18 nucleotides which is more

than the maximum length difference (-max_diff 15), then it was not worked at this delta
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value. In contrast with tRNA and 5S_rRNA datasets that have length differences less
than or equal to delta value (i.e. -max_diff = 15). Now in the following tables and
figures (Tables/Figures 4.1.1.a and b), the user time is increased by increasing the delta

values over all datasets of RNA families.

Tables 4.1.1.a: This table shows the time behavior (in second) of the global alignments
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) without branching structures (i.e. turns on the parameter -nobranch).

RNA Families Options Run Time
-max_diff -global -nobranch User Time (sec.)
15 TRUE TRUE 5.60
tRNA 25 TRUE TRUE 8.27
35 TRUE TRUE 10.77
45 TRUE TRUE 11.28
-max_diff -global -nobranch User Time (sec.)
15 TRUE TRUE 29.71
55_rRNA 25 TRUE TRUE 47.75
35 TRUE TRUE 62.70
45 TRUE TRUE 75.67
-max_diff -global -nobranch User Time (sec.)
15 TRUE TRUE not possible
Cobalamin 25 TRUE TRUE 203.74
35 TRUE TRUE 279.44
45 TRUE TRUE 349.29
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Tables 4.1.1.b: This table shows the time behavior (in second) of the global alignments
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) with branching structures (i.e. turns off the parameter -nobranch).

RNA Families Options Run Time
-max_diff -global -nobranch User Time (sec.)
15 TRUE FALSE 8.03
tRNA 25 TRUE FALSE 13.20
35 TRUE FALSE 16.68
45 TRUE FALSE 18.58
-max_diff -global -nobranch User Time (sec.)
15 TRUE FALSE 60.55
5S_rRNA 25 TRUE FALSE 122.10
35 TRUE FALSE 179.88
45 TRUE FALSE 233.49
-max_diff -global -nobranch User Time (sec.)
15 TRUE FALSE not possible
Cobalamin 25 TRUE FALSE 775.52
35 TRUE FALSE 1268.85
45 TRUE FALSE 1801.33
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Figure 4.1.1.a: This figure shows the time behavior (in second) of the global
alignments (i.e. turns on the parameter -global) against the different delta values (i.e.
parameter -max_diff) without branching structures (i.e. turns on the parameter -
nobranch).
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Figure 4.1.1.b: This Figure shows the time behavior (in second) of the global
alignments (i.e. turns on the parameter -global) against the different delta values (i.e.
parameter -max_diff) with branching structures (i.e. turns off the parameter -nobranch).

4.1.2 The results of Foldalign version 2.1.0

This version refers to the last version of the Foldalign method, which is known much
faster. The program of Foldalign version 2.1.0 is available online at
[http://foldalign.kvl.dk]. The following parameters were selected from this version for
our test, the first two parameters are the same as in the previous version of Foldalign
(i.e. Foldalign 2.0.3), plus the new parameter which represents the heuristic for this
version (Foldalign 2.1.0). These parameters are defined according to the manual of this

program as follows:

-max_diff <number> this parameter sets the maximum length difference (i.e. delta-
heuristic) to <number>. A default value here for this parameter is 25. In the global
alignments where the length difference between the input sequences is greater than 25

nucleotides, -max_diff is set to 1.1 times the length difference.
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-global this parameter turns on the global alignments.
-no_pruning this parameter turns off the pruning.

In general, this version is more efficient as compared with the previous version of
Foldalign. The observed time behavior was much faster in the pruning case against the
different delta values (i.e. parameter -max_diff). In this program, these parameters are
displayed into two tables according to the parameter (-no_pruning), in addition to the
global parameter and the different delta values (i.e. parameter -max_diff) in both tables.
For the pruning case in table 4.1.2.b, the user time was much lower than no-pruning
case in table 4.1.2.a over all datasets of RNA families with different ratios. For
example, in the Table/Figure 4.1.2.a the parameter -max_diff seems to have no effect
on tRNA in absolute time, however the speed differs by a factor of about 2.5 between -
max_diff 15 and 45. For Cobalamin this factor is about 4. This means the effect is
definitely there already for tRNA, however is stronger for longer sequences. However,
in the Table/Figure 4.1.2.b, pruning makes the parameter -max_diff less important,
where the speed of tRNA has a very slight difference nearly by a factor about 1.4
between -max_diff 15 and 45. For Cobalamin this factor is more than 2, again the effect
is stronger for longer sequences. In this program, Cobalamin dataset has possibility to
align over all different delta values which were selected in our test as compared with
the previous version. As mentioned above, the delta value (i.e. parameter -max_diff) is
set to 1.1 times the length difference during the global alignments where the length
difference between the input sequences is more than delta value. (This is due to the
improvement performed on the delta-parameter, mentioned before in the theoretical
part of this version about the delta heuristic during the global alignment the delta-
parameter can be utilized also for restricting the start coordinates of a sub-alignment in
the second sequence [HTGO7]).

Therefore, this helps to speed up the implementation of this version comparing with the

implementation of the previous version.

66



Chapter 4: Results

Tables 4.1.2.a: This table shows the time behavior (in second) at the global alignments
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) without pruning (i.e. turns on the parameter -no_pruning).

RNA Families Options Run Time
-max_diff -global -no_pruning User Time (sec.)
15 TRUE TRUE 2.14
tRNA 25 TRUE TRUE 3.81
35 TRUE TRUE 4.81
45 TRUE TRUE 5.39
-max_diff -global -no_pruning User Time (sec.)
15 TRUE TRUE 10.09
5S_rRNA 25 TRUE TRUE 22.14
35 TRUE TRUE 32.92
45 TRUE TRUE 41.41
-max_diff -global -no_pruning User Time (sec.)
15 TRUE TRUE 50.57
Cobalamin 25 TRUE TRUE 84.55
35 TRUE TRUE 148.26
45 TRUE TRUE 209.96

Tables 4.1.2.b: This table shows the time behavior (in second) at the global alignments
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) with pruning (i.e. turns off the parameter -no_pruning).

RNA Families Options Run Time
-max_diff -global -no_pruning User Time (sec.)
15 TRUE FALSE 0.56
tRNA 25 TRUE FALSE 0.71
35 TRUE FALSE 0.77
45 TRUE FALSE 0.79
-max_diff -global -no_pruning User Time (sec.)
15 TRUE FALSE 1.43
5S_rRNA 25 TRUE FALSE 2.01
35 TRUE FALSE 2.45
45 TRUE FALSE 2.70
-max_diff -global -no_pruning User Time (sec.)
15 TRUE FALSE 27.77
Cobalamin 25 TRUE FALSE 39.44
35 TRUE FALSE 51.75
45 TRUE FALSE 59.63
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Figure 4.1.2.a: This figure shows the time behavior (in second) of the global
alignments (i.e. turns on the parameter -global) against the different delta values (i.e.
parameter -max_diff) without pruning (i.e. turns on the parameter -no_pruning).
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Figure 4.1.2.b: This figure shows the time behavior (in second) of the global
alignments (i.e. turns on the parameter -global) against the different delta values (i.e.
parameter -max_diff) with pruning (i.e. turns off parameter -no_pruning).
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4.1.3 The results of Dynalign

This program includes all restrictions or heuristics which occurred with Dynalign
method. The program is available online at http://rna.urmc.rochester.edu/dynalign.html.
The selected parameter of this program to run our test is defined according to the

manual of this program as follows:

imaxseparation this parameter is a user-specified parameter, M, which was defined as
the measure of maximum permissible insertion parameter in the Dynalign method (i.e.
correction or recast implementation of parameter M). As mentioned before in the
theoretical part of Dynalign method, there is no analytic guidance to select the values of
this parameter. Therefore, the imaxseparation parameter is also used in this program to
turn on a probabilistic alignment constraint by entering -99 described by Harmanci et
al. [HSMO7].

Furthermore, there are other parameters which have effect on the speed of the
implementation that are not of interested to this thesis. One of these parameters is
“singlefold_subopt_percent” which controls a pre-filter step. Dynalign first calls a
single sequence secondary structure prediction algorithm. Base pairs for single
sequences that result only in relatively high free energy structures are forbidden in the
subsequent Dynalign calculation. So this saves calculation time. This is described by
Uzilov et al. [UKMO06]. Therefore, singlefold_subopt _percent parameter sets the
threshold for what constitutes a "high" free energy. By default, it is 30% or greater
above the lowest folding free energy change. In our test, we fix this parameter to

default value of 30.

In the following table (table 4.1.3), the program is run at different values of parameter
M (i.e. parameter imaxseparation) which was used as a maximum insertion parameter
as well as to turn on a probabilistic alignment constraint by entering -99. The strength
of the latter depends on the similarity of the sequences. Therefore, in our dataset
examples of RNA families, we selected sequences which have approximately the same
similarity and this is shown in the last column in table 4.1.1. The time behavior was
increased over all datasets of RNA families in different ratios by increasing the values
of parameter M (i.e. parameter imaxseparation), where M is used as a maximum

insertion parameter in Dynalign. The effect of increasing time is definitely clear for

69




Chapter 4: Results

tRNA dataset, however is stronger for the longer sequences like Cobalamin. For a
parameter imaxseparation which was used to turn on a probabilistic alignment
constraint by entering -99, the effect differed according to the different datasets which
were used. For tRNA, the user time is less than or nearly has no significant effect on
increasing time. In contrast, 5S-rRNA and Cobalamin which have significant
increasing in the user time.

In the following figure (Figure 4.1.3), we can see the time behavior (in second) against
different values of parameter M (i.e. parameter imaxseparation), where M is used as a
maximum insertion parameter in Dynalign. The user time is increased by increasing the
values of parameter imaxseparation over all datasets of RNA families in different

ratios.

Table 4.1.3: This table shows the time behavior (in second) against the different values
of parameter M (i.e. parameter imaxseparation) which was used as a maximum
separation parameter for the first heuristic and was also used by entering -99 to turning
on a probabilistic alignment constraint for last heuristic in Dynalign method.

RNA Families Options Run Time
imaxseparation User Time (sec.)
-99 1.02
4 1.23
tRNA 6 3.14
10 10.11
14 20.18
imaxseparation User Time (sec.)
-99 88.13
4 7.76
5S_rRNA 6 5331
10 85.44
14 184.43
imaxseparation User Time (sec.)
-99 89.22
. 4 26.85
Cobalamin 6 3143
10 331.82
14 779.89
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Figure 4.1.3: This figure shows the time behavior (in second) against the different
values of parameter M (i.e. parameter imaxseparation) which was used only as a
maximum separation parameter for the first heuristic in Dynalign method.

4.1.4 The results of LocARNA

Since LocARNA is PMcomp-based method it is more efficient. Therefore, we
performed our test on the LocARNA program which is available online at
[http://www.bioinf.uni-freiburg.de/Software/LocARNA/]. The parameters selected to
run our test for illustrating the time behavior in this program, are defined according to

the manual of this program as follows:

--min-prob this parameter sets the minimal probability (i.e. cutoff-probability). A

default value for this parameter is 0.0005.
--max-diff-am this parameter sets the maximal difference for sizes of matched arcs. A

default value is -1 which represents “turn-off” option.

--max-diff-match this parameter sets the maximal difference for sizes of matched

structural positions. A default value is also -1 which represents “turn-off” parameter.
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In the following Table 4.1.4.a, shows the time behavior against different cut-off
probability values (i.e. parameter --min-prob) and turn off of the two parameters (--
max-diff-am, --max-diff-match) by setting them -1, is increased by decreasing the cut-
off probability values which controls the per-filtering the number of base pairs as
mentioned before in theoretical part of LocARNA. However, this increasing of the user
time differs depending on the dataset lengths. For example, the parameter --min-prob
seems to have almost no effect on tRNA in absolute time; however the speed differs by
a factor of about 2 between --min-prob 0.05 and 0.00005. For Cobalamin this factor is
more than 9.5, where the parameter --min-prob at smaller values has a significant
effect, such as at --min-prob 0.0005 and 0.00005. This means the effect is stronger for
longer sequences, especially for the smaller values of --min-prob.

Therefore, this can be expected from the time behavior corresponding to the strength of
the cut-off probability heuristic (i.e. parameter --min-prob) that has a significant
influence on the longer sequences like Cobalamin or on the infinite sequence lengths.
Furthermore, this cut-off probability heuristic (i.e. parameter --min-prob) has much
larger effect than A-parameters (i.e. the parameters --max-diff-am and --max-diff-
match) on the time behavior over all our datasets, especially for the longer sequences

like Cobalamin.

Figure 4.1.4.a shows the time behavior (in second) against the different values of
parameter --min-prob and with turn off the other parameters (--max-diff-am, --max-
diff-match), which is increased by decreasing the parameter --min-prob over all

datasets but in different ratios.
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Table 4.1.4.a: This table shows the time behavior (in second) against the different
values of cut-off probability (i.e. parameter --min-prob) and turn off each of the

parameters (--max-diff-am, --max-diff-match) by setting them to -1.

RNA Families Options Run Time
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.05 -1 -1 0.17
tRNA 0.005 -1 -1 0.20
0.0005 -1 -1 0.25
0.00005 -1 -1 0.34
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.05 -1 -1 0.35
55_rRNA 0.005 -1 -1 0.43
0.0005 -1 -1 0.55
0.00005 -1 -1 0.85
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.05 -1 -1 1.10
Cobalamin 0.005 -1 -1 1.78
0.0005 -1 -1 5.47
0.00005 -1 -1 10.54
12
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Figure 4.1.4.a: This figure shows the time behavior (in second) against the different
values of cut-off probability (i.e. parameter --min-prob) and turn of each of the

parameters (--max-diff-am, --max-diff-match) by setting them to -1.
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In Table 4.1.4.b.1),shows the time behavior against different values of Apqch-parameter
(i.e. parameter --max-diff-match) and turn off A,-parameter (i.e. parameter --max-diff-
am) by setting it to -1 in addition to fixing the cut-off probability value to default value
(i.e. parameter --min-prob = 0.0005), which is increased by increasing the values of
parameter --max-diff-match. However, this increasing of the user time differs
depending on the dataset lengths. For example, the parameter --max-diff-match seems
to have almost no effect on tRNA in absolute time; however the speed differs by a
factor of about 1.3 between --max-diff-match 15 and 60. For Cobalamin this factor is
more than 3.2. This means the effect is also stronger for longer sequences. Figure
4.1.4.b.1) shows this case.

Analogously, table 4.1.4.b.2) shows the behavior time against different values of Aym-
parameter (i.e. parameter --max-diff-am) and with turn off Apacn-parameter (i.e.
parameter --max-diff-match) by setting it to -1 in addition to fixing the cut-off
probability value to default value (i.e. parameter --min-prob = 0.0005), which is
increased by increasing the values of parameter --max-diff-am. However, this
increasing of the user time also differs depending on the dataset lengths. For example,
the parameter --max-diff-am seems to have almost no effect on tRNA in absolute time;
however the speed differs by a factor of less than 1.2 between --max-diff-am 15 and 60.
For Cobalamin this factor is more than 2. Again, the effect is stronger for longer

sequences. Figure 4.1.4.b.2) shows this case.

Table 4.1.4.c, shows the test results of the time behavior against different values of
parameter --max-diff-am and by varying the values of parameter --max-diff-match to
two times the values of parameter --max-diff-am in addition to fixing the cut-off
probability value to default value (i.e. parameter --min-prob = 0.0005). The time
behavior is again increased by increasing the values of parameter --max-diff-am but
such increasing differs on increasing in table 4.1.4.b.2) in different ratios. For example,
the parameters --max-diff-am and --max-diff-match seem to have almost no effect on
tRNA in absolute time; however the speed differs by a factor of more than 1.2 between
--max-diff-am 15 and 60, and --max-diff-match 30 and 120. For Cobalamin this factor
is about 3, again the effect is stronger for longer sequences. Figure 4.1.4.c shows this

case.
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It can be seen that the strength of the A,n-parameter (i.e. parameter --max-diff-am) has

larger effect than Anacn-parameter (i.e. parameter --max-diff-match) on the time

behavior.

Table 4.1.4.b.(1):This table shows the time behavior (in second) against the different
values of Apacn-parameter (i.e. parameter --max-diff-match) and turn off A,,-parameter
(i.e. parameter --max-diff-am) by setting it to -1 in addition to fixing the cut-off

probability value to default value (i.e. parameter --min-prob = 0.0005).

RNA Families Options Run Time
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.0005 -1 15 0.19
tRNA
0.0005 -1 30 0.22
0.0005 -1 60 0.25
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.0005 -1 15 0.33
5S_rRNA
0.0005 -1 30 0.38
0.0005 -1 60 0.48
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.0005 -1 15 1.17
Cobalamin
0.0005 -1 30 2.03
0.0005 -1 60 3.77
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Table 4.1.4.b.(2): This table shows the time behavior (in second) against the different
values of A,n-parameter (i.e. parameter --max-diff-am) and turn off Anacn-parameter
(i.e. parameter --max-diff-match) by setting it to -1 in addition to fixing the cut-off
probability value to default value (i.e. parameter --min-prob = 0.0005).

Fa?nl\::i\es Options Run Time
--min- --max-diff- --max-diff- User Time
prob am match (sec.)
tRNA 0.0005 15 -1 0.21
0.0005 30 -1 0.22
0.0005 60 -1 0.24
--min- --max-diff- --max-diff- User Time
prob am match (sec.)
5S_rRNA 0.0005 15 -1 0.36
0.0005 30 -1 0.40
0.0005 60 -1 0.46
--min- --max-diff- --max-diff- User Time
prob am match (sec.)
Cobalamin 0.0005 15 -1 2.17
0.0005 30 -1 3.14
0.0005 60 -1 4.45
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Figure 4.1.4.b.(1):This figure shows the time behavior (in second) against the different
values Anacn-parameter (i.e. parameter --max-diff-match) and turn off A,,-parameter
(i.e. parameter --max-diff-am) by setting it to -1 in addition to fixing the cut-off
probability value to default value (i.e. parameter --min-prob = 0.0005).
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Figure 4.1.4.b.(2): This figure shows the time behavior (in second) against the
different values of A,n-parameter (i.e. parameter --max-diff-am) and turn off Anaen-
parameter (i.e. parameter --max-diff-match) by setting it to -1 in addition to fixing the
cut-off probability value to default value (i.e. parameter --min-prob = 0.0005).
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Table 4.1.4.c: This table shows the time behavior against different values of Ayy-
parameter (i.e. parameter --max-diff-am) and with varying the values of Apacn-
parameter (i.e. parameter --max-diff-match) to two times the values of A;n-parameter
(i.e. parameter --max-diff-am) in addition to fixing the cut-off probability value to
default value (i.e. parameter --min-prob = 0.0005).

RNA Families Options Run Time
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.0005 15 30 0.20
tRNA
0.0005 30 60 0.22
0.0005 60 120 0.25
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
0.0005 15 30 0.33
55_rRNA
- 0.0005 30 60 0.40
0.0005 60 120 0.46
--min-prob | --max-diff-am | --max-diff-match | User Time (sec.)
. 0.0005 15 30 1.43
Cobalamin
0.0005 30 60 2.66
0.0005 60 120 4.26
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Figure 4.1.4.c: This figure shows the time behavior against different values of Agy-
parameter (i.e. parameter --max-diff-am) where the values of Anacn-parameter (i.e.
parameter --max-diff-match) were varied to two times the values of A,n-parameter (i.e.
parameter --max-diff-am) in addition to fixing the cut-off probability value to default
value (i.e. o parameter --min-prob = 0.0005).
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4.2 Discussion of Results

The dataset examples that were tested by all programs, they are three different dataset
types of RNA families which have different lengths and approximately the same
similarity. The different sequence lengths of these examples give an intuition about the
speed influences which interested us for comparing between the programs. Different
time behaviors are observed in each example of dataset against the options of each
program. In addition to set the alignment type to global alignment which is used in all
programs, alignment type corresponds in the Sankoff algorithm. Some methods like
Foldalign 2.0, 2.1 versions and LocARNA implement local alignment but can also be

applied for global alignment.

In general, each parameter has a significant influence on the time depending on

program type and sequence lengths.

Since the global alignment is studied here, the A-heuristic in the Foldalign 2.0, 2.1
programs is not used. We analyzed only the §-heuristic (the length difference between
two sequences which being aligned). However, we tested how fast the stem-loop
structure as compared with branching structure by turning on the option -nobranch in
the Foldalign 2.0. Moreover, the pruning-heuristic in Foldalign 2.1 which was much

faster as compared with no pruning.

As mentioned before in the theoretical part of the Foldalign method the recursions of
2.0 and 2.1 versions are pretty much the same except for the few improvements or
simplifications in the energy model. The main difference between the 2.0 and 2.1
versions is the use of the pruning heuristic which throws away all alignments with a

score below a cut off.

It is assumed at some examples in Foldalign 2.1 that we could not get an optimal
solution, but when these examples are applied, Foldalign did solve them. As it seems,
this is explained by recalculation of stems. Without such recalculation the example
would not work. Therefore, we should expect in most cases to get an optimal solution,

but it is not guaranteed.

The parameters of LocARNA program have great influence on the run time, where the

two parameters (--max-diff-match and --max-diff-am) can be compared with the
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parameter M-heuristic and &-heuristic respectively. In addition it uses the cutoff

probability-heuristic, which filters the base pairs.

As seen from our results, LocARNA represents the fastest method even when turning
off its stronger parameters, and that because it considers as a simplified method of the
Sankoff algorithm. In contrast with Dynalign which is used significant heuristics but it
is still slow and that because it has the full energy model. Foldalign 2.1 is faster than
Dynalign due to its special scoring scheme, but it still slower than LocARNA even

using the stronger heuristics.

Since the used dataset of RNA families are only three examples, the accuracy
estimation of the alignments cannot calculated because it is required the significant

numbers of sequences.
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Conclusion

5.1 Conclusion

After looking into the original form of the Sankoff algorithm for simultaneous Folding
and Alignment of RNA sequences, as well as the different methods are implemented to
this algorithm by using diverse restrictions on either folding or alignment parts. These
methods are tools used for pairwise structural alignment of RNA sequences. In this
thesis, we have concentrated on the heuristics of these methods that make the Sankoff

algorithm applicable in practice.

The comparison of these methods to the original form “Sankoff Algorithm” is
described as follows: Dynalign is the method closest to the Sankoff algorithm. It has
several heuristics but in this thesis we are interested in the most significant two
heuristics which are parameter M and probabilistic alignment constraint. Foldalign is
the first implementation of the simultaneous Folding and Alignment of RNA
sequences. It represents a very special method based on energy model that includes a
scoring system of one matrix and different states; the most significant heuristics that are
used for the Foldalign method, are A and §-restrictions with stem-loop for the Foldalign
1.0, these restrictions with branching-loop for Foldalign 2.0 and the pruning for
Foldalign 2.1. PMcomp and LocARNA are a simplification of the Sankoff algorithm,
which are based on the probabilities of base pairs of RNA sequences as a structure
model. The strongest heuristics used in LocARNA, are the cutoff-probability, A, and

Amaten- parameters for arc matching and matched structural positions respectively.
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The heuristics of these methods are considered strong heuristics which have significant
influence on the speed. The comparisons among the heuristics can give such ideas to
combine between the heuristics of these methods in such a way that implement either a
new method or the improved versions of the current methods on the basis of the

original form “Sankoff Algorithm”.

The traditional M parameter in Dynalign method is comparable t0 Anacn- parameter in
LocARNA, as shown here:

Dynalign: |i - k| < M,
LocARNA: |i - K| < Amaten @and |j - 1| < Amatch,

but with some differences. For the Dynalign method, the constraint of M parameter has
to be satisfied for all alignment edges (i, k). In contrast, in the LocARNA method, the

constraint of Anacn-parameter has to be satisfied only for all structural alignment edges.

As well as, for the §-restriction in Foldalign method is comparable to A,- parameter in
LocARNA, as shown here:

Foldalign: |(j—1) - (I - k)| < 6,
LocARNA: |(j —1i) = (I - K)| < Aam,

but also for the same reason there is a difference. For the Foldalign method, the &-
restriction has to be satisfied for all sub-alignments. In contrast, in the LocARNA
method, the constraint of A,,-parameter has to be satisfied only for all structural sub-

alignments.
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5.2 Future Work

There are many possible ways for extending Sankoff-style methods further. One can
find new methods or improved versions of the current methods on the basis of the
original form “Sankoff Algorithm” for simultaneous Folding and Alignment of RNA
sequences, by combining some heuristics of the current methods, such that it gives the

good accurate alignments as well as significantly fast and requiring low memory.

If we use the idea of probabilistic alignment constraint of Dynalign in the LocARNA
method, we expect that the new generated improved version of LocARNA will be
much faster and taking into consideration the preservation of the accurate alignments.
The same positive effect is expected, if we use the pruning idea of the Foldalign 2.1 in
the LocARNA method.

On the other side, if we use the idea of significant base pairs of LocARNA in the
Dynalign or Foldalign (especially for Foldalign 2.1), we expect that the new generated
versions for Dynalign or Foldalign 2.1 will improve to be more efficient methods much

faster and still have accurate alignments.
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