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Abstract  

The combination of the alignment and secondary structure prediction solutions of two RNA 

sequences can significantly improve the accuracy of the structural predictions. The 

algorithm which simultaneously solves these problems tends to be computationally 

expensive like the original form “Sankoff Algorithm” [S85]. Thus, the methods which 

addressed this problem impose constraints that reduce the computational complexity by 

restricting the folding and/or alignment and thus make the Sankoff algorithm more 

practical. 

 

In this thesis, reviewing the different Sankoff-style methods in such a way that compares 

them corresponding to the Sankoff algorithm, through the parallels and differences. As well 

as, the focus is on the heuristics (i.e. the imposed constraints on the alignments and/or the 

structures) and comparing between them. 

 

In practical, the work discusses:  

 

- Sankoff algorithm which is the original form of simultaneous Folding and 

Alignment of RNA sequences, 

- Dynalign method which is the direct implementation of Sankoff algorithm, 

- Foldalign method which is the first implementation of simultaneous Folding and 

Alignment of RNA sequences, 

- PMcomp/LocARNA which are a simplification of the Sankoff algorithm. 

 

In this work, practical results are obtained for three dataset examples of RNA families that 

have different sequence lengths, which indicate to the different influences on the speed of 

each program depending on the type and strength of each heuristic in these methods. Thus, 

the conclusion is combining some heuristics of the current methods in such a way that can 

improve the computation efficiency as well as accuracy as a new method or new versions 

of the current methods.  
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Chapter One 

Introduction 

1.1 Motivation 

The dynamic programming comparison for the sequences finds widespread applications 

in the field of molecular biology, through the detection and evaluation of similarities 

among a number of nucleic acid (DNA, RNA) sequences, as well as protein sequences. 

This thesis will concentrate on the RNA sequences, precisely for the RNA secondary 

structure which is essential for biological function. However, it is still difficult to 

determine experimentally the RNA structure. The most popular algorithm to predict the 

structure is the Minimum Free Energy (MFE) which folds a single sequence. This 

method has been implemented via Mfold [ZS81] and RNAfold [HFB+S94]. 

Nevertheless, the accuracy of MFE structure prediction is still restricted in practice. In 

general, the comparative methods [PTW99] are also used for determining RNA 

structure but at the best accuracy. 

Actually, there are three automated approaches for analyzing RNA sequences and 

structures, which are illustrated below in Figure 1.1 [GG04]. For Plan A, the aligned 

sequences are obtained by using a standard multiple sequence alignment algorithms, 

such as ClustalW [THG94], t-coffee [NHH00], prrn [G99]. Then a consensus 

secondary structure is inferred by attempting to detect the covariation of base paired 

sites in the alignment. The mutual information measure is frequently used to this 

[CK91], [GPH+PS92] and [GHB+S97]. The tools which have been developed recently 

are used a combination of energetic and a covariance terms [HFS02], or evolutionary 

Stochastic Context-Free Grammar [KH03]. This plan is at the step of multiple sequence 
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alignment, the well preserved sequence is produced. Although this shows a very 

successful approach, but it is still restricted with the sequence homology that should be 

a high enough in the alignment step that helps to find structurally the consistent 

mutations. 

 

 

 

 

Figure 1.1: Three automated approaches for producing the aligned structure of RNA 

sequences. [GG04] 

 

For plan B, the Sankoff algorithm was the first strict mathematical treatments of 

simultaneous alignment and folding for RNA sequences, which was proposed by David 

Sankoff [S85]. This algorithm is computationally expensive (i.e. it requires a lot of 

computational resources ࣩ(N3n) for time and ࣩ(N2n) for memory, where N is the 

sequence length and n is the number of sequences). Therefore, several restricted 

versions are implemented of the Sankoff algorithm impose some realistic constraints on 

the size and/or shape of the substructures to reduce the computational complexities for 

time and memory. These restricted versions can be divided into two groups according 

to which scheme are used:  

1) The energy-based methods which also can be distinguished into two groups:  
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a) The methods implementing more or less a complete energy model of the 

folding part, such as Foldalign [GHS97a, GHS97b, HLS+G05, HTG07] which 

is the first implementation of simultaneous Folding and Alignment of RNA 

sequences and Dynalign [MT02, HSM07] which is the method of direct 

Sankoff algorithm. 

b) The methods suppose that a structure model of the input sequences is given in 

the form of weights for each base pair, such as PMcomp [HBS04] and 

LocARNA [WRH+SB07] which are a simplification of the Sankoff algorithm.  

There are other Sankoff-style methods based on the energy model, but in this thesis we 

are only interested in the above methods, in addition to showing the heuristics for each 

one. 

2) The probabilistic methods that based on the Stochastic Context Free Grammars 

(SCFG) parameters which are estimated from multiple sequence alignments. These 

methods that we did not discussed in this thesis, like Stemloc [H05] which is a pairwise 

RNA structural alignment prediction program based on SCFG, it uses “fold” and 

“alignment” envelopes to reduce the computation and memory. There is another 

method known as also RNA structural alignment “Consan” [DE06]. 

Finally, plan C is represented by aligning RNA secondary structures rather than 

sequences. Due to the nature of the nested branching of RNA structures, these are 

appropriately represented as trees. Since there is no ability to find sequence 

conservation through alignment step, fold the sequences separately by using the 

methods of single sequence structure prediction and then directly align the result 

structures. There are several methods for aligning structures of RNA. In the measuring 

the similarity by edit operations, the structure comparisons have been generalized to 

trees ([T79], [S88], [SZ90], [ZSh89], [JLM+Z02], [WZ01], [SB03]), other methods 

align locally ([HTG+K03], [BW04]). Since the main weakness of this approach is the 

single sequence structure predictions are inaccurate in many times, that leads to affect 

on all further analyses. Hence, this approach is too strong to be used when the reliable 

structures are provided. 
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1.2 Contribution 

As mentioned above, that the original form of simultaneous Folding and Alignment of 

RNA sequences is the Sankoff algorithm. Due to the expensive computations of this 

algorithm, some restricted versions of the Sankoff algorithm are implemented. 

The main contribution of this thesis is to review the different Sankoff-style methods 

and concentrate on their heuristics which used to make the Sankoff algorithm 

applicable in practice. In addition to compare these methods corresponding to the 

original form “Sankoff Algorithm”, on the basis of the consideration of various aspects, 

such as the system scoring scheme, the computation time and memory requirements. 

Furthermore, this thesis gives also the results which are obtained from running the 

programs of these methods under some special selected parameters (which represent 

the heuristics) of these programs to compare the speed of these methods, as well as to 

compare and analyze the identified heuristics. 

 

1.3 Overview 

Now an overview of the chapters that make up our work is given. Chapter 2 introduces 

the background of the RNA biology and the required preliminaries for the purposes of 

this thesis. Chapter 3 reviews the Sankoff-style methods and shows the points of the 

parallels and differences corresponding to the Sankoff algorithm. In Chapter 4, the used 

dataset examples of RNA families are given. In addition the obtained results from these 

methods are presented and discussed. Finally, Chapter 5 summarizes the conclusions of 

this thesis and gives an outlook for the future work in this area. 
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Chapter Two 

Background and preliminaries 

This chapter will give the background and preliminaries needed for the purposes of this 

thesis, by introducing the methods of RNA sequence comparisons and the secondary 

structure prediction that represent the important information before going to the 

methods in the next chapter. 

 

2.1 Biology of RNA  

Ribonucleic Acid (RNA) is a single-stranded molecule which is composed of a long 

series of the linked nucleotides by the phosphodiester linkages. Each of these 

nucleotides is made up of a ribose sugar, a phosphate group and a nitrogenous base. 

There are four possible bases which are generally adenine (A), cytosine (C), guanine 

(G) and uracil (U). Due to the hydrogen bonds between the certain basepairs, a stable 

structure will be formed. These basepairs are formed between (C-G) and (A-U) of 

Watson-Crick basepairs and the Wobble basepairs between (G-U). Figure 2.1.a below 

shows these types of basepairs in RNA. 

There are different kinds of RNA: messenger RNA (mRNA) carries information from 

DNA about a protein sequence to structures called ribosomes, Transfer RNA (tRNA) is 

a small RNA chain consisting of about 80 nucleotides that serves as adapter between 

mRNA and amino acids, Ribosomal RNA (rRNA) which is the main component of the 

ribosomes [WP08].  
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i) Watson-Crick basepairs.   
 

                             

ii)  Wobble basepairs. 

Figure 2.1.a: The RNA basepairs  i) Watson-Crick basepairs, ii) Wobble basepairs. 
Image Source: “BC 5254/GCS 719, Computer Applications in Biomedical Research” 
http://www.finchcms.edu/cms/biochem/Walters/rna_folding.html. 

 

An RNA structure is represented at different levels: 

- Primary structure: It represents by a linear sequence of nucleotides over the 

alphabet ∑ = {A, C, G, U}. These nucleotides (bases) are connected together 
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2.2 Sequence Alignment 

Sequence Alignment is one of the important terms for sequence comparison that 

compares the similarities among sequences. Sequence similarity often indicates 

functional and structural similarity. 

Definition 2.2: (Alignment) Let two sequences ଵܵ and ܵଶ be over an alphabet ∑ with – 

 such that ,∑ ב ଵܵ, ܵଶ  א ∑*. An Alignment ࣛ is a pair ሺ ଵܵ
,ڃ ܵଶڃሻ with   ଵܵڃ, ܵଶ׫ ∑) א ڃ {–

})* such that:   

1. The length of the aligned sequences are equal, i.e. |ܵଵڃ| = |ܵଶڃ|        

 

2. There is no position i such that: ଵܵ೔
ڃ  = – = ܵଶ೔

ڃ  

 

3. The sequences ଵܵ
 give the same sequences ଵܵ and ܵଶ respectively, if all ڃand ܵଶ ڃ

gaps are removed. 

Where the gaps are located in a sequence alignment for a base in one sequence there is 

no analogous base in the other sequence. 

Note: for the RNA sequence alignment, an alphabet over ∑ = {A, C, G, U}.  

There are several types of sequence alignment and the Global alignment is one of these 

types. Global alignment represents the best alignment over the entire length of the two 

sequences and is suitable when both have similar length with enough degree of 

similarity throughout. A general global alignment technique is called the Needleman-

Wunsch algorithm [NW70] which is based on dynamic programming that we will 

discuss it later in this chapter. Here, we refer to the pairwise sequence alignment which 

finds the best matching alignment between two sequences. 

Example: Let ଵܵ = AGACUAGACAU and ܵଶ = CGAGACGU over ∑ = {A, C, G, U}, 

the possible global pairwise sequence alignment which satisfies the above conditions, 

is:  

                                       ଵܵ
 AGACUAGACAU     = ڃ

                                       ܵଶڃ  =     CGA – – – GACGU 
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In addition to this sequence alignment, there is also another form that is comparison-

dependent on the shape of the structures, this is called Structural alignment. 

 

2.2.1 Edit Distance 

Edit Distance is also one of definitions for comparing sequences that is a metric for 

measuring the amount of differences between two sequences. The edit distance between 

two sequences is given by the minimum number of edit operations that require 

transforming one sequence into the other. It is defined according to Clote et al. 

[CB2000] as follows: 

Definition 2.2.1.a: (Edit Distance) Given a cost function  इ: (∑ ׫{–}) ൈ (∑ ׫{–}) ՜ 

Թ and two sequences ܵଵ and ܵଶ over a finite alphabet ∑ where  ଵܵ, ܵଶ א ∑*, the cost of 

E = e1, e2, …, er of edit operations is defined as इ ሺܧሻ = ∑ इ ሺ݁௜ሻ௥
௜ୀଵ . Then the edit 

distance of  ଵܵ, ܵଶ is defined as:   

݀इሺ ଵܵ, ܵଶሻ ൌ min ሼइ ሺܧሻ|  ଵܵ ฺா ܵଶሽ 

There is another type of cost that gives mismatch cost ݔ and gap cost ݕ that are defined 

according to Sankoff [S85] as follows: 

Definition 2.2.1.b: (Another representation for the cost of Edit distance) Let ଵܵ = 

 ଶ೙ be two sequences. An alignment of ଵܵ and ܵଶ is defined byݏ…ଶభݏ = ଵ೘ and ܵଶݏ…ଵభݏ

two integer sequences 1 ൑ ݅ଵ ൏ ݅ଶ ൏ ڮ ൏ ݅௥ ൑ ݉ and 1 ൑ ݆ଵ ൏ ݆ଶ ൏ ڮ ൏ ௥݆ ൑ ݊. Let 

ः be the number of pairs ሺ݅௞, ݆௞ሻ, such that ݏଵ௜ೖ  ്    :ଶ௝ೖ. The cost of the alignment isݏ

                                                         ሺ݉ ൅ ݊ െ ݕሻݎ2 ൅ ःݔ 

The case of ः replaces each ݏଵ௜ೖ by  ݏଶ௝ೖ, if they are not equal, and ݎ indicate the 

number of all pairs in the alignment sequences. 

The definitions 2.2.1.a and 2.2.1.b are equivalent, such that:                  
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इቀ1݅ݏ, 2݆ቁݏ ൌ 

ݔ ݂݅ ଵ೔ݏ ്   ଶೕݏ
 

ݕ ݂݅ ଵ೔ݏ ൌ െ ݎ݋ ଶೕݏ ൌ െ  
 

0   ݁ݏ݅ݓݎ݄݁ݐ݋
 

 

2.2.2 Needleman-Wunsch Edit Distance Algorithm  

In global sequence alignment, an attempt to align the entirety of two different 

sequences is made up to and includes the ends of sequence as mentioned before. The 

solving method for an edit distance problem is Needleman-Wunsch algorithm (1970) 

which was the first application of dynamic programming algorithm to biological 

sequence comparison [NW70]. The idea is to use dynamic programming to efficiently 

implement a recursion. 

Definition 2.2.2: (Needleman-Wunsch Edit Distance algorithm) Given a metric cost 

function इ,  and two input sequences  ଵܵ and ܵଶ over an alphabet ∑. The Needleman-

Wunsch algorithm defines the matrix ܦሾ݅, ݆ሿ with 0 ൑ ݅ ൑ |ܵଵ| and 0 ൑ ݆ ൑ |ܵଶ| by the 

recursion formula to obtain an optimal alignment as described: 

 

,݅ ׊ ݆ ൐ 0 ׷ ,ሾ݅ܦ ݆ሿ ൌ ݉݅݊  

ሾ݅ܦ െ 1, ݆ െ 1ሿ ൅इሺ ଵܵሾ݅ሿ, ܵଶሾ݆ሿሻ,  
 

ሾ݅ܦ െ 1, ݆ሿ ൅इሺ ଵܵሾ݅ሿ, െሻ,  
 

,ሾ݅ܦ ݆ െ 1ሿ ൅इሺെ, ܵଶሾ݆ሿሻ.  
  

With Initialization  

,ሾ0ܦ 0ሿ ൌ 0,  
 

,ሾ݅ܦ 0ሿ ൌ ∑ इ௜
௞ୀଵ ሺ ଵܵሾ݇ሿ, െሻ, 

 

,ሾ0ܦ ݆ሿ ൌ ∑ इ௝
௞ୀଵ ሺെ, ܵଶሾ݇ሿሻ. 
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The filled matrix is from top left ܦሾ1,1ሿ to bottom right ܦሾ| ଵܵ| , |ܵଶ|ሿ. Suppose we have 

filled in the three entries ܦሾ݅ െ 1, ݆ሿ, ሾ݅ܦ െ 1, ݆ െ 1ሿ and ܦሾ݅, ݆ െ 1ሿ to the up and 

diagonally above and left of ܦሾ݅, ݆ሿ respectively, that we have an optimal alignment for 

each of those three pairs, and then minimizing overall these pairs. We can either align 

ଵܵሾ݅ሿ with  ܵଶሾ݆ሿ, or align ଵܵሾ݅ሿ with a new gap, or align ܵଶሾ݆ሿ with a new gap.  

After filling the matrix, the corresponding alignment is obtained from a trace back step 

through the filled matrix.  

 

2.2.3 Smith-Waterman algorithm 

This algorithm is a dynamic programming algorithm for the local sequence alignment 

[SW81]. Local sequence alignment is suitable for comparing with the sequences have 

short similar subsequences over two different lengths of sequences. The Smith-

Waterman algorithm guarantees that finding the optimal local alignment accordance to 

the scoring system (substitution matrix and gap penalty) being applied, where the 

substitution matrix is a similarity between each pair of bases.  

Definition 2.2.3: (Smith-Waterman algorithm) Given two input sequences  ଵܵ ൌ    …ଵభݏ

ଵ೙ and ܵଶݏ ൌ    ଶ೘ over an alphabet  ∑ and the scoring function  इ between theݏ …ଶభݏ

sequence alignments. The Smith-Waterman algorithm defines the matrix ܪሾ݅, ݆ሿ with 

0 ൑ ݅ ൑ ݊  and 0 ൑ ݆ ൑ ݉,  by the following recursion equations to produce the 

maximum similarity score:    

,ሺ݅ܪ   ݆ሻ ൌ
ݔܽ݉

0  
  
ሺ݅ܪ െ 1, ݆ െ 1ሻ
൅इ ቀݏଵ೔,  ଶೕቁݏ

 

ݎ݋݂  1 ൑ ݅ ൑ ݊ , 1 ൑ ݆ ൑ ݉ 
ሺ݅ܪ െ 1, ݆ሻ ൅इ൫ݏଵ೔, െ൯ 
  
,ሺ݅ܪ ݆ െ 1ሻ ൅इ ቀെ,   ଶೕቁݏ

 

With initialization, ܪሾ݅, 0ሿ = ܪሾ0, ݆ሿ = 0  for  0 ൑ ݅ ൑ ݊, 0 ൑ ݆ ൑ ݉ 
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This algorithm differs from Needleman-Wunsch algorithm by including a zero value 

for the negative similarity (i.e. out the range of subsequences). 

 

2.2.4 Multiple Sequence Alignment 

Multiple sequence alignment is an extension of pairwise alignment to incorporate more 

than two sequences at a time. In general, the input set of query sequences are assumed 

to have an evolutionary relationship by which they share a lineage and are descended 

from a common ancestor. 

The most widely used approach to multiple sequence alignments uses a heuristic search 

known as progressive technique (also known as the hierarchical or tree method), that 

builds up a final Multiple Sequence Alignment by combining pairwise alignments 

beginning with the most similar pair and progressing to the most distantly related. 

All progressive alignment methods require two stages: a first stage in which the 

relationships between the sequences are represented as a tree, called a guide tree, and a 

second stage in which the Multiple Sequence Alignment is built by adding the 

sequences sequentially to the growing Multiple Sequence Alignment according to the 

guide tree. The most important heuristic is to align the most similar pairs of sequences 

first. Typically guide trees are used to efficiently model this principle in progressive 

alignment algorithm. The most popular example for this alignment is: ClustalW 

[THG94].  

 

2.3 RNA Secondary Structure 

As mentioned before that RNA is usually a single-stranded linear molecule, but this is 

not the case in a biological system. RNA strand folds back on to itself via the base pair 

interactions to form secondary and tertiary structures which are essential for correct 

biological function. These functions include: (mRNA) genetic information copied from 

DNA to be used as a template for the synthesis of protein, (tRNA) serves as an adaptor 

which decodes the genetic code and (rRNA) catalyzes the protein synthesis. Therefore, 

the importance of the RNA secondary structures is found in many biological processes. 
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Furthermore, the efficiency in the structure prediction can provide the essential 

directions for experimental investigations. 

The folding for an RNA molecule depends on the sequence nucleotides, by the 

complementary base pairing on it. A formal definition for an RNA secondary structure 

is given according to [MT78] as follows: 

Definition 2.3: (RNA Secondary Structure) Let ܵ  be an RNA *{A, C, G, U} א

sequence. An RNA secondary structure over the sequence ܵ is defined as a set of the 

base pairs ܲ as follows: 

ܲ = {(i, j) | i ൏ j ٿ ௜ܵ and ௝ܵ form a complementary pair (Watson-Crick) or a non-

standard pair (Wobble basepair)} 

Where  ׊ (i, j)א ܲ and ׊ (i′, j′)א ܲ, ܲ must satisfy the following condition: 

- i = i′        j = j′, each base can have at most one bond with one other base. 

A structure ܲ is called nested structure, if it satisfies the following condition: 

- i ൏ i′ implies (j′ ൏  j) ڀ (j ൏ i′) must be satisfied. 

 

i        i′        j′        j                          i         j        i′        j′ 

Otherwise ܲ is called crossing.  

RNA secondary structure consists of contiguous basepairs which are called helices, and 

different kinds of loops that are the unpaired bases surrounded by helices. Hence, the 

secondary structure can be divided into various structural elements. 

A base pair (i′, j′) א ܲ is called Accessible from (i , j) א ܲ, if i ൏ i′ ൏ j′ ൏ j and if there 

is no other base pair (i′′, j′′) א ܲ such that, i ൏ i′′ ൏ i′ ൏ j′ ൏ j′′ ൏ j. 

- A hairpin loop is formed when RNA strand folds back on itself. It is defined as 

follows: a base pair (i , j) א ܲ closes a hairpin loop if  ׊ i ൏ i′ ൑ j′ ൏ j: (i′, j′) 

ב ܲ. 
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- A stack loop is formed in the case two adjacent base pairs. It is defined as 

follows: a base pair (i, j) א ܲ closes a stacking if (i +1, j -1)א ܲ. Several 

numbers of stacking basepairs are called stem. 

- An internal loop is at least one unpaired base on each strand of the loop 

separating two paired regions. It is defined as follows: two base pairs (i , j) א ܲ 

and (i′, j′) א ܲ form an internal loop (i , j , i′ , j′) if they satisfy the following 

conditions: 

• i ൏ i′ ൏ j′ ൏ j 

• (i′ - i ) + ( j - j′) ൐ 2 (no stack) 

• There is no base pair (i′′, j′′) between (i, j) and (i′, j′). 

 

- A bulge has unpaired base on only one strand of the loop. It is called left or 

right bulge if j = j′ + 1 or i′ = i + 1 respectively. The other strand has 

uninterrupted base pairing. 

All these elements of the secondary structure represent the non-branching structures. 

- A multi-branched loop is the double-stranded regions which are coming 

together with separations of any number of unpaired bases, sometimes called 

bifurcated structures.  

- An external loop is a number of single-stranded bases (unpaired bases) and 

basepairs which are not accessible from any basepair. There is no contribution 

to the total free energy in these regions. 

 

 

Note that, the closing pair (i, j) of the k-loop is not itself defined to form part of that 

loop in the decomposition of the structure. Figure 2.3.a. shows the RNA secondary 

structure elements. 
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2.4 RNA Secondary Structure Prediction 

There are two main approaches used to predict the secondary structure: 

1. Comparative Sequence Analysis: It is the gold standard which determines an 

RNA secondary structure when a crystal structure is absent. It uses multiple 

sequence alignments of homologues sequences to predict the structure. Hence, 

it needs aligning many sequences with identical function. [PTW99] 

2. Dynamic Programming (DP): This algorithm is used to solve the optimization 

problems by dividing the problem into independent sub problems. Each sub 

problem is solved only once, and its solution is stored in a table such that re-

computing the solution is avoided. It contains several approaches that are used 

to predict an RNA secondary structure:  

Nussinov algorithm [N80] represents one of the first attempts of RNA secondary 

structure prediction. It determines the maximum number of basepairs in non crossing 

structure. It can be defined as follows: 

Definition 2.4.a: (Nussinov matrix) Let ܵ be an RNA sequence. The Nussinov matrix 

௜ܰ,௝ is defined as follow: 

௜ܰ,௝ = max {|ܲ|  ܲ is a nested structure of the subsequence ݏ௜    {௝ݏ …

where 1 ൑ ݅ ൑ |ܵ| and ݅ െ 1 ൑ ݆ ൑ |ܵ|  ٿ  ݆  ൐ 1, this implies to the following recursion 

equations: 

Initialization:   ௜ܰିଵ,௜  = 0, ௜ܰ,௜ 1  ׊       0 =  ൑ ݅ ൑ |ܵ|,  

Recursion:  ׊ i ൑ j 

௜ܰ,௝ ൌ  ݔܽ݉

௜ܰ,௝ିଵ,  
 

௜ஸ௞ழ௝ݔܽ݉ ௜ܰ,௞ିଵ ൅ 1 ൅ ௞ܰାଵ,௝ିଵ ,  
 

௞ ܽ݊݀ s୨ݏ ݁ݎ݄ܹ݁ complementary 
 

Now after filling this matrix, we will get the best structure by using a trace back 

procedure. The Nussinov algorithm detects mostly just one variant from various 
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possibilities for base pairing, it also does not consider the size of internal loops, the 

stacking of base pairs and the strength of base pair. 

The second approach which is achieved by using DP is Zuker algorithm [ZS81] that we 

treated in this thesis. It computes the Minimum Free Energy secondary structure and it 

distinguishes among all possible basepair loops. 

Before discussing this algorithm, we need to identify the definition of Free Energy. 

Definition 2.4.b: (Free Energy) The Gibbsian Free Energy G in a system (e.g. of gas 

molecules in equilibrium or in a dilution of molecules) holds: 

G = U – T S 

where U is the enthalpy, T is the absolute temperature (in Kelvin) and S is the entropy. 

Two terms determine the free energy of molecule: 

- Enthalpy: from secondary structure basepairs. 

- Entropy: “disorder in unpaired regions”. 

Usually the difference ∆G = ∆H – T ∆S, can be experimentally measured ֜ flexible 

rules. 

where ∆G is approximated as the sum of contributions from loops of base pairs and 

other secondary structures. 

Definition 2.4.c: (Energy contribution for loops) the energy contribution of the 

secondary structure elements are defined as follows: 

• Hairpin loop (i, j),                  

• Stacking (i, j, i +1, j - 1),        

• Internal loop (i, j, i′, j′).    

Assume that ܧሺℓሻ describes the energy contribution for each of the above three 

structure element loops, and the simplified energy contribution for the multi-loops 

is: 

• Multi-loop:  ܧሺℓሻ = a + bk + ck′,  
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where a, b, c are weights, a is the energy contribution of closing basepair, b and c 

are constants for k = number of helices and k′ = number of single-stranded 

positions, respectively. 

The complete free energy is measured, by taking the summation of energy loops: 

∑ ሺܲሻ ൌܧ ሺܧ ௜ܲ௝ሻሺ௜,௝ሻא௉   , where  ܧሺ ௜ܲ௝ሻ is the energy contribution of the secondary 

structure element ܲ which is closed by basepairሺ݅, ݆ሻ. The energy of such structure ௫ܲ of 

sequence x, is called “Turner Free Energy”, and the total free energy is called “Turner 

Free Energy Model”. 

Now for the Zuker algorithm that the widely used computational approach for 

predicting RNA secondary structures from single sequences, which is based on 

thermodynamic models that associates the free energy values from each possible 

secondary structure of a strand. The secondary structure is with the lowest possible free 

energy value, the minimum free energy (MFE) structure is predicted to be the most 

stable secondary structure of the strand. 

Now, the Zuker matrices are defined according to Sankoff [S85] as follows: 

Definition 2.4.d: (Matrix F(i, j), Matrix C(i, j)) Let F(i, j) be the minimum energy 

possible for a secondary structure ܲ on the partial sequence i, …, j. Let C(i, j) be the 

minimum energy given that (i, j) א ܲ, where C(i, j) = ∞ if no such structure exists.  

 

,ሺ݅ܥ ݆ሻ
ൌ ݉݅݊ 

 ,ሺℓሻ , ℓ is the hairpin closed by (i, j)ܧ
 

݉݅݊ሼܧሺℓሻ ൅ ,݌ሺܥ ሻሽݍ , ℓ a 2-loop closed by (i, j) with 
 (p, q) accessible, u = p – i + j - q - 2 ≤ U,
 

݉݅݊
௜ழ௛ழ௝ିଵ

ሼܩሺ݅ ൅ 1, ݄ሻ ൅ ሺ݄ܩ ൅ 1, ݆ െ 1ሻ ൅ ܽሽ , 
 

where ܧሺℓሻ is represent Turner Free Energy. G is a matrix for multiple loops defined as 

follows:  
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,ሺ݅ܩ ݆ሻ ൌ ݉݅݊

,ሺ݅ܥ ݆ሻ ൅ ܿ , 
 

,ሺ݅ܩ  ݄ሻ ൅ ሺ݆ െ ݄ሻܾ , 
݉݅݊
௜ஸ௛ழ௝

,ሺ݅ܩ ݊݅݉ ݄ሻ ൅ ሺ݄ܩ ൅ 1, ݆ሻ , 
ሺ݄ െ ݅ ൅ 1ሻܾ ൅ ሺ݄ܩ ൅ 1, ݆ሻ , 

 

,ሺ݅ܨ ݆ሻ ൌ ݉݅݊ 
,ሺ݅ܥ ݆ሻ , 
 

min
௜ஸ௛ழ௝

ሼܨሺ݅, ݄ሻ ൅ ሺ݄ܨ ൅ 1, ݆ሻሽ , 
 

As usual, by applying trace back step to the filled matrices, we can get the minimum 

free energy secondary structure. 
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Chapter Three 

Methods for Simultaneous 
Alignment and Folding 

This chapter will introduce the methods that are used to solve the problem of 

simultaneous Folding and Alignment for RNA sequences. We will start with the 

original work “Sankoff Algorithm” and then present the variants to this algorithm, 

which are restricted implementations to reduce the computational complexity. 

 

3.1 Sankoff Algorithm 

The last chapter discusses “Sequence Alignment” by explaining how to calculate the 

optimal alignment distance between two different sequences; it also talks about 

“Folding of RNA sequence” and through such approach which achieved to predict the 

RNA secondary structure by Dynamic Programming, the Minimum Free Energy 

secondary structure can be computed. As we see, all these problems have optimal 

dynamic programming solutions. 

Sankoff algorithm [S85] solves these problems which have dynamic programming 

solutions simultaneously for two sequences with length N and at time proportional to 

ࣩሺN6ሻ and storage ࣩሺN4ሻ. The following steps are included to describe Sankoff 

algorithm according to Sankoff [S85]: 

 

First, equivalent structures must be defined for two RNA sequences; the branching 

configuration represents an invariant part of the identity structure. It is determined by 

two structure elements, which are the external pairs and multiple loops. 
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Definition 3.1.a: (Equivalent Structures) Let i1 < i2 < … < in and j1 < j2 < … < jm be 

positions in the sequences ଵܵand ܵଶ respectively, of all elements that are either an 

external pair or an accessible pair in a multiple loop of the nested structures ଵܲ  of 

sequence ଵܵ  and ଶܲ  of sequence ܵଶ . The Equivalent Structures for ଵܲ and ଶܲ  according 

to the branching configurations require that n = m and (if, ig) א ଵܲ if and only if (jf, jg) א 

ଶܲ .  

According to the definition there are no restrictions on the number and type of 2-loops 

that are nested in each external pair and in each multiple loop accessible pair, and also 

on the number of unpaired bases in any k-loop and unpaired external bases. Therefore, 

the equivalence between the structures represents an essential part for finding two 

sequences which have a common folding, but it is still not sufficient, as shown in 

Figure 3.1.a. 

 

Figure 3.1.a: This figure shows two equivalents, but they have highly dissimilar 
secondary structures. [S85]  

 

Second, the same secondary structures of two sequences are needed to provide the high 

similarities and not just the equivalent branching configurations. To assess the 

similarities between two equivalent structures, the idea of Alignment will be 

introduced. The equivalence between the structures of two sequences is guaranteed, 

through the constrained alignments between these structures. 
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Definition 3.1.b: (Constrained Alignment) Let i1 < i2 < … < in and j1 < j2 < … < jm be 

positions in the sequences ܵ1 and ܵ2 respectively. The Constrained Alignment on the 

structures ܲ1 and ܲ2 of these sequences respectively is: i1 aligned with j1 and i2 with j2 

… in with jm.  

Thus, any K-loop in one structure is aligned with a single K-loop of the other structure, 

or may be deleted or inserted in some cases. Now, one can see the following cases that 

describe the constrained alignment between two structures according to Sankoff [S85] 

as follows: 

- External pairs and accessible pairs in multiple loops: all external pairs and 

accessible pairs in multiple loops are aligned and not inserted or deleted; such 

that each of them will have its correspondence in the other structure. 

- 2-Loops: it has no constraint against the insertion or the deletion to their 

accessible pairs; hence it is free to be different from one structure and the other. 

- Hairpins: a hairpin in the structure is aligned with its correspondence in the 

other structure, such that the equivalent structures will have the same number 

of hairpins and at the same locations on the structures. 

Third, we can now clearly determine our target of finding the “equivalent structures” 

and “constrained alignment” in such a way that makes the whole configuration of 

structure and alignment, optimal. However, the expectation to find the equivalent 

structures which are thermodynamically optimal in each sequence separately is difficult 

to get. Even if it is found like this case, an appropriate constrained alignment between 

them might not inevitably be the minimum cost among all possible pairs of the 

equivalent structures. 

Definition 3.1.c1: (Sankoff-score) Let ࣛ be an alignment of the sequences ܵ1 and ܵ2, 

and let ܲ1 be a nested structure of sequence ܵ1 and let ܲ2 be a nested structure of 

sequence ܵ2. The Sankoff-score of ࣛ, ଵܲand ଶܲ is given as: 

Sankoff-score (ࣛ, ଵܲ, ଶܲ) = Edit-Distance (ࣛ) + ܧଵ ( ଵܲ) + ܧଶ ( ଶܲ) 

Definition 3.1.c2: (Sankoff problem) Given two sequences ܵ1 and ܵ2 as input. The 

Sankoff problem is the problem to find the lowest free energy secondary structure 

common to a nested structure ܲ1 of sequence ܵ1 and a nested structure ܲ2 of sequence 
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S2, and an alignment ࣛ of the sequences ܵ1 and ܵ2, such that the two structures ܲ1 and 

ܲ2 are equivalent and the alignment between these structures is constrained, and 

Sankoff-score (ࣛ, ଵܲ, ଶܲ) is minimized. 

Therefore, to optimize this problem, we use a new objective function which represents 

a trade-off between the free energy and alignment cost for the two sequences. The 

following definitions are used to find the optimizing structure and alignments for two 

sequences, which are defined according to Sankoff [S85] as follows: 

 

Definition 3.1.c3: (Matrix D(i1, j1; i2, j2)) The extension of the definition D(i, j) 

(which is defined in the previous chapter) is, the minimal Edit Distance cost of 

an alignment between partial sequences si1, …,sj1 and si2, …, sj2, 

If i1 > j1, then the cost for inserting the entire sequence is si2, …, sj2 

If i2 > j2, then the cost for deleting the entire sequence is si1, …, sj1 

 

 

Definition 3.1.c4: (Matrix F(i1, j1; i2, j2), Matrix C(i1, j1; i2, j2)) Let F(i1, j1; i2, j2) 

be the minimum cost possible for a pair of equivalent secondary structures ܲ1 

and ܲ2 on positions i1, …, j1 and i2, …, j2 of sequences ܵ1 and ܵ2 respectively, 

where the cost is the sum of the free energy and the constrained alignment cost. 

Let C (i1, j1; i2, j2) be the minimum cost given that (i1, j1) 1ܲ א and (i2, j2) 2ܲ א 

without considering the costs of aligning ݏ௜భ, ݏ௝భ, ݏ௜మand ݏ௝మ, If no such pair of 

structures exists, set C = ∞. Then recursion C is: 
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,ሺ݅ଵܥ ݆ଵ; ݅ଶ, ݆ଶሻ 
 

ൌ ݉݅݊ 

ሺℓଵሻܧ ൅ ሺℓଶሻܧ ൅ ሺ݅ଵܦ ൅ 1, ݆ଵ െ 1; ݅ଶ ൅ 1, ݆ଶ െ 1ሻ , ℓ 1, ℓ 2 hairpins closed by  
 (i1, j1), (i2, j2) respectively, 
 

݉݅݊ ሼܧሺℓଵሻ ൅ ሺℓଶሻܧ ൅ ,ଵ݌ሺܥ ;ଵݍ ,ଶ݌ ଶሻݍ ൅ ሺ݅ଵܦ ൅ 1, ;ଵ݌ ݅ଶ ൅ 1, ଶሻ݌
൅ ,ଵݍሺܦ ݆ଵ െ 1; ,ଶݍ ݆ଶ െ 1ሻሽ , 

 

ℓ 1, ℓ 2 are 2-loops closed by (i1, j1),  
(i2, j2) with (p1, q1), (p2, q2)  accessible, 
ଵ݌ െ ݅ଵ ൅ ݆ଵ െ ଵݍ െ 2 ൑ ܷ, ଶ݌ െ ݅ଶ ൅ ݆ଶ െ ଶݍ െ 2 ൑ ܷ, 

or one of 
ℓ 1 = Ø   and (p1, q1) = (i1, j1) 
ℓ 2 = Ø   and (p2, q2) = (i2, j2), 

 

min
௜భழ௛భழ௝భିଵ
௜మழ௛మழ௝మିଵ

ሼܩሺ݅ଵ ൅ 1, ݄ଵ; ݅ଶ ൅ 1, ݄ଶሻ ൅ ሺ݄ଵܩ ൅ 1, ݆ଵ െ 1; ݄ଶ ൅ 1, ݆ଶ െ 1ሻ ൅ 2ܽሽ 

 

The first and second options in this matrix refer to the fact that all terms in hairpin or in 

2-loop are aligned with their corresponding or, in the case of 2-loop, that the entire loop 

is deleted or inserted. The third option is, G, be matrix used for multiple loops. 

Recursion for G and F: 

,ሺ݅ଵܩ ݆ଵ; ݅ଶ, ݆ଶሻ ൌ ݉݅݊ 

,ሺ݅ଵܥ ݆ଵ; ݅ଶ, ݆ଶሻ ൅ 2ܿ ൅ ,ሺ݅ଵܦ ݅ଵ; ݅ଶ, ݅ଶሻ ൅ ,ሺ݆ଵܦ ݆ଵ; ݆ଶ, ݆ଶሻ , 
 

,ሺ݅ଵܩ  ݄ଵ; ݅ଶ, ݄ଶሻ ൅ ሺ݆ଵ െ ݄ଵ ൅ ݆ଶ െ ݄ଶሻܾ
൅ ሺ݄ଵܦ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻ ,

݉݅݊
௜భழ௛భழ௝భ
௜మழ௛మழ௝మ

݉݅݊ ,ሺ݅ଵܩ ݄ଵ; ݅ଶ, ݄ଶሻ ൅ ሺ݄ଵܩ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻ , 
ሺ݄ଵ െ ݅ଵ ൅ 1 ൅ ݄ଶ െ ݅ଶ ൅ 1ሻܾ

൅ ሺ݄ଵܩ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻ
൅ ,ሺ݅ଵܦ ݄ଵ; ݅ଶ, ݄ଶሻ , 

 

,ሺ݅ଵܨ ݆ଵ; ݅ଶ, ݆ଶሻ ൌ ݉݅݊ 

,ሺ݅ଵܥ ݆ଵ; ݅ଶ, ݆ଶሻ ൅ ,ሺ݅ଵܦ ݅ଵ; ݅ଶ, ݅ଶሻ ൅ ,ሺ݆ଵܦ ݆ଵ; ݆ଶ, ݆ଶሻ , 
 

݉݅݊
௜భஸ௛భழ௝భ
௜మஸ௛మழ௝మ

ሼܨሺ݅ଵ, ݄ଵ; ݅ଶ, ݄ଶሻ ൅ ሺ݄ଵܨ ൅ 1, ݆ଵ; ݄ଶ ൅ 1, ݆ଶሻሽ ,

 

,ሺ݅ଵܦ ݆ଵ; ݅ଶ, ݆ଶሻ , 
 

The initial conditions are C (i1, i1; i2, i2) = ∞ and G (i1, i1; i2, j2) = G (i1, j1; i2, i2) = ∞. 
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The first case of matrix G refers to the fact that corresponding accessible pairs are 

aligned in multiple loops, and the same for external pairs in the first option of matrix F. 

The second and fourth options in G refer to corresponding multiple loops aligned and 

the same for the last option of F for the corresponding external regions. The last and 

first options in F indicate the two cases, zero external pairs and one such pair, which 

are found in both structures respectively. 

As we showed above, that these matrices include all configurations in a structure such 

that the corresponding accessible pairs for the multiple loops and the accessible terms 

for the external regions are aligned; also the corresponding closing pair of hairpins is 

aligned, but for the loops of index 2 they are either aligned, completely inserted or 

deleted. 

Before illustrating the correctness of these recurrences which identify the optimal 

structures, we just want to indicate that the recursions of Zuker algorithm (that are 

defined in the previous chapter) are an important part to construct the above recursions. 

Now, the following Figures illustrate the correctness of the Sankoff algorithm 

recursions:  
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Finally, it can be seen that Sankoff algorithm is considered an ideal approach, but it has 

high computational complexity. For this reason, several methods have emerged which 

implement Sankoff algorithm but with pragmatic restrictions to make it practical to use 

and these methods are presented in the following parts of this chapter. 
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3.2 Dynalign 

The previous part shows the simultaneous RNA sequences Alignment and Folding by 

presenting the Sankoff Algorithm which represents the original form to solve these 

problems simultaneously. Since, it is computationally over expensive (as we have 

seen), so there are several methods which implement Sankoff Algorithm under various 

restrictions to make it more practical to use. Dynalign indicates one of these methods 

that suggested by Mathews et al. [MT02]. 

The main idea of Dynalign is to find the secondary structure common to two sequences. 

This method depends on the dynamic programming algorithm suggested by Sankoff, 

which finds lowest free energy secondary structure common for two RNA sequences 

and the sequence alignment that supports this structure. The restriction used in this 

method, is parameter M which restricts the maximum distance between the positions of 

aligned nucleotides of two sequences. Therefore, the computational complexity will be 

more tractable with this restriction, ࣩ(M3N3) for the time and ࣩ(M2N2) for the memory, 

where M is the maximum separation parameter which restricts the set of sequence 

alignments which are considered and N is the length of the shorter sequence [MT02]. 

The general description of Dynalign is given according to Mathews et al. [MT02] as: 

“Dynalign is a computer algorithm that improves the accuracy of structure prediction 

by combining free energy minimization and comparative sequence analysis to find a 

low free energy structure common to two sequences without requiring any sequence 

identity”. 

When they write about “comparative sequence analysis”, they refer to finding a 

structure common to two or more sequences. This is the method, which is not yet 

automated, by which most RNA secondary structures are solved. Thus, the comparative 

sequence analysis here shows the comparison between two structures during the 

alignment.  

Definition 3.2: (Dynalign problem) Let two sequences S1 and S2 be given as input. The 

Dynalign problem finds the lowest free energy secondary structure common to S1 and 

S2, and the sequence alignment between S1 and S2 that supports this structure, such that 

the basepairs of S1 and S2 are preserved in the same aligned positions in the alignment, 

and it minimizes ∆G°total which is the total free energy of the system, where: 
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∆G°total = ∆G°s1 + ∆G°s2 + k ∆G°gap 

Where ∆G°s1 and ∆G°s2 are forms of “Turner Free Energy Model” (i.e. the 

conformational free energies) for the sequences S1 and S2 respectively, which are 

computed by the nearest-neighbor approximation [MSZ+T99] (another typology of free 

energy that refers to a “special case” of the Sankoff). ∆G°gap is the gap penalty that 

applies to each gap in the alignment and k is the number of gaps.  

This method does not explicitly score the sequence identity, because as shown from the 

equation above ∆G°total is not based on the matching nucleotides that occurred in the 

sequence alignment. Generally, this method can be used to predict the structures for 

homologous sequences that do not have the sequence identity but only the structure 

conservation. 

One should see, the analogy between Dynalign method and Sankoff algorithm in 

principle: It is shown in Sankoff algorithm minimizes the total cost of combining the 

free energy minimization of the RNA secondary structure for two sequences (Folding), 

and the minimum alignment cost by the optimal distance between the structures 

(Alignment). Therefore, Sankoff algorithm depends on the matching nucleotides in the 

Alignment. The Dynalign method minimizes the total free energy as shown above, by 

combining the free energy minimization for two sequences (Folding), and the energy 

contribution of gap which is multiplied by the number of gaps (Alignment). So it does 

not depend on the matching nucleotides. 

Dynalign is one of the practical implementations of the Sankoff algorithm, which is a 

dynamic programming algorithm solution for both of sequence alignment and RNA 

secondary structure prediction for two sequences. Therefore, it guarantees an optimal 

solution which is one important point in the dynamic programming algorithm for 

supporting optimal solution. 

The restriction of this method is a parameter M which restricts the depth of a search for 

the alignments between two sequences. This restriction modifies the definition 3.2 and 

the restriction can be shown as follows: 

For all i א S1, k א S2 and (i, k) is a pair in alignment: |i – k| ൑ M. 

The computational complexity will be tractable with this restriction, such that ࣩ(M3N3) 

for time and ࣩ(M2N2) for storage, where a parameter M decreases the set of alignments 
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which are considered and N is the length of shorter sequence, compared with Sankoff 

algorithm, ࣩሺN6ሻ  for time  and ࣩሺN4ሻ  for storage, where N is also the length of the 

smaller of the two sequences. 

In the Dynalign implementation, another scheme for a parameter M is used to recast the 

parameter M implementation in such a way that scales with the difference in sequence 

length for the two sequences, where the nucleotide i from the first sequence and the 

nucleotide k from the second sequence:   

|i × ሺ ଶܰ ଵܰ⁄ ሻ - k| ൑ M 

where N1 is the length of the first sequence and N2 is the length of the second sequence. 

This restriction allows aligning the ends of the sequences (i = N1and k = N2) at any M 

and any difference of the sequence length. This restriction can be chosen for 

significantly smaller M sizes than the shorter sequence length N, hence, it reduces the 

computation complexity. The Results chapter will show that this scheme for parameter 

M was used in the Dynalign program. 

Dynalign does not depend on the scoring of base matches as we have showed; 

therefore, it has no problem for compensating base changes. Unlike to the Sankoff 

algorithm that includes a scoring function for the matching nucleotides in the 

alignment. 

In practice, both of Sankoff algorithm and Dynalign method have limitation on the 

sequence length because of computational complexity. No prediction of pseudoknots 

occurs in each of Sankoff algorithm and Dynalign method. 

Dynalign has three matrices like Sankoff, but with different names. In this method, the 

maximum distance restriction between aligned nucleotides by parameter M, 

computationally leads to simplify the structure calculation. These matrices that 

including multi-branch loops are defined according to Mathews et al. [MT02] as 

follows: 

- Definition 3.2.a: (Matrix V(i, j, k, l)) Matrix V(i, j, k, l) is the minimal sum of 

the free energies for the two sequences that cover nucleotides i, …, j in the first 

sequence and k, …, l in the second sequence, such that (i, j)and (k, l) are 

basepairs and i aligned with k and j aligned with l, plus any gap penalties for 
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interior nucleotides in the sequence alignment. It is recursively computed as 

minimum of the three cases: 

• V1 for hairpin loops which is closed by the basepairs (i, j) and (k, l), 

• V2 is the lowest sum of the free energies for one of these loops: a helix 

extension, bulge loop, or internal loop in the common structure. 

• V3 is also the lowest sum of free energies for a multi-branch loop that 

closed by the basepairs (i, j) and (k, l). It has 16 cases that are 

computed to all possible combinations of whether or not that i+1 and j-

1 are dangling ends on the basepair (i, j), and whether k+1 or l-1 are 

dangling ends on the basepair (k, l). 

This matrix corresponds to the C-matrix in Sankoff, but in the case of a 

multi-branch loop, in contrast to Sankoff, it includes all possible cases for 

determining the dangling ends on both the closing basepairs. 

- Definition 3.2.b: (Matrix W(i, j, k, l)) Matrix W(i, j, k, l) is the minimal sum of 

the free energies for the nucleotides i, …, j of the first sequence and k, …, l of 

the second sequence and i aligned with k and j aligned with l, plus any gap 

penalties for interior nucleotides in the sequence alignment. It is the minimum 

of three cases: 

• W1 for adding unpaired nucleotides to a multi-branch loop, and 

similarly to V3, it has also 16 possible cases. 

• W2 for helix termini. 

• W3 for bifurcation in the structure. It’s necessary for considering multi-

branch loops with more than three branching helices. 

This matrix corresponds to the G-matrix in Sankoff, but in the case of 

adding unpaired nucleotides, in contrast to Sankoff, it includes all possible 

cases for determining the unpaired nucleotides of the dangling ends. 

- Definition 3.2.c: (Matrix W5(i, k)) Matrix W5(i, k) is the minimal sum of free 

energies for the nucleotides 1, …,i of the first sequence and 1, …, k of the 

second sequence, plus any gap penalties for nucleotides in sequence alignment. 

It is the minimum of the four cases, which assuming that several consecutive 

helices in both structures are not closed by basepairs. 
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This matrix corresponds to the F-matrix in Sankoff, but in contrast to Sankoff, 

one of the cases also has 16 possible cases for allowing the dangling ends on 

the helices closed by such basepair. 

In recent years, there have been some developments for this method that reducing the 

computational complexity for time and memory requirements, and in addition to 

improve the accuracy in the structure prediction. 

In Dynalign method, the restriction is the parameter M, as discussed before that defines 

as a measure of maximum insertion length. This parameter controls the trade-off 

between the computation and accuracy. Whereas a small value of M is desired to 

decrease the computation time, the accuracy of the secondary structure prediction will 

also be decreased. Therefore, the determination value of M is essential for the structure 

prediction accuracy. A large value of M is desired for the longer sequences, since they 

need longer insertions, while more computation time will be required. Due to this 

limitation in the Dynalign method, for selecting the values of parameter M, a new 

methodology is suggested in Dynalign by Harmanci et al. [HSM07]. 

This new methodology imposes constraints on the alignment in Dynalign, and these 

constraints are defined by a probabilistic analysis. A posteriori probability that is used 

for the nucleotide alignments, estimates the confidence in local accuracy of the 

sequence alignment, and it is efficiently computed by Hidden Markov Model 

[DEK+M99]. These estimations restrict the choices of the dynamic programming step 

by the constraint windows. In high confidence regions, strong constraints are imposed 

on the possibilities in dynamic programming steps by cutting off the computation 

which is not required. Otherwise, the low confidence regions, allow many possibilities 

in the dynamic programming steps. 

The used formulation of Hidden Markov Model (HMM) computes the posteriori 

symbol-to-symbol alignment probabilities for the homologous sequences which are 

represented by Pr(i ↔ k | S1, S2), i.e. the probability of co-incidence between one 

nucleotide position i of sequence S1 with other nucleotide position k of sequence S2 

[DEK+M99]. 

There are three conditions satisfying the co-incidence between two nucleotide positions 

(one of each sequence) according to Harmanci et al. [HSM07], these conditions are as 

follows: 
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- Nucleotide positions i and k are aligned,  

- Nucleotide position i occurs in an “insertion” in sequence S1 and nucleotide 

position k in sequence S2 aligns with nucleotide position i_ from sequence S1, 

where i_ denotes the largest position index less than i in sequence S1 that aligns 

with a nucleotide position from sequence S2. 

- Nucleotide position k occurs in an “insertion” in the sequence S2 and nucleotide 

position i in sequence S1 aligns with nucleotide position k_ from sequence S2, 

where k denotes the largest position index less than k in sequence S2 that aligns 

with a nucleotide position from sequence S1. 

The effective computation of a posteriori probability of the co-incidence between 

nucleotide positions is done by using the HMM forward-backward algorithm, which is 

described according to Harmanci et al. [HSM07] as follows: 

ሺ݅ݎܲ ՞ ݇ሃܵଵ, ܵଶሻ ൌ
∑ ,௠ሺ݅ߙ ݇ሻߚ௠ሺ݅, ݇ሻ௠

ሺݎܲ ଵܵ, ܵଶሻ
 

Where the sum is over m = {ALN, INS1, INS2}, which represents the set of three 

possible states for the nucleotides co-incidence. Each state defines the alignment 

according to the nucleotide positions between two sequences. So the aligned nucleotide 

positions and an insertion of the sequence S1 and an insertion of the sequence S2, are 

representing the states ALN, INS1, INS2 respectively. The forward variable αm(i, k) 

keeps track of events before alignment position (i, k) and the backward variable βm(i, k) 

keeps track of events after alignment position (i, k). ܲݎሺ ଵܵ, ܵଶሻ is the probability of 

emission of the observed sequences. 

A low value of the posterior co-incidence probability Pr(i ↔ k | S1, S2) is that a 

nucleotide position i in sequence S1 not probable to co-incident with nucleotide position 

k in sequence S2. Therefore, the suggestion is to impose constraint on the alignments in 

Dynalign by excluding all alignments that are not probable through having very small 

value of the posterior co-incidence probability. So this occurs by defining an alignment 

constraint by comparing the posterior co-incidence probability with an appropriate low 

threshold Pthreshold, and according to Harmanci et al.  [HSM07] an alignment constraint 

set is defined as follows: 

C = {(i, k) | (Pr(i ↔ k | S1, S2) > Pthreshold} 
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Where C represents an alignment constraint set and its elements describe the pairs of 

nucleotide positions that may co-incident between the sequences. Otherwise, they are 

rejected. 

The threshold value Pthreshold has analogous to a parameter M. It controls a trade-off 

between computation and accuracy. A low value of Pthreshold, a strong confidence is 

determined and hence the constraint sets will include all actual alignments, but more 

computation is required for the choices that are increased. For a high value of Pthreshold, 

the computation requirements are decreased because an alignment constraint set will be 

restricted. A higher Pthreshold, may be very restrictive such that it prevents the optimal 

alignment to be included in the set of alignments that is considered due to the alignment 

constraint set. Hence, the prediction accuracy will be reduced in Dynalign. 

The alignment constraints are effectively determined by providing an appropriate 

HMM parameter and threshold values. An appropriate threshold probability is chosen 

according to the several experiments performed on the sequences in the 

implementation, which is depended on the similarity of sequences. 

This new methodology for Dynalign produces a significant improvement in accuracy 

and speed, compared to the previous heuristic of Dynalign.  
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3.3 Foldalign 

This part will discuss another method which represents the first practical 

implementation of Sankoff algorithm for simultaneous folding and alignment of RNA 

sequences, this is called Foldalign method. This method has three versions, according 

to the heuristics and improvements that have been added. 

 

3.3.1 Pairwise Foldalign 1.0 

This method utilizes a simplified version of Sankoff Algorithm but neglects the 

branching structures; this version is called pairwise Foldalign 1.0 [GHS97a], 

[GHS97b]. Therefore, it lowers the calculation time from ࣩሺN6ሻ  to  ࣩሺN4ሻ for two 

sequences, where N is the sequence length. This method combines both of sequence 

similarity and structure, such that, it is based on the local sequence alignment by using 

the definition of (Smith-Waterman algorithm) for the aligning part, and optimizes the 

number of basepairs in the structures by using the definition of (Nussinov algorithm), 

rather than free energies for the folding part. 

Now one must to show the analogies of the Sankoff algorithm between the Foldalign 

method which simplifies and extends the basic Sankoff algorithm. As is known the 

Sankoff algorithm minimizes the total cost of combination of both the minimum 

Alignment cost and the minimum free energy structures for two sequences; the 

Foldalign method is focused on the local sequence alignment (that is mentioned before, 

in the preliminaries chapter), therefore, it applies the definition of (Smith-Waterman 

algorithm) which finds the maximum score local alignment for two sequences. So, it 

maximizes a score that combines sequence similarity and structure. For this case, it 

employs the Nussinov algorithm that maximizes the number of basepairs to score the 

structure. Now, this gives the ability to exploit pairwise Foldalign 1.0 for determining 

the maximum scoring local alignment RNA sequences. 

 

Now, the following definitions of the pairwise Foldalign 1.0 according to Gorodkin et 

al. [GHS97a], [GHS97b] are presented as follows: 

Definition 3.3.1.a: (FA1.0 scoring matrix) The FA1.0 scoring matrix (Sij,kl) is 25 ൈ 25 

matrix for the four bases that also include the gaps, where the indices i, j, k, l א {A, C, 
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G, U, –} and its values in Թ. It combines the two independent contributions that will be 

discussed later in the FA1.0 scoring matrix construction. 

Definition 3.3.1.b: (FA1.0-score) Let ࣛ be an alignment of the sequences A and B, let 

PA be a nested structure of sequence A and let PB be a nested structure of sequence B. 

We assume a fixed FA1.0 scoring matrix S. The FA1.0-score of ࣛ, PA and PB is given 

as: 

FA1.0 െ scoreሺࣛ, ஺ܲ, ஻ܲሻ ൌ ෍ ௔೔௕ೖ ,௔ೕ௕೗ߞ ൅ ෍ ڃሺܽ௣ߪ , ܾ௣ڃ ሻ
௣אሾଵ… |ࣛ|ሿሺ௜,௝ሻא ௉ಲ

ሺ௞,௟ሻא ௉ಳ
௔௡ௗ ሺ௜,௞ሻࣛא,ሺ௝,௟ሻא ࣛ

 

where ߪ is the similarity score for all subalignments, and ߞ௔೔௕ೖ ,௔ೕ௕೗ is a cost for 

aligning i with k  and j with l when (i, j) and (k, l) are basepairs. 

For example: 

                  

ࣛ ൌ A1 C2 G3 U4 – G5 – U6 
C1 C 2G3 – A4 G5 A6 G7 

 

 

σሺA, Cሻ ൅  σሺC, Cሻ ൅  σሺG, Gሻ ൅  σሺU,െሻ ൅  σሺെ, Aሻ ൅  σሺG, Gሻ ൅  σሺെ, Aሻ ൅  σሺU, Gሻ

൅ ζACUG ൅   ζCCGG 

ࣛ ൌ ሼሺ1,1ሻ, ሺ2,2ሻ, ሺ3,3ሻ, ሺ5,5ሻ, ሺ6,7ሻሽ 

Definition 3.3.1.c: (FA1.0 problem) Given two sequences A and B as input, the FA1.0 

problem is the problem to find an alignment ࣛ of the sequences A and B, and a nested 

structure PA of sequence A and a nested structure PB of sequence B, such that the 

basepairs of the structures PA and PB are preserved in the aligned positions, and with a 

constraint of non-branching structures and FA1.0-score (ࣛ, ஺ܲ, ஻ܲ) is maximized. 

As is shown the recursion of Nussinov algorithm (in the preliminaries chapter) allows 

for branching structures. Here, in order to reduce the time complexity for the Foldalign 

method, the case related for the branching structures is dropped. 
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Formally, this method finds the best subsequence alignment between two sequences by 

using the 4-D dynamic programming algorithm according to Gorodkin et al. [GHS97b] 

as follows: 

Definition 3.3.1.d: (FA1.0 recursion) Let two subsequences ai … aj and bk …bl, and a 

fixed FA1.0 scoring matrix (ܵ௔೔௔ೕ,௕ೖ௕೗), be given with a non-branching structures 

constraint, then the output is the highest scoring subsequence alignment of matrix D, 

that is produced by the following recursion: 

 

௜௝,௞௟ܦ ൌ ݔܽ݉

ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,௕ೖ௕೗ , (a)
 

௜ሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵି௔ೕ,௕ೖ௕೗ , 

(b)
ሺ௜ାଵሻ௝,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔ି,௕ೖ௕೗ , 
ሺ௜ାଵሻሺ௝ିଵሻ,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,ି௕೗ , 
ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔௔ೕ,௕ೖି , 
 

ሺ௜ାଵሻሺ௝ିଵሻ,௞௟ܦ ൅ ܵ௔೔௔ೕ,ିି , (c)ܦ௜௝,ሺ௞ାଵሻሺ௟ିଵሻ ൅ ܵିି,௕ೖ௕೗ , 
 

ሺ௜ାଵሻ௝,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔ି,௕ೖି , (d)ܦ௜ሺ௝ିଵሻ,௞ሺ௟ିଵሻ ൅ ܵି௔ೕ,ି௕೗ , 
 

ሺ௜ାଵሻ௝,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔ି,ି௕೗ , (e)ܦ௜ሺ௝ିଵሻ,ሺ௞ାଵሻ௟ ൅ ܵି௔ೕ,௕ೖି , 
 

ሺ௜ାଵሻ௝,௞௟ܦ ൅ ܵ௔೔ି,ିି , 

(f)
௜ሺ௝ିଵሻ,௞௟ܦ ൅ ܵି௔ೕ,ିି , 
௜௝,ሺ௞ାଵሻ௟ܦ ൅ ܵିି,௕ೖି , 
௜௝,௞ሺ௟ିଵሻܦ ൅ ܵିି,ି௕೗ 

 

where a maximum value of Dij,kl gives the maximal similarity between the 

subsequences ai … aj and bk …bl.  

The different classes are represented by the letters from (a) to (f) on the right side of the 

above recursion, according to the number of gaps and its distribution within the 

alignment. As is shown, in this recursion the branching structures are not allowed, in 

order to reduce the time complexity. 
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Note that zero value is found in the recursion of local sequence alignment, but it is not 

included in this recursion because the matrix Dij,kl contains alignment scores over all 

the subsequences, ai … aj and bk … bl, also because the negative values are allowed to 

be included within the complete alignment.  

Definition 3.3.1.e: (FA1.0 scoring matrix construction) Sij,kl is the FA1.0 scoring 

matrix that is constructed for the subsequences i, …, j and k, …, l, from two terms of 

the independent contributions, so S describes the sum of the two matrices ࣛ and B, as 

follows:                                               S = ࣛ + B, 

Where S is a scoring matrix 1.0 that substitutes any pair of bases with the other 

including gaps, ࣛ is a matrix for sequence alignment and B is a matrix for basepairs 

alignment. 

First, a matrix ࣛ will be constructed from two independent matrices, such that, it 

contains all pairs that are possible in one sequence of positions (i, j) and in other 

sequence of positions (k, l), by combining the cost of (ࣛ 0)ik that aligns i with k and the 

cost (ࣛ 0)jl that aligns with l, as shown in:         

ࣛ ij,kl = (ࣛ 0)ik + (ࣛ 0)jl 

where ࣛij,kl represents the score matrix for aligning any two bases in one sequence with 

any two bases in the other sequence with gaps including. (ࣛ0)ik and (ࣛ0)jl are similarity 

substitution matrices. 

Now, to build the score matrix B for base pairing, a simple description is introduced as 

follows (*):             

 Bij,kl =
௜௞௝௟ߞ if (i, j) and (k, l) can basepairs   

0 otherwise 
 

(*) There is another presentation for the score matrix B, and one example for the matrix S, [GHS97b]. 

where ζ is a base pairing alignment matrix that gives a score for substituting a basepair 

of one sequence to a basepair of other sequence, its values gives reason to occurring 

compensating mutations in the final matrix S.  
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The 4-D dynamic programming of pairwise Foldalign 1.0 will extend to contain 

alignment for two entities (individual sequences and/or aligned sequences) in a set of 

RNA sequences, without overlapping of sequences between them; therefore, the 

Greedy algorithm will be used for this extension to construct the multiple alignments 

from pairwise comparisons that are optimized by the pairwise Foldalign 1.0 for the 

preservation of both sequence and structure.  

However, in a set of n sequences, there might be some of these sequences not-related to 

the rest or might be functionally related but denote the two or more of structural classes 

that do not provide a single common motif over all sequences. The overall method (i.e. 

pairwise Foldalign 1.0 and Greedy algorithm) distinguishes that there are m ൑ n 

sequences including the most significant common motif in the alignment, while the rest 

of sequences might refer to other structural class. Hence, it considers that there are 2n 

subsets for n sequences, and it identifies the subset which is the most significant 

common motif, while neglecting the other non-useful subsets. 

 

The Greedy algorithm is described in two steps according to Gorodkin et al. [GHS97b] 

as follows: 

• Comparing all individual sequences with each other, and then comparing all 

pairwise alignments with all individual sequences, as long as in each 

comparison a sequence does not appear more than once. 

• All triplet alignments align with individual sequences, and all pairwise 

alignments compare with each other, again as long as in each comparison a 

sequence does not appear more than once. 

By continuing with this algorithm, all sequences will be compared at the end of the 

alignment. It requires time ࣩ(N4nn) where N is the sequence length for n sequences (i.e. 

exponential time), and as mentioned above some of sequences (subsets) are improbable 

to be involved in the final aligned subset, therefore, such procedure requires discarding 

non-useful alignments (aligned subsets).  

There are two limitations on the comparisons that are used to optimize this algorithm; 

therefore, they reduce the time complexity to ࣩ(N4n2). These are: (1) a single sequence 

which always one of the two entities, and (2) there is “threshold” number of the highest 

scoring alignments at each round that is stored.  
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Explanation: Considering “threshold” 30, and comparing each single sequence with 

each pairwise alignment create triplet alignments and only the 30 of the best scoring 

alignments are stored to comparing again with single sequences to create four 

sequences alignments. With these limitations on the comparisons the complexity 

becomes ࣩ(N4n2). 

In addition to tractability over the Greedy algorithm, Foldalign method has another 

advantage that it can find the subsets (aligned sequences) with most significant 

alignments. The disadvantage of the Foldalign method is that there is no guarantee to 

find the optimal solution, as in Sankoff algorithm. 

During the implementation of the pairwise Foldalign 1.0, two limitations are showed, 

these are defined as follows: 

 

• Definition 3.3.1.f: (δ-restriction) The maximum scoring alignments Dij,kl for 

the subsequences i, …, j and k, …, l are calculated, if restricting the maximum 

length of difference between these two subsequences being aligned by δ 

nucleotides.   

Only Dij,kl, where   |(j – i +1) - (l – k + 1)|  ൑ δ   is satisfied, are calculated. 

Otherwise Dij,kl = - ∞, if   |(j – i +1) - (l – k + 1)|  ൐ δ.  

• Definition 3.3.1.g: (λ-restriction) The maximum scoring alignments Dij,kl for 

the subsequences i, …, j and k, …, l are calculated, if restricting the maximum 

RNA-motif length by λ nucleotides. 

(j – i + 1) ൑ λ  

(l – k + 1) ൑ λ 

where i, j, k, l, are indices of Dij,kl. 

 

Since these two heuristics have effect on the alignment length of the problem that is 

solved, they will reduce the time and memory complexities. 
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3.3.2 Pairwise Foldalign 2.0 

The main limitation of the pairwise Foldalign 1.0 implementation includes only the 

stem-loop structures because of the computational complexity. Therefore, several 

improvements are applied to extend and improve the Foldalign method. 

Now a new Foldalign implementation suggested by Havgaard et al. [HLS+G05] will be 

discussed. This pairwise Foldalign 2.0 implementation extends from the previous 

implementation to include: the bifurcated structures, structural parameters provided in 

the scoring scheme that employs for free energy minimization (similar to energy terms 

in Dynalign) [MSZ+T99] [XSB+KSJ98], and also contains computation of the 

substitution matrices that is similar to RIBOSUM [KE03]. 

Now, we present the following definitions for the pairwise Foldalign 2.0 according to 

Havgaard et al. [HLS+G05] as follow: 

Definition 3.3.2.a: (FA2.0 score) Let ࣛ be an alignment of the sequences A and B, let 

PA be a nested structure of sequence A and let PB be a nested structure of sequence B. 

Then the FA2.0-score of ࣛ, PA and PB is given as: 

FA2.0-score (ࣛ, PA, PB) = ∑ ሾ߬ሺܽ௜, ௝ܽ;  ܾ௞, ܾ௟ሻሿ ሺ௜,௝ሻא௉ಲ ,ሺ௞,௟ሻא௉ಳ
௪௛௘௥௘ ሺ௜,௝ሻ௔௟௜௚௡௘ௗ ሺ௞,௟ሻ௕௬ ࣛ 

 + EA(PA) + 

EB(PB) +  ∑ ,ሺܽ௜ߪ ܾ௞ሻሺ௜,௞ሻࣛא   

where ߬ and ߪ are the similarity parameters for substituting base-pairs and unpaired 

bases respectively, which are similar to RIBOSUM matrices. E(PA) and E(PB) are 

subset of Turner energies used as the energy parameters that compute the free energy 

minimization [MSZ+T99], [ZMT99]. 

Definition 3.3.2.b: (FA2.0 problem) Given two sequences A and B as input. The FA2.0 

problem is the problem to find an alignment ࣛ of the sequences A and B, and a nested 

structure PA of sequence A and a nested structure PB of sequence B, such that the 

basepairs are conserved in the aligned positions and FA2.0-score (ࣛ, PA, PB) is 

maximized. 

As mentioned above, that the branching structures are included in this version of 

Foldalign. 
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The FA2.0 cost (ܵ௔೔௔ೕ,௕ೖ௕೗) is a cost for the substitution of (ai, aj) from sequence A with 

(bk, bl) from sequence B, and the two subsequences are folding simultaneously. It has a 

dynamical computation relying on the five structural contexts (structure elements). 

Definition 3.3.2.c: (FA2.0 recursion) Let two subsequences ai … aj and bk …bl be 

given as input. FA2.0 cost (ܵ௔೔௔ೕ,௕ೖ௕೗) is calculated according to the structural context, 

and with including branching structures. Then the maximum scoring subsequence 

alignments of matrix D is produced by the following recursion according to Havgaard 

et al. [HLS+G05] as follow: 

௜௝,௞௟ܦ ൌ ݔܽ݉

ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,௕ೖ௕೗ , (a)
 

௜ሺ௝ିଵሻ,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵି௔ೕ,௕ೖ௕೗ , 

(b)
ሺ௜ାଵሻ௝,ሺ௞ାଵሻሺ௟ିଵሻܦ ൅ ܵ௔೔ି,௕ೖ௕೗ , 
ሺ௜ାଵሻሺ௝ିଵሻ,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔௔ೕ,ି௕೗ , 
ሺ௜ାଵሻሺ௝ିଵሻ,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔௔ೕ,௕ೖି , 
 

ሺ௜ାଵሻሺ௝ିଵሻ,௞௟ܦ ൅ ܵ௔೔௔ೕ,ିି , (c) ܦ௜௝,ሺ௞ାଵሻሺ௟ିଵሻ ൅ ܵିି,௕ೖ௕೗ , 
 

ሺ௜ାଵሻ௝,ሺ௞ାଵሻ௟ܦ ൅ ܵ௔೔ି,௕ೖି , (d)ܦ௜ሺ௝ିଵሻ,௞ሺ௟ିଵሻ ൅ ܵି௔ೕ,ି௕೗ , 
 

ሺ௜ାଵሻ௝,௞ሺ௟ିଵሻܦ ൅ ܵ௔೔ି,ି௕೗ , (e) ܦ௜ሺ௝ିଵሻ,ሺ௞ାଵሻ௟ ൅ ܵି௔ೕ,௕ೖି , 
 

ሺ௜ାଵሻ௝,௞௟ܦ ൅ ܵ௔೔ି,ିି , 

(f) 
௜ሺ௝ିଵሻ,௞௟ܦ ൅ ܵି௔ೕ,ିି , 
௜௝,ሺ௞ାଵሻ௟ܦ ൅ ܵିି,௕ೖି , 
௜௝,௞ሺ௟ିଵሻܦ ൅ ܵିି,ି௕೗ , 
 

ݔܽ݉
௜ழ௡ழ௝ିଵ
௞ழ௠ழ௟ିଵ

ሼܦ௜௡,௞௠ ൅ ሺ௡ାଵሻ௝,ሺ௠ାଵሻ௟ሽ (g)ܦ

 
where maximal Dij,kl refers to the most similar subsequences ai … aj and bk … bl, and 

each of ai, aj, bk, bl are nucleotides at positions i, j, k, l, respectively.  

The letters above from (a) to (f) on the right-side of recursion are the same as those in 

the previous implementation, only (g) is added to allow for the bifurcation structures. 

For each D-entry, the associated context is stored in a separate matrix. 
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Generally, ܵ௔೔௔ೕ,௕ೖ௕೗ has a dynamical computation by relying on the five structural 

contexts (structure elements). The parameters used in this computation are static such 

as substitution costs of basepair (aligning part) and the energy parameters (folding 

part). Now, the calculations of cost ܵ௔೔௔ೕ,௕ೖ௕೗ for each structural context are presented 

according to Havgaard et al. [HLS+G05] as follows: 

 

• Hairpin-loop: the calculation is always initialized by aligning two nucleotides 

in the hairpin-loop context. The cost of the alignment between two hairpin-

loops is:                

S hp = S substitution + S length + S stack 

 

where S substitution = ∑ SSS (ai, bk) is the cost of combining the substitution for 

each pair of nucleotides and gap cost for each gap that are included in the loop. 

SSS (ai, bk) is the single-strand substitution cost, which correspondences to ߪ. S 

length = S hp-length (j – i +1) + S hp-length (l – k + 1) is the cost that is dependent on 

the loop size, which is computed from the energy parameters. For the hairpin-

loops that have more than three nucleotides long, the energy cost S stack = S hp-

stack (ai, aj, ai-1, aj+1) + S hp-stack (bk, bl, bk-1, bl+1) is combining of two independent 

sums for stacking in the two hairpin-loops. 

 

• Stem: A stem is the number of stacked basepairs, with long at least two 

basepairs. A single basepair is not allowed and is recalculated as part of the 

surrounding loop. The cost of the alignment between two stems is: 

 

S bp = S substitution + S stack 

 

where S substitution = ∑ SSS (ai, aj, bk, bl) is the cost of combining the substitutions 

for the basepairs in one subsequence with the basepairs in other subsequence, 

which correspondences to ߬. S stack is the stack energy cost which has the same 

computation above but for two stems. 
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The other structural contexts are computed in the same manner with some 

addition costs of energy parameter that are added according to the requirement 

of structural context. 

 

• Internal-loop: An internal-loop is the single-stranded nucleotides on both sides 

of RNA structure that are surrounded by stems. The cost of aligning two 

internal-loops is: 

S il = S substitution + S length + S asymmetry + S stack 

 

• Bulge-loop: A bulge-loop is also single-stranded region but only on one side of 

RNA structure that is surrounded by stems. The cost of aligning two bulge-

loops is: 

S bl = S substitution + S length + S stack 

 

• Multibranched-loop: A multibranched-loop is the region where more than two 

stems meet. The cost of a multibranched-loop is: 

 

S hp = S substitution + S mbl-closing + (n stem - 2) S stem + n singlenucleotides ൈ S nucleotide + S stack 

 

All these costs are stored in either specific matrices or tables in the score matrix 

according to structural context and its parameters. For more details, the reader is 

referred to the paper Havgaard et al. [HLS+G05]. 

 

The two constraints that are used in the previous implementation of FA1.0, they are 

also used with this implementation of FA2.0: λ and δ. These reduce the complexity for 

each of time NA NB λ2 δ2 and memory NA NB λ δ, where NA and NB are the lengths of 

A, B sequences respectively. 

 

By dropping the cases (b) and (e) from the recursion above, the speed of this 

implementation will be increased because the number of cases at each entry in 

recursion will be reduced. This has no influence on the memory and time complexities 

because there is no modification of the structure types which can be aligned, so that we 

can obtain the alignments for the cases (b) and (e), by integrating some of the other 
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cases of the recursion. For example, the case (b.1) can be obtained from combining the 

cases (f.3) and (d.2), or from (e.2) and (f.4), or replacing of other cases. 

 

The restriction has been placed on the case (g) when it is calculated, where the case (g) 

is composed of two substructures, another optimization conforms to speed of this 

implementation, if (i, n) and (k, m) are basepairs of the left substructure Din,km, and if j 

is base-paired and l is base-paired of the right substructure D(n+1)j,(m+1)l).  

 

This implementation handles with the problem that finds the common local structural 

motifs of two RNA sequences with sequence similarity less than 40%, where these 

sequences are not distinguishable of the folding energy to their surrounding sequence 

context. It also represents an efficient way for executing simultaneous mutual scan for 

two sequences to find the common local structural motifs. 

 

3.3.3 Pairwise Foldalign 2.1 
 
Now, we will introduce the last implementation of the Foldalign method that was 

described by Havgaard et al. [HTG07], as a new heuristic in the previous 

implementation (i.e. Foldalign 2.0). This heuristic is represented by the dynamical 

pruning of the dynamic programming matrix, through excluding the subalignments that 

have scores lower than length-dependent threshold (pruning threshold). This heuristic 

increases the speed without reducing in the predictive performance. It represents a new 

implementation in the Foldalign method that is used for pairwise local or global 

structural alignments of the RNA sequences. In addition the memory requirement is 

reduced by a constraint of branch points which uses the divide and conquers method. 

This thesis is not interested in the latter. 

Now the following definitions are presented for the pairwise Foldalign 2.1 according to 

Havgaard et al. [HTG07] as follows: 

Definition 3.3.3.a: (FA2.1-score) FA2.1 score has the same definition as the previous 

Foldalign implementation (FA2.0 score). 

Definition 3.3.3.b: (FA2.1 problem) FA2.1 problem has also the same definition as the 

previous Foldalign implementation (FA2.0 problem). 
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The cost of FA2.1 distinguishes also into several costs that are used to add a set of 

nucleotides to the alignment. This cost is the same as FA2.0 cost which has a 

dynamical computation depending on the five structural contexts (structural elements). 

Definition 3.3.3.c: (FA2.1 recursion) Let two subsequences be given as input ai … aj 

and bk …bl of sequences A and B respectively. This recursion seems the same recursion 

as the previous version with only a few improvements or simplifications to the energy 

model. Then maximum scoring subsequence alignments of D is produced according to 

Havgaard et al. [HTG07] as follows: 

      

௜,௝,௞,௟ܦ ൌ  ݔܽ݉

௜ାଵ,௝ିଵ,௞ାଵ,௟ିଵܦ ൅ ܵ௕௣ሺܽ௜, ௝ܽ , ܾ௞, ܾ௟,  ௜ାଵ,௝ିଵ,௞ାଵ,௟ିଵሻ (a)ߪ
௜ାଵ,௝ିଵ,௞,௟ܦ ൅ ܵ௕௣௜ூሺܽ௜, ௝ܽ , െ, െ, ௜ାଵ,௝ିଵ,௞,௟ሻ (b)ߪ
௜,௝,௞ାଵ,௟ିଵܦ ൅ ܵ௕௣௜௄ሺെ,െ, ܾ௞, ܾ௟,  ௜,௝,௞ାଵ,௟ିଵሻ (c)ߪ
௜ାଵ,௝,௞ାଵ,௟ܦ ൅ ܵ௔௟ሺܽ௜, ܾ௞, ௜ାଵ,௝,௞ାଵ,௟ሻ (d)ߪ
௜,௝ିଵ,௞,௟ିଵܦ ൅ ܵ௔௥ሺ ௝ܽ, ܾ௟,  ௜,௝ିଵ,௞,௟ିଵሻ (e)ߪ
௜ାଵ,௝,௞,௟ܦ ൅ ௚ܵ௟ூሺܽ௜, െ,  ௜ାଵ,௝,௞,௟ሻ (f)ߪ
௜,௝ିଵ,௞,௟ܦ ൅ ௚ܵ௥ூሺ ௝ܽ, െ, ௜,௝ିଵ,௞,௟ሻ (g)ߪ
௜,௝,௞ାଵ,௟ܦ ൅ ௚ܵ௟௄ሺെ, ܾ௞, ௜,௝,௞ାଵ,௟ሻ (h)ߪ
௜,௝,௞,௟ିଵܦ ൅ ௚ܵ௥௄ሺെ, ܾ௟,  ௜,௝,௞,௟ିଵሻ (i)ߪ
ݔܽ݉
௜ழ௠ழ௝
௞ழ௡ழ௟

ሼܦᇱ
௜,௠,௞,௡ ൅ ᇱܦ

௠ାଵ,௝,௡ାଵ,௟ ൅  ௠௕௟௛௘௟௜௫ሽ (j)ܥ

 
 

where ܦ௜,௝,௞,௟ is the alignment score, ߪ௜,௝,௞,௟ is the alignment state. In addition to these 

matrices, there are four length matrices used in the implementation:  ߤଵሺ௜,௝,௞,௟ሻ, ߤଶሺ௜,௝,௞,௟ሻ, 

 ସሺ௜,௝,௞,௟ሻ which are the lengths of the single stranded regions external to theߤ ,ଷሺ௜,௝,௞,௟ሻߤ

last basepairs. Therefore, this version contains six of 4-D matrices that are required for 

computing the recursion. ܥ௠௕௟௛௘௟௜௫  which is the cost for adding extra stems.  

In case (j), the unpaired nucleotides of branched loops score the same as unpaired 

nucleotides in the external loops. Hence, D' is the alignment score that is corrected for 

external single stranded nucleotides.    

As mentioned that cost of FA2.1 represents the costs of Sbp to SgrK which are computed 

depending on the alignment state (σ) which includes five structural contexts: hairpin-

loop, stem, bulge-loop, internal-loop, and external/bifurcated-loop. 
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The case (a) adds a basepair in both structures. The cases (b) and (c) add basepair 

inserts in either of the structures. The cases (d) and (e) add aligned unpaired nucleotides 

in either end of the alignment. The cases (f) and (i) add an unpaired nucleotide aligned 

to a gap to the alignment. The case (j) is the bifurcation case which joins two 

substructures into one in each of the structures. 

 

The alignment score ܦ௜,௝,௞,௟ is the maximum alignment score over all the D-entries and 

the alignment state ߪ௜,௝,௞,௟ becomes the state for the best structure alignment which is 

computed according to the associated context of D-entry, where the context of each D-

entry is stored in a separate matrix. Analogously, this is done for the length matrices: 

 ସሺ௜,௝,௞,௟ሻ which are the lengths of single stranded regionsߤ ,ଷሺ௜,௝,௞,௟ሻߤ ,ଶሺ௜,௝,௞,௟ሻߤ ,ଵሺ௜,௝,௞,௟ሻߤ

for the best alignment of (i, j, k, l). These lengths are updated according to the 

associated context. For more details about the procedure of recursion, the reader is 

referred to the supplementary material [PS1] for Havgaard et al. [HTG07]. 

 

The construction of Foldalign compares with the Sankoff algorithm, that Sankoff has 

three matrices which distinguish the different states in the structure. In the Foldalign, 

only one matrix uses several states which are distinguished in the structure. Therefore, 

the maximum D-entry from the Foldalign recursion should give a best state which is 

stored in a separate matrix.  

 

Due to the general case of structure which is represented by matrix F in Sankoff 

algorithm which is not carried in Foldalign as obvious state, therefore, this state is 

corrected by the D'-entry, where ܦᇱሺ௜,௝,௞,௟ሻ ൌ ሺ௜,௝,௞,௟ሻܦ  ൅  ܵᇱሺ ߪሺ௜,௝,௞,௟ሻሻ. 

 

We applied some examples on this recursion where, without recalculation in the stem 

state, the recursion does not work or may not get the optimal solutions according to the 

observed states in this recursion. However, Foldalign 2.1 has been able practically (i.e. 

when it was run) to solve these examples which would not work in an optimal way 

without recalculation. This demonstrates the effect of the “potential basepair” state that 

was added in the implementation for realizing the recalculation. Although these special 

states are handled in this method still the method dose not guarantees an optimal 

solution. 
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The following two examples were run in Foldalign 2.1 and we got their solutions. 

 

 

Example 1: 

>Seq_1 
CCAAAAAUGG 
>Seq_2 
CCAAAAAUGG 
 
; ALIGN               Seq_1         CCAAAAAUGG 
; ALIGN               Structure     ( ( (  .  .  .   .   ) ) ) 
; ALIGN               Seq_2         CCAAAAAUGG 
 
; ALIGNING            Seq_1 against Seq_2 
; STEM END 1 10 1 10 ; START 0 0 0 0 SCORE -20000 
; BACKTRACK           115 115 (1 10, 1 10) 21 0 0 0 0 Basepair ik jl 
; BACKTRACK           23 23 (2 9, 2 9) 21 0 0 0 0 Basepair ik jl 
; BACKTRACK           -45 -45 (3 8, 3 8) 20 0 0 0 0 Hairpin -> stem ik jl 
; BACKTRACK           32 -72 (4 7, 4 7) 2 4 0 4 0 Hairpin ik 
; BACKTRACK           24 -84 (5 7, 5 7) 2 3 0 3 0 Hairpin ik 
; BACKTRACK           16 -94 (6 7, 6 7) 2 2 0 2 0 Hairpin ik 
; BACKTRACK           8 -104 (7 7, 7 7) 1 1 0 1 0 Initial Hairpin ik 
; BACKTRACK           Branch end 
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Example 2: 

>Seq_1 
GCGAAAAUGC 
>Seq_2 
GCGAAAAUGC 
 
; ALIGN               Seq_1         GCGAAAAUGC 
; ALIGN               Structure     ( (  .  .  .  .  .  .  ) ) 
; ALIGN               Seq_2         GCGAAAAUGC 
 
; STEM END 1 10 1 10 ; START 0 0 0 0 SCORE -20000 
; BACKTRACK           87 87 (1 10, 1 10) 21 0 0 0 0 Basepair ik jl 
; BACKTRACK           -9 -9 (2 9, 2 9) 20 0 0 0 0 Hairpin -> stem ik jl 
; BACKTRACK           39 -57 (3 8, 3 8) 2 6 0 6 0 Hairpin ik 
; BACKTRACK           36 -66 (4 8, 4 8) 2 5 0 5 0 Hairpin ik 
; BACKTRACK           28 -76 (5 8, 5 8) 2 4 0 4 0 Hairpin ik 
; BACKTRACK           20 -88 (6 8, 6 8) 2 3 0 3 0 Hairpin ik 
; BACKTRACK           12 -98 (7 8, 7 8) 2 2 0 2 0 Hairpin ik 
; BACKTRACK           4 -108 (8 8, 8 8) 1 1 0 1 0 Initial Hairpin ik 
; BACKTRACK           Branch end 

 

As mentioned above, the dynamical pruning works to eliminate all subalignments that 

are at the poorly levels, and that occurs by comparing the score Dij,kl of a subalignment 

with a threshold of local alignment described as follows: 

 

Dij,kl is pruned if  Dij,kl < Θlocal (lA) or Dij,kl < Θlocal (lB) 

 

which is equivalent to Dij,kl < min Θlocal ((lA), (lB)) 

 

where Θlocal is based on the length of the subsequences lA = (j – i +1) and lB = (l – k + 

1), therefore, a linear form that is found for the proper length dependency is, Θlocal = a * 

min {lA, lB} + b, where a and b are constants.  

 

This speeds up the Foldalign 2.1 method, moreover the memory is also improved 

because it does not need to store the discarding subalignments which are also not used 

to calculate the longer alignments. 
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Due to global alignment considering the whole length of sequence, a minimum number 

of gaps must be added equal to the length difference between the two sequences. The 

pruning for local alignment will eliminate all subalignments, when the difference 

lengths are large. Therefore, the special pruning for global alignment is employed as 

follows: 

 

Dij,kl < Θglobal = Θlocal (lA, lB) + GE × min {abs(lA – lB), abs(NA – NB)} 

 

Where Θglobal threshold for global alignment, GE is the cost of gap-elongation, Θlocal is 

the threshold of local alignment and NA and NB are the sequence lengths of A and B 

respectively. Here, other values for parameters a and b are used. 

 

The dynamical Pruning represents as a general heuristic and it should be possible to be 

employed with the other methods that implement the fold and alignment of RNA 

sequences; it is considered a property in dynamic programming method that is applied 

with algorithms exploiting dynamic programming. However, it does not ensure that it 

provides an optimal solution, or in some cases no solution is found, therefore the 

Foldalign in this case will realign without pruning.   

 

This implementation still applies the old constraints λ and δ, which decrease the 

complexity to ࣩ (NA NB λ2 δ2) for time and ࣩ (λ3 δ) for memory, where NA and NB are 

the sequence lengths A and B respectively. Furthermore, the bifurcation constraint is 

also employed in this implementation, which restricts the substructure types that are 

combined in case (j), such that the first nucleotides (i and k) in the substructure Din,km 

are base paired, and in substructure Dn+1j,m+1l, the pairs of bases (n + 1, j) and (m+1, l) 

must be basepairs (i.e. they should form a stem context). Hence, this constraint restricts 

all alignments that must be kept for positions (i + 2, …, i + λ) to those which have stem 

context. This represents an optimization during the local alignment for saving memory. 

 

When using the global alignment in this implementation, the complexity of time and 

memory are reduced compared with the previous implementation. The global alignment 

is aligning over the entire length of two sequences, such that the δ is becoming exactly 

as the parameter M in Dynalign method by restricting the starting of a sub-alignment in 

the second sequence (i.e. |i - k| ൑ ߜ). The idea is that since the δ-heuristic limits the 
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length difference of sub-alignments, then the position k in the second sequence is 

limited in relation to the position i in the first sequence. The complexity becomes ࣩ 

(N௠௜௡ଷ δ3) for time and ࣩ (N௠௜௡ଶ  δ2) for memory, where N௠௜௡ = min {NA, NB}. This 

compared with the complexity of the previous implementation that applies the local 

alignment, where λ refers to the length of the sequence. 

 

The energy model in this Foldalign implementation changes as compared with the 

previous implementation (2.0) in three points according to Havgaard et al. [HTG07]: 

 

• The single-stranded nucleotides in external-loops are scored like the single-

stranded nucleotides in the multibranch-loops. 

• Allowing insert the basepairs at all positions of a stem excepting the first 

basepair. 

• The single-stranded nucleotides in the multibranch-loops that are next to base-

paired nucleotides are no longer stacked, i.e. the dangling ends are no longer 

used. 
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3.4 PMcomp / LocARNA 

This part will present another family of variants of the Sankoff algorithm for 

simultaneous folding and aligning of two RNA sequences, which exploit the 

probabilities of basepairs for RNA sequences as structural input. Therefore, they take 

into account the information about both sequence and structure, where the secondary 

structures are non-pseudoknoted. These methods are PMcomp [HBS04] and LocARNA 

[WRH+SB07]. 

Before we start to show each of these methods separately, some principles are 

introduced that are related to these methods. 

McCaskill algorithm calculates the base pairing probabilities from the partition 

functions of RNA sequences. It uses a statistical mechanics model to predict the 

probabilities of individual basepairs in the secondary structure. [M90] 

 

Definition 3.4: (Boltzmann weight, Partition function, Base pairing probability) Given 

an RNA sequence S, the Boltzmann weight of a structure P of S is defined as: 

஻ݓ
ሺௌሻሺܲሻ ൌ   ݁ି ாೄሺ௉ሻ ௞ಳ ்⁄ , where ES(P) is the energy of a structure P, kB is Boltzmann 

constant and T is the temperature. The partition function of S is defined as:               

ܼ௉,ௌ = ∑ ஻ݓ 
ሺௌሻሺܲሻ௉ ௢௙ ௌ . The probability of a structure P of S is defined as: 

ሿܵ ݂݋ ሾܲ ݎܲ ൌ ஻ݓ 
ሺௌሻ ሺܲሻ ܼ௉,ௌൗ . 

This kind of probability can be computed efficiently by using McCaskill algorithm. 

Each of these methods utilizes the basepair weights which are derived from the 

matrices of basepair probability for each individual sequences, such as the weight ߰௜௝ 

for the basepair (i, j) of sequence S is described as: 

߰௜௝ ൌ log
௜௝ݎܲ
଴݌

    log
1
଴݌

൘  

Where ܲݎ௜௝ is the probability of a basepair (i, j) as calculated by McCaskill algorithm, 

 .଴ is the expected probability for base pairing that is randomly occurring݌

Both of these methods calculate the pairwise alignment from the base pairing 

probability matrices of the RNA sequences, where the McCaskill algorithm computes 
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these matrices. Therefore, these matrices include the energy information for each 

sequence (as shown above).  

When these methods are compared with the Sankoff algorithm, they are based on the 

input of base pairing probability matrices which contain the energy information about 

RNA sequences and can be calculated independently.  

These methods do not start directly from only the sequences but they require their base 

pairing probability matrices which are important for the folding part in these methods. 

Furthermore, these methods do not distinguish among all structure elements. Since, the 

implementation of these methods depends on the simple scoring system, such that they 

avoid implementing and computing the complete energy model of RNA folding during 

alignment. 

 

3.4.1 PMcomp 

As we mentioned above, this method calculates the pairwise alignment from the 

matrices of base pairing probability of the RNA sequences. These matrices are 

computed by using the McCaskill’s algorithm. Thus, they include the energy 

information about each sequence. Then PMcomp finds the “maximal weight” common 

secondary structure together with the alignment between the sequences. This method 

was proposed by Hofacker et al. [HBS04]. 

Before defining this method formally, one must show how to find the “maximum 

weight” secondary structure that is common to two base pairing probability matrices: 

Definition 3.4.1.a: (Consensus secondary structure “C. S. S.”, Maximum weight C. S. 

S.) Let two sequences ଵܵ and ܵଶ be given as input with their base pairing probability 

matrices P1 and P2 respectively. The consensus secondary structure ࣭is a set of pairs of 

basepairs (i, j) and (k, l) of sequences ଵܵ and ܵଶ respectively. The maximum weight C. 

S. S. is the consensus secondary structure ࣭ that maximizes: 

                                        ∑  ൫߰௜௝ଵ ൅ ߰௞௟ଶ ൯൫ሺ௜,௝ሻ,ሺ௞,௟ሻ൯࣭א  

where ߰௜௝1 and ߰௞௟2 are the weights of the basepairs (i, j) and (k, l) of sequences ଵܵ and 

ܵଶ respectively, as described above in the weight’s equation. This definition does not 
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consider solving the problem of simultaneous folding and aligning. Moreover, it 

produced structures that are different from the structures that are formed in the 

PMcomp method. 

The PMcomp problem is defined with respect to its score according to Hofacker et al. 

[HBS04]: 

Definition 3.4.1.b: (PMcomp-score) Let two sequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ = ݏଶೖ, 

ଶ ೗ݏ ,…  be given as input with their base pairing probability matrices ܲݎଵ and ܲݎଶ 

respectively. Let ࣛ be an alignment of sequences ଵܵ and ܵଶ, and let the consensus 

secondary structure ࣭ of sequences ଵܵ and ܵଶ. The PMcomp-score of ࣛ and ࣭ is given 

as: 

PMcomp-score  ሺࣛ, ࣭ ሻ ൌ ∑ ቂ߰௜௝ଵ ൅ ߰௞௟ଶ ൅ ߬ ቀݏଵ೔, ,ଶೖݏ ;ଵೕݏ ࣭אଶ೗ቁቃሺ௜௝,௞௟ሻݏ ൅ ߛ ௚ܰ௔௣ ൅

∑ ,ଵ೔ݏ൫ߪ ௌమאௌభ,௞אଶೖ൯௜ݏ
௔௡ௗ ௜,௞ ௔௟௜௚௡௘ௗ ௕௬ ࣛ 

  

where ߬ and ߪ are scores of alignment contributions for substituting the basepairs and 

unpaired bases respectively, ߛ is the gap penalty and Ngap is the number of gaps during 

insertion and deletion of the alignment. 

Definition 3.4.1.c: (PMcomp problem) Let two sequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ = ݏଶೖ, 

 ଶݎܲ ଵ andݎܲ ଶ ೗be given as input with their base pairing probability matricesݏ ,…

respectively. The PMcomp problem finds the consensus secondary structure ࣭ of ଵܵ 

and ܵଶ, and an alignment ࣛ of ଵܵ and ܵଶ with the number of gaps during insertion and 

deletion of the alignment, such that PMcomp-score (ࣛ, ࣭) is maximized. 

Now this method defines the best subsequence matching alignments by using dynamic 

programming algorithm according to Hofacker et al. [HBS04]: 

Definition 3.4.1.d: (PMcomp recursion) let two subsequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ = 

 ଶݎܲ ଵ andݎܲ ଶ ೗ be given as input with their base pairing probability matricesݏ ,… ,ଶೖݏ

respectively, in addition to the ߬ and ߪ scores and the gap penalty ߛ. Then the output is 

the maximum scoring subsequence matching of matrix S i, j; k, l that is obtained by the 

following recursions: 

 



Chapter 3: Methods 
 

 
54 

 

௜ܵ,௝,௞,௟ ൌ  ݔܽ݉

௜ܵାଵ,௝;௞,௟ ൅ ߛ , 
௜ܵ,௝;௞ାଵ,௟ ൅ ߛ , 
௜ܵାଵ,௝,௞ାଵ,௟ ൅ ,ଵ೔ݏ൫ߪ  ,ଶೖ൯ݏ
ݔܽ݉
௛ஸ௝,௤ஸ௟

൫ ௜ܵ,௛;௞,௤
ெ ൅ ܵ௛ାଵ,௝;௤ାଵ,௟൯ 

 ௜ܵ,௝;௞,௟
ெ ൌ ௜ܵାଵ,௝ିଵ,௞ାଵ,௟ିଵ ൅ ߰௜௝ଵ ൅ ߰௞௟ଶ ൅ ߬  ቀݏଵ೔, ;ଵೕݏ ,ଶೖݏ   , ଶ೗ቁݏ

 

Initialization S i, j; k, l = |(j - i) - (l - k)| ߛ   for  j – i ൑ M + 1 or  l – k ൑ M + 1, where M is 

the minimum size of hairpin loop (usually M = 3).  

As presented at the initialization case in the original presentation according to Hofacker 

et al. [HBS04] is wrong, because S i, j; k, l must be the best score for ݏଵ೔, …, ݏଵೕand ݏଶೖ, 

 ଶ ೗ . In the alignment one can match bases, insert, or delete, but cannot matchݏ ,…

basepairs due to short one of the two sequence lengths. 

A maximal value of S i, j; k, l gives the most matching for the subsequences ݏଵ೔, …, 

ଶ ೗. In addition, the score SMݏ ,… ,ଶೖݏ ଵೕandݏ
i, j; k, l be the best match subject with a 

constraint that the basepairs (i, j) and (k, l) are matched.  

The first two cases in the recursion account for gaps in one of the subsequences, the 

third case refers to match the unpaired bases in both subsequences and the fourth case 

(max-case) refers to the basepairs (i, h) and (k, q) in the subsequences ଵܵ and ܵଶ 

respectively, which are matched. In addition, the restricted term of SM
i, j; k, l is 

straightforward.  

This recursion needs ࣩ(N4) for memory and ࣩ(N6) for time, where N is the sequence 

length. PMcomp is equivalent to a special version of the Sankoff algorithm (Nussinov-

style), where: 

௜௝ଵݎܲ ൌ 
ଵೕݏ ଵ೔ andݏ  ݂݅ 1 ܿܽ݊ ݉ݎ݋݂   ݏݎ݅ܽ݌݁ݏܾܽ
  

0 otherwise 
 

Analogously for  ܲݎ௞௟ଶ . 
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There are two restrictions that reduce the complexity: the first restriction is that 

matching of the basepairs (i, j) א ଵܵ and (k, l) א ܵଶ  must be within the difference ∆ = |(j 

- i) - (l - k)|, hence, the time complexity will decrease to ࣩ(N5). The second restriction 

is that all partial alignments are limited within this difference, the complexity will 

decrease to ࣩ(N4) for time and ࣩ(N3) for memory. If ∆ is high, there is no big decrease 

of the computation effort. Whereas a lower value of ∆, many significant alignment 

structures will be missing. 

After filling the matrix S i, j; k, l, backtracking is used to compute the matched positions 

of the sequences. 

When ‘average’ basepair probability matrix that is described below according to 

Hofacker et al. [HBS04] is found, the PMcomp method will extend to construct the 

progressive multiple alignments by using the comparison of the base pairing probability 

matrices, this is called PMmulti method. The average basepair probability matrix is 

defined by: 

   

 

 

Where ݅௣ and  ݆௤ are the positions in sequence  ଵܵ corresponding to the positions ݌ and 

 .in the alignment. Analogously, ݇௣, ݈௤ are defined for  ܵଶ ݍ

PMmulti method is represented by repeatedly calling for the PMcomp for calculating 

all pairwise alignments, and then generates a guide tree from assembling the similarity 

scores by applying the weighted pair group clustering method. Finally, it aligns all 

alignments along guide tree. 

 

3.4.2 LocARNA 

This method is PMcomp-based that calculates the pairwise alignment of RNAs 

(optionally local), but is more efficient for the time and memory complexities, such that 

it reduces to ࣩ(N2) for memory and ࣩ(N4) for time. This is due to introducing the idea 

ଶל௣,௤ଵݎܲ ൌ ൝ටܲݎ௜೛,௝೜
ଵ ௞೛,௟೜ݎܲ

ଶ

0
 for matches 

otherwise
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of significant basepairs which are defined by using cutoff-probability, compared to 

PMcomp method.  

Formally, this method can be defined with respect to its score according to Will et al. 

[WRH+SB07]: 

Definition 3.4.2.a: (LocARNA-score) Let ࣛ be an alignment of sequences  ଵܵ = ݏଵ೔, 

 ,ଶ ೗, and let the consensus secondary structure ࣭ on ࣛ. Thenݏ ,… ,ଶೖݏ = ଵೕand ܵଶݏ ,…

the LocARNA score of ࣛ and ࣭ is given as: 

LocARNA-score ሺࣛ, ࣭ሻ ൌ ∑ ൫߰௜௝ଵ ൅ ߰௞௟ଶ ൯ ൅ ∑ ,ଵ೔ݏ൫ߪ ࣭א஺ೞሺ௜௝;௞௟ሻאଶೖ൯ሺ௜,௞ሻݏ െ ߛ ௚ܰ௔௣  

where ܣ௦ represents the single-stranded part of the alignment (i.e. the unpaired bases) 

and the parameters (ߛ, Ngap, ߪ) are defined as in the PMcomp method. Note that the 

LocARNA-score is essentially the same as the PMcomp-score. ߬ is omitted only for 

presentation. 

In this method, the weights ߰௜௝1, ߰௞௟2 are modified by introducing cutoff-probability. 

This represents the first modification in LocARNA as compared with PMcomp, such 

that: 

 

 

 

where כ݌ is the cutoff probability, such that the weight be (െ∞) for the probability 

lower than כ݌. This modification reduces the time complexity to ࣩ(N4), by making כ݌ 

constant for different lengths N. Then each base can take part in at most  1 ⁄כ݌ , so only 

ࣩሺ1ሻ basepairs. 

Definition 3.4.2.b: (LocARNA problem) Let two sequences ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ = 

 ଶݎܲ ଵ andݎܲ ଶ ೗, be given as input with their base pairing probability matricesݏ ,… ,ଶೖݏ

respectively. The LocARNA problem calculates an alignment ࣛ of ଵܵand ܵଶ with the 

number of gaps during insertion and deletion of the alignment and the consensus 

secondary structure ࣭ on ࣛ, such that, ࣛ contains a set of match/mismatch pairs, 

߰௜௝ ൌ ቐ
݃݋݈

௜௝ݎܲ
଴݌

/ ݃݋݈
1
଴݌

െ∞
 if ௜௝ݎܲ ൒ כ݌  

otherwise
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࣭contains a set of the conserved basepairs and the LocARNA score (ࣛ, ࣭) is 

maximized. 

The second modification in the LocARNA, which improves the PMcomp method, is 

modified the dynamic programming algorithm being used, in such a way that allows 

considering only significant basepairs which are produced by applying cut-off 

probability. Thus, the space complexity reduces to ࣩ(N2). 

Now, the dynamic programming recursion is defined according to Will et al. 

[WRH+SB07], as follows: 

Definition 3.4.2.c: (LocARNA recursion) Let two sequences  ଵܵ = ݏଵ೔, …, ݏଵೕand ܵଶ = 

 ଶ respectively, beݎܲ ଵ andݎܲ ଶ ೗,with their base pairing probability matricesݏ ,… ,ଶೖݏ

given with ߪ and ߛ. Then output is the maximum scoring subsequences similarity of 

matrix D, that obtained by the following recursions for M and D: 

 

௜௝;௞௟ܯ ൌ  ݔܽ݉

௜௝ିଵ;௞௟ିଵܯ ൅ ,ଵ೔ݏሺߪ  ଶೖሻݏ
௜௝ିଵ;௞௟ܯ ൅  ߛ
௜௝;௞௟ିଵܯ ൅  ߛ
௝ݔܽ݉ ′௟′ܯ௜௝ ′ିଵ;௞௟′ିଵ ൅ ௝ܦ ′௝;௟′௟ 

 

௜௝;௞௟ܦ ൌ ௜௝ିଵ;௞௟ିଵܯ ൅ ߰௜௝ଵ ൅ ߰௞௟ଶ  

where maximal ܦ௜௝;௞௟ provides most similarity between the subsequences [ݏଵ೔, …, ݏଵೕ] 

and [ݏଶೖ, …, ݏଶ ೗], with condition that the basepairs (i, j) and (k, l) are parts to form the 

consensus secondary structure. ܦ௜௝;௞௟ are calculated and stored only for the considered 

significant basepairs. Hence, the ܦ௜௝;௞௟ entries are computed with fix left ends i and k 

and varying j and l. For computing all entries ܦ௜●;௞●, one needs only entries of  ܯ௜௝;௞௟ 

for alignments that have left ends (i+1, k+1).  

These matrices can be used for both of global and local alignments by calculating the 

recursion of  ܯ଴௝;଴௟ for the global alignment, where the optimal score of the global 

alignment is over the entire sequence length (i.e.  ܯ଴|ௌభ|; ଴|ௌమ|). This is the same as in 

the PMcomp method. In the following, local alignment will be considered.  
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The best local alignment score is obtained by finding the maximal value of 

subsequence alignments. Therefore,  ܯ଴௝;଴௟ recursion is extended to include the zero 

entry that cutting off the prefix alignments that are not related to the local alignment, 

i.e. the negative values which are dissimilar prefix alignments.  

 

௜௝;௞௟ܯ ൌ  ݔܽ݉

௜௝ିଵ;௞௟ିଵܯ ൅ ,ଵ೔ݏሺߪ  ଶೖሻݏ

for i > 0 or j > 0 
௜௝ିଵ;௞௟ܯ ൅  ߛ
௜௝;௞௟ିଵܯ ൅  ߛ
௝ݔܽ݉ ′௟′ܯ௜௝ ′ିଵ;௞௟′ିଵ ൅ ௝ܦ ′௝;௟′௟ 

  

଴௝;଴௟ܯ ൌ  ݔܽ݉

0 
଴௝ିଵ;଴௟ିଵܯ ൅ ,ଵ೔ݏሺߪ  ଶೖሻݏ
଴௝ିଵ;଴௟ܯ ൅  ߛ
଴௝;଴௟ିଵܯ ൅  ߛ
଴௝ᇲିଵ;଴௟ᇲିଵܯ௝ᇲ௟ᇲݔܽ݉ ൅  ௝ᇲ௝;௟ᇲ௟ܦ

௜௝;௞௟ܦ ൌ ௜௝ିଵ;௞௟ିଵܯ ൅ ߰௜௝ଵ ൅ ߰௞௟ଶ . 

 

LocARNA method is also like the PMcomp method in extending to construct the 

progressive multiple alignments from the pairwise alignments, and this is called 

mLocARNA method. This method has a different algorithm for calculating the 

“average” basepair probability matrix  ܲݎଵלଶ as found in the PMmulti for the alignment 

of ଵܵ and ܵଶ. As a result of PMmulti, most basepairs are eliminated during the 

alignment for many sequences due to the second case in its definition that is related to 

the gaps. Therefore, mLocARNA introduces the new definition that prevents 

undesirable effect for PMmulti 

: 

௣௤ଵݎܲ
೚ଶ ൌ ටܲݎതതത௣௤ଵ ൈ തതത௣௤ଶݎܲ  , 

 

where 
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തതത௣௤ଵݎܲ ൌ 
ݔܽ݉ ቀ݌଴, ௜೛௜೜ݎܲ

ଵ ቁ for a match p, q 
 ଴ otherwise݌

 

Analogously, for the definition   ܲݎതതത௣௤ଶ . 
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Chapter Four 

Results 

4.1 Results 

The previous chapter demonstrates the theoretical model of the methods that were 

implemented with different restrictions or heuristics to make the original algorithm 

“Sankoff Algorithm” more practical. In this chapter, examples will be given of testing 

the programs of these methods on a collection of RNA families and the computational 

results that have been obtained will be displayed. 

The following table gives some examples of different length datasets of RNA families 

that were used in our tests, such as tRNA which represents a small RNA sequence and 

therefore should be an easy example of all programs, 5S_rRNA is slightly harder and 

Cobalamin is quite challenging, because it’s much longer. 

All calculations performed on the programs, were performed in the same environment 

(with memory 3.7 GB, CPU 2.33 GHz and under Linux operating system).   

We tested the programs on their some special parameters by setting them to some 

interested values. These interested values were compared with the user time. In this 

thesis, the focus is on the time behavior against some different parameters of the 

programs because we are interested in comparing the speed of these programs 

corresponding to the different values of their parameters. All programs were applied to 

three examples of different length datasets of RNA families which are shown in the 

following table.  
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Table 4.1: This table shows three examples of different length datasets of RNA 
families with their sequence similarity 

RFAM  Sequences 
Number of 
nucleotides 

APSI 
(Average 
Pairwise 
Sequence 
Identity) 

tRNA 

>Z28209.1_4569‐4498    

56 

GCCCUUUUGGCCAAGUGGUAAGGCAUCG
CACUCGUAAUGCGGGGAUCGUGGGUUCA
AUUCCCACAGAGGGCA 

72  

>M68929.1_166929‐166856    
GGGCUUAUAGUUUAAUUGGUUCAAACGC
ACCGCUCAUAACGGUGAUAUUGUAGGUU
CGAGUCCUACUAAGCCUA 

 74 

5S_rRNA  

>X52300.1_5‐122    

37 

CCCCGUGCCUUUAGCGCCUCGGAACCACC
CCACUCCAUGCCGAACUGGGUCGUGAAAC
GUGGCAGCGCCUAUGAUACUUGGACCGC
AGGGUCCUGGAAAAGUCGGUGCAGUGCG
GGGG 

118  

>M19950.1_1‐120    
GGUUGCGGCCAUAUCUAGCAGAAAGCAC
CGUUUCCCGUCCGAUCAACUGUAGUUAA
GCUGCUAAGAGCCUGACCGAGUAGUGUA
GAGGGCGACCAUACGCGAAACUCAGGUG
CUGCAAUC 

120  

Cobalamin 

>AP001508.1_5769‐5939    

56 

ACUUUAAUAGGCUUCUUAGGUGCCUCAU
UUGUAGGAGAAUAGGGAAGUUCUGAAAC
GACGCGGAGCCCGCCACUGUAGUCGAGG
AGCUGCUACAAUACCACUGGGAAACUGG
GAAGGUGUAGCAUGCGAUGAAUCGGAGC
CAGGAGACCUGCCUAAGAAGAUGCGCUG
UCA 

171  

>AE017037.1_59439‐59627    
CCUUUCAAAAGGAAAAUAGGUACACGAA
CAUUUCGUUUCGUGUUUAAAAGGGAAGC
UUGGUGAAACUCCAACACGGUCCCGCCAC
UGUAAAUGCUGAGAUUUCUUUUUGAUA
CCACUGUGAAAACGGGAAGGUAAAAGAA
AUUAUAUGAAGCAUAAGUCAGGAGACCU
GCCUGUUUUAACAACACUGAU 

189  
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4.1.1 The results of Foldalign version 2.0.3 

Since the first version of the Foldalign method (i.e. Foldalign version 1.0) is really 

outdated now, we start with the second version of the Foldalign method (i.e. Foldalign 

version 2.0.3). The program of Foldalign version 2.0.3 is available online at 

[http://foldalign.kvl.dk]. The selected parameters from this version to our test are 

defined according to the manual of this program as follows:   

-max_diff  <number>    this parameter sets the maximum length difference (i.e. delta-

heuristic) to <number>. It is essential for memory and time consumption. In this thesis, 

the focus is on the time behavior against different delta values in testing the speed of 

the program. A default value of this parameter is infinity. 

 

- global    this parameter turns on the global alignments. 

- nobranch    this parameter turns off the branching-structure. 

For this program, these parameters were tested and are displayed in two tables 

according to the parameter (-nobranch), in addition to the global parameter and 

different values of delta (i.e. parameter -max_diff) in both tables. Therefore, the 

observation on the time behavior against these parameters differs. In general, the user 

time in the table of branch case (table 4.1.1.b) is much higher than non-branch case 

(table 4.1.1.a) over all datasets of RNA families but in different ratios depending on the 

sequence lengths. For example, the tRNA dataset is much faster than the other datasets 

in both tables (i.e. in branch case and non-branch case), where the speed differs by a 

factor about 2 between -max_diff 15 and 45 for Table/Figure 4.1.1.a, and this is nearly 

the same factor for Table/Figure 4.1.1.b but only at slower speed. For 5S-rRNA, a 

factor is different between these two tables, where this factor is about 2.5 between -

max_diff 15 and 45 for Table/Figure 4.1.1.a, and this factor is less than 4 for 

Table/Figure 4.1.1.b. This means the effect is stronger for longer sequences in 

branching structure. In other cases, Cobalamin has no possibility to aligning at smaller 

delta values (i.e. parameter -max_diff), such as -max_diff = 15 which was run in our 

test. Since the global alignment must work on the entire length of sequences, the length 

difference between two sequences must be less than or equal to delta value. Whereas 

the length difference between the Cobalamin sequences is 18 nucleotides which is more 

than the maximum length difference (-max_diff 15), then it was not worked at this delta 
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value. In contrast with tRNA and 5S_rRNA datasets that have length differences less 

than or equal to delta value (i.e. -max_diff = 15). Now in the following tables and 

figures (Tables/Figures 4.1.1.a and b), the user time is increased by increasing the delta 

values over all datasets of RNA families. 

 

 

 

 

Tables 4.1.1.a: This table shows the time behavior (in second) of the global alignments 
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) without branching structures (i.e. turns on the parameter -nobranch). 

RNA Families  Options  Run Time 

tRNA 

‐max_diff  ‐global  ‐nobranch  User Time (sec.) 
15  TRUE  TRUE  5.60 
25  TRUE  TRUE  8.27 
35  TRUE  TRUE  10.77 
45  TRUE  TRUE  11.28 

5S_rRNA 

‐max_diff  ‐global  ‐nobranch  User Time (sec.) 
15  TRUE  TRUE  29.71 
25  TRUE  TRUE  47.75 
35  TRUE  TRUE  62.70 
45  TRUE  TRUE  75.67 

Cobalamin 

‐max_diff  ‐global  ‐nobranch  User Time (sec.) 
15  TRUE  TRUE  not possible 
25  TRUE  TRUE  203.74 
35  TRUE  TRUE  279.44 
45  TRUE  TRUE  349.29 
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-global    this parameter turns on the global alignments.    

-no_pruning    this parameter turns off the pruning. 

In general, this version is more efficient as compared with the previous version of 

Foldalign. The observed time behavior was much faster in the pruning case against the 

different delta values (i.e. parameter -max_diff).  In this program, these parameters are 

displayed into two tables according to the parameter (-no_pruning), in addition to the 

global parameter and the different delta values (i.e. parameter -max_diff) in both tables. 

For the pruning case in table 4.1.2.b, the user time was much lower than no-pruning 

case in table 4.1.2.a over all datasets of RNA families with different ratios. For 

example, in the Table/Figure 4.1.2.a the parameter -max_diff seems to have no effect 

on tRNA in absolute time, however the speed differs by a factor of about 2.5 between -

max_diff 15 and 45. For Cobalamin this factor is about 4. This means the effect is 

definitely there already for tRNA, however is stronger for longer sequences. However, 

in the Table/Figure 4.1.2.b, pruning makes the parameter -max_diff less important, 

where the speed of tRNA has a very slight difference nearly by a factor about 1.4 

between -max_diff 15 and 45. For Cobalamin this factor is more than 2, again the effect 

is stronger for longer sequences. In this program, Cobalamin dataset has possibility to 

align over all different delta values which were selected in our test as compared with 

the previous version. As mentioned above, the delta value (i.e. parameter -max_diff) is 

set to 1.1 times the length difference during the global alignments where the length 

difference between the input sequences is more than delta value. (This is due to the 

improvement performed on the delta-parameter, mentioned before in the theoretical 

part of this version about the delta heuristic during the global alignment the delta-

parameter can be utilized also for restricting the start coordinates of a sub-alignment in 

the second sequence [HTG07]). 

Therefore, this helps to speed up the implementation of this version comparing with the 

implementation of the previous version. 
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Tables 4.1.2.a: This table shows the time behavior (in second) at the global alignments 
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) without pruning (i.e. turns on the parameter -no_pruning). 

RNA Families  Options  Run Time 

tRNA 

‐max_diff  ‐global  ‐no_pruning  User Time (sec.) 
15  TRUE  TRUE  2.14 
25  TRUE  TRUE  3.81 
35  TRUE  TRUE  4.81 
45  TRUE  TRUE  5.39 

5S_rRNA 

‐max_diff  ‐global  ‐no_pruning  User Time (sec.) 
15  TRUE  TRUE  10.09 
25  TRUE  TRUE  22.14 
35  TRUE  TRUE  32.92 
45  TRUE  TRUE  41.41 

Cobalamin 

‐max_diff  ‐global  ‐no_pruning  User Time (sec.) 
15  TRUE  TRUE  50.57 
25  TRUE  TRUE  84.55 
35  TRUE  TRUE  148.26 
45  TRUE  TRUE  209.96 

 

 

Tables 4.1.2.b: This table shows the time behavior (in second) at the global alignments 
(i.e. turns on the parameter -global) against the different delta values (i.e. parameter -
max_diff) with pruning (i.e. turns off the parameter -no_pruning). 

RNA Families  Options  Run Time 

tRNA 

‐max_diff  ‐global  ‐no_pruning  User Time (sec.) 
15  TRUE  FALSE  0.56 
25  TRUE  FALSE  0.71 
35  TRUE  FALSE  0.77 
45  TRUE  FALSE  0.79 

5S_rRNA 

‐max_diff  ‐global  ‐no_pruning  User Time (sec.) 
15  TRUE  FALSE  1.43 
25  TRUE  FALSE  2.01 
35  TRUE  FALSE  2.45 
45  TRUE  FALSE  2.70 

Cobalamin 

‐max_diff  ‐global  ‐no_pruning  User Time (sec.) 
15  TRUE  FALSE  27.77 
25  TRUE  FALSE  39.44 
35  TRUE  FALSE  51.75 
45  TRUE  FALSE  59.63 
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4.1.3 The results of Dynalign 

This program includes all restrictions or heuristics which occurred with Dynalign 

method. The program is available online at http://rna.urmc.rochester.edu/dynalign.html. 

The selected parameter of this program to run our test is defined according to the 

manual of this program as follows: 

imaxseparation    this parameter is a user-specified parameter, M, which was defined as 

the measure of maximum permissible insertion parameter in the Dynalign method (i.e. 

correction or recast implementation of parameter M). As mentioned before in the 

theoretical part of Dynalign method, there is no analytic guidance to select the values of 

this parameter. Therefore, the imaxseparation parameter is also used in this program to 

turn on a probabilistic alignment constraint by entering -99 described by Harmanci et 

al. [HSM07]. 

 

Furthermore, there are other parameters which have effect on the speed of the 

implementation that are not of interested to this thesis. One of these parameters is 

“singlefold_subopt_percent” which controls a pre-filter step. Dynalign first calls a 

single sequence secondary structure prediction algorithm.  Base pairs for single 

sequences that result only in relatively high free energy structures are forbidden in the 

subsequent Dynalign calculation. So this saves calculation time. This is described by 

Uzilov et al. [UKM06]. Therefore, singlefold_subopt_percent parameter sets the 

threshold for what constitutes a "high" free energy. By default, it is 30% or greater 

above the lowest folding free energy change. In our test, we fix this parameter to 

default value of 30. 

 

In the following table (table 4.1.3), the program is run at different values of parameter 

M (i.e. parameter imaxseparation) which was used as a maximum insertion parameter 

as well as to turn on a probabilistic alignment constraint by entering -99. The strength 

of the latter depends on the similarity of the sequences. Therefore, in our dataset 

examples of RNA families, we selected sequences which have approximately the same 

similarity and this is shown in the last column in table 4.1.1. The time behavior was 

increased over all datasets of RNA families in different ratios by increasing the values 

of parameter M (i.e. parameter imaxseparation), where M is used as a maximum 

insertion parameter in Dynalign. The effect of increasing time is definitely clear for 
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tRNA dataset, however is stronger for the longer sequences like Cobalamin. For a 

parameter imaxseparation which was used to turn on a probabilistic alignment 

constraint by entering -99, the effect differed according to the different datasets which 

were used. For tRNA, the user time is less than or nearly has no significant effect on 

increasing time. In contrast, 5S-rRNA and Cobalamin which have significant 

increasing in the user time. 

In the following figure (Figure 4.1.3), we can see the time behavior (in second) against 

different values of parameter M (i.e. parameter imaxseparation), where M is used as a 

maximum insertion parameter in Dynalign. The user time is increased by increasing the 

values of parameter imaxseparation over all datasets of RNA families in different 

ratios. 

 

 

Table 4.1.3: This table shows the time behavior (in second) against the different values 
of parameter M (i.e. parameter imaxseparation) which was used as a maximum 
separation parameter for the first heuristic and was also used by entering -99 to turning 
on a probabilistic alignment constraint for last heuristic in Dynalign method. 

RNA Families  Options  Run Time 

tRNA 

imaxseparation  User Time (sec.) 
‐99  1.02 
4  1.23 
6  3.14 
10  10.11 
14  20.18 

5S_rRNA 

imaxseparation  User Time (sec.) 
‐99  88.13 
4  7.76 
6  23.31 
10  85.44 
14  184.43 

Cobalamin 

imaxseparation  User Time (sec.) 
‐99  89.22 
4  26.85 
6  81.43 
10  331.82 
14  779.89 
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 In the following Table 4.1.4.a, shows the time behavior against different cut-off 

probability values (i.e. parameter --min-prob) and turn off of the two parameters (--

max-diff-am, --max-diff-match) by setting them -1, is increased by decreasing the cut-

off probability values which controls the per-filtering the number of base pairs as 

mentioned before in theoretical part of LocARNA. However, this increasing of the user 

time differs depending on the dataset lengths. For example, the parameter --min-prob 

seems to have almost no effect on tRNA in absolute time; however the speed differs by 

a factor of about 2 between --min-prob 0.05 and 0.00005. For Cobalamin this factor is 

more than 9.5, where the parameter --min-prob at smaller values has a significant 

effect, such as at --min-prob 0.0005 and 0.00005. This means the effect is stronger for 

longer sequences, especially for the smaller values of --min-prob. 

Therefore, this can be expected from the time behavior corresponding to the strength of 

the cut-off probability heuristic (i.e. parameter --min-prob) that has a significant 

influence on the longer sequences like Cobalamin or on the infinite sequence lengths. 

Furthermore, this cut-off probability heuristic (i.e. parameter --min-prob) has much 

larger effect than ∆-parameters (i.e. the parameters --max-diff-am and --max-diff-

match) on the time behavior over all our datasets, especially for the longer sequences 

like Cobalamin. 

Figure 4.1.4.a shows the time behavior (in second) against the different values of 

parameter --min-prob and with turn off the other parameters (--max-diff-am, --max-

diff-match), which is increased by decreasing the parameter --min-prob over all 

datasets but in different ratios.  
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In Table 4.1.4.b.1),shows the time behavior against different values of ∆match-parameter 

(i.e. parameter --max-diff-match) and turn off ∆am-parameter (i.e. parameter --max-diff-

am) by setting it to -1 in addition to fixing the cut-off probability value to default value 

(i.e. parameter --min-prob = 0.0005), which is increased by increasing the values of 

parameter --max-diff-match. However, this increasing of the user time differs 

depending on the dataset lengths. For example, the parameter --max-diff-match seems 

to have almost no effect on tRNA in absolute time; however the speed differs by a 

factor of about 1.3 between --max-diff-match 15 and 60. For Cobalamin this factor is 

more than 3.2. This means the effect is also stronger for longer sequences. Figure 

4.1.4.b.1) shows this case. 

Analogously, table 4.1.4.b.2) shows the behavior time against different values of ∆am-

parameter (i.e. parameter --max-diff-am) and with turn off ∆match-parameter (i.e. 

parameter --max-diff-match) by setting it to -1 in addition to fixing the cut-off 

probability value to default value (i.e. parameter --min-prob = 0.0005), which is 

increased by increasing the values of parameter --max-diff-am. However, this 

increasing of the user time also differs depending on the dataset lengths. For example, 

the parameter --max-diff-am seems to have almost no effect on tRNA in absolute time; 

however the speed differs by a factor of less than 1.2 between --max-diff-am 15 and 60. 

For Cobalamin this factor is more than 2. Again, the effect is stronger for longer 

sequences. Figure 4.1.4.b.2) shows this case. 

Table 4.1.4.c, shows the test results of the time behavior against different values of 

parameter --max-diff-am and by varying the values of  parameter --max-diff-match to 

two times the values of parameter --max-diff-am in addition to fixing the cut-off 

probability value to default value (i.e. parameter --min-prob = 0.0005). The time 

behavior is again increased by increasing the values of parameter --max-diff-am but 

such increasing differs on increasing in table 4.1.4.b.2) in different ratios. For example, 

the parameters --max-diff-am and --max-diff-match seem to have almost no effect on 

tRNA in absolute time; however the speed differs by a factor of more than 1.2 between 

--max-diff-am 15 and 60, and --max-diff-match 30 and 120. For Cobalamin this factor 

is about 3, again the effect is stronger for longer sequences. Figure 4.1.4.c shows this 

case. 
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It can be seen that the strength of the ∆am-parameter (i.e. parameter --max-diff-am) has 

larger effect than ∆match-parameter (i.e. parameter --max-diff-match) on the time 

behavior. 

 

 

Table 4.1.4.b.(1):This table shows the time behavior (in second) against the different 
values of ∆match-parameter (i.e. parameter ‐‐max‐diff‐match) and turn off ∆am-parameter 
(i.e. parameter --max-diff-am) by setting it to -1 in addition to fixing the cut-off 
probability value to default value (i.e. parameter --min-prob = 0.0005). 

RNA Families  Options  Run Time 

tRNA 

‐‐min‐prob  ‐‐max‐diff‐am  ‐‐max‐diff‐match  User Time (sec.) 

0.0005  ‐1  15  0.19 

0.0005  ‐1  30  0.22 

0.0005  ‐1  60  0.25 

5S_rRNA 

‐‐min‐prob  ‐‐max‐diff‐am  ‐‐max‐diff‐match  User Time (sec.) 

0.0005  ‐1  15  0.33 

0.0005  ‐1  30  0.38 

0.0005  ‐1  60  0.48 

Cobalamin 

‐‐min‐prob  ‐‐max‐diff‐am  ‐‐max‐diff‐match  User Time (sec.) 

0.0005  ‐1  15  1.17 

0.0005  ‐1  30  2.03 

0.0005  ‐1  60  3.77 
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Table 4.1.4.b.(2): This table shows the time behavior (in second) against the different 
values of ∆am-parameter (i.e. parameter ‐‐max‐diff‐am) and turn off ∆match-parameter 
(i.e. parameter --max-diff-match) by setting it to -1 in addition to fixing the cut-off 
probability value to default value (i.e. parameter --min-prob = 0.0005). 

RNA 
Families 

Options  Run Time 

tRNA 

‐‐min‐
prob 

‐‐max‐diff‐
am 

‐‐max‐diff‐
match 

User Time 
(sec.) 

0.0005  15  ‐1  0.21 
0.0005  30  ‐1  0.22 
0.0005  60  ‐1  0.24 

5S_rRNA 

‐‐min‐
prob 

‐‐max‐diff‐
am 

‐‐max‐diff‐
match 

User Time 
(sec.) 

0.0005  15  ‐1  0.36 
0.0005  30  ‐1  0.40 
0.0005  60  ‐1  0.46 

Cobalamin 

‐‐min‐
prob 

‐‐max‐diff‐
am 

‐‐max‐diff‐
match 

User Time 
(sec.) 

0.0005  15  ‐1  2.17 
0.0005  30  ‐1  3.14 
0.0005  60  ‐1  4.45 
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4.2 Discussion of Results 

The dataset examples that were tested by all programs, they are three different dataset 

types of RNA families which have different lengths and approximately the same 

similarity. The different sequence lengths of these examples give an intuition about the 

speed influences which interested us for comparing between the programs. Different 

time behaviors are observed in each example of dataset against the options of each 

program. In addition to set the alignment type to global alignment which is used in all 

programs, alignment type corresponds in the Sankoff algorithm. Some methods like 

Foldalign 2.0, 2.1 versions and LocARNA implement local alignment but can also be 

applied for global alignment.  

In general, each parameter has a significant influence on the time depending on 

program type and sequence lengths.  

Since the global alignment is studied here, the ߣ-heuristic in the Foldalign 2.0, 2.1 

programs is not used. We analyzed only the ߜ-heuristic (the length difference between 

two sequences which being aligned). However, we tested how fast the stem-loop 

structure as compared with branching structure by turning on the option -nobranch in 

the Foldalign 2.0. Moreover, the pruning-heuristic in Foldalign 2.1 which was much 

faster as compared with no pruning. 

As mentioned before in the theoretical part of the Foldalign method the recursions of 

2.0 and 2.1 versions are pretty much the same except for the few improvements or 

simplifications in the energy model. The main difference between the 2.0 and 2.1 

versions is the use of the pruning heuristic which throws away all alignments with a 

score below a cut off. 

It is assumed at some examples in Foldalign 2.1 that we could not get an optimal 

solution, but when these examples are applied, Foldalign did solve them. As it seems, 

this is explained by recalculation of stems. Without such recalculation the example 

would not work. Therefore, we should expect in most cases to get an optimal solution, 

but it is not guaranteed. 

The parameters of LocARNA program have great influence on the run time, where the 

two parameters (--max-diff-match and --max-diff-am) can be compared with the 
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parameter M-heuristic and ߜ-heuristic respectively. In addition it uses the cutoff 

probability-heuristic, which filters the base pairs.  

As seen from our results, LocARNA represents the fastest method even when turning 

off its stronger parameters, and that because it considers as a simplified method of the 

Sankoff algorithm. In contrast with Dynalign which is used significant heuristics but it 

is still slow and that because it has the full energy model. Foldalign 2.1 is faster than 

Dynalign due to its special scoring scheme, but it still slower than LocARNA even 

using the stronger heuristics. 

Since the used dataset of RNA families are only three examples, the accuracy 

estimation of the alignments cannot calculated because it is required the significant 

numbers of sequences. 
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Chapter Five 

Conclusion 

5.1 Conclusion 

After looking into the original form of the Sankoff algorithm for simultaneous Folding 

and Alignment of RNA sequences, as well as the different methods are implemented to 

this algorithm by using diverse restrictions on either folding or alignment parts. These 

methods are tools used for pairwise structural alignment of RNA sequences. In this 

thesis, we have concentrated on the heuristics of these methods that make the Sankoff 

algorithm applicable in practice. 

The comparison of these methods to the original form “Sankoff Algorithm” is 

described as follows: Dynalign is the method closest to the Sankoff algorithm. It has 

several heuristics but in this thesis we are interested in the most significant two 

heuristics which are parameter M and probabilistic alignment constraint. Foldalign is 

the first implementation of the simultaneous Folding and Alignment of RNA 

sequences. It represents a very special method based on energy model that includes a 

scoring system of one matrix and different states; the most significant heuristics that are 

used for the Foldalign method, are ߣ and ߜ-restrictions with stem-loop for the Foldalign 

1.0, these restrictions with branching-loop for Foldalign 2.0 and the pruning for 

Foldalign 2.1. PMcomp and LocARNA are a simplification of the Sankoff algorithm, 

which are based on the probabilities of base pairs of RNA sequences as a structure 

model. The strongest heuristics used in LocARNA, are the cutoff-probability, ∆am and 

∆match- parameters for arc matching and matched structural positions respectively. 
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The heuristics of these methods are considered strong heuristics which have significant 

influence on the speed. The comparisons among the heuristics can give such ideas to 

combine between the heuristics of these methods in such a way that implement either a 

new method or the improved versions of the current methods on the basis of the 

original form “Sankoff Algorithm”.  

 

The traditional M parameter in Dynalign method is comparable to ∆match- parameter in 

LocARNA, as shown here: 

Dynalign: |i - k| ൑ M, 

LocARNA: |i - k| ൑ ∆match and |j - l| ൑ ∆match,  

but with some differences. For the Dynalign method, the constraint of M parameter has 

to be satisfied for all alignment edges (i, k). In contrast, in the LocARNA method, the 

constraint of ∆match-parameter has to be satisfied only for all structural alignment edges. 

As well as, for the ߜ-restriction in Foldalign method is comparable to ∆am- parameter in 

LocARNA, as shown here: 

Foldalign: |(j – i) – (l - k)| ൑ ߜ, 

LocARNA: |(j – i) – (l - k)| ൑ ∆am, 

but also for the same reason there is a difference. For the Foldalign method, the ߜ-

restriction has to be satisfied for all sub-alignments. In contrast, in the LocARNA 

method, the constraint of ∆am-parameter has to be satisfied only for all structural sub-

alignments. 
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5.2 Future Work 

There are many possible ways for extending Sankoff-style methods further. One can 

find new methods or improved versions of the current methods on the basis of the 

original form “Sankoff Algorithm” for simultaneous Folding and Alignment of RNA 

sequences, by combining some heuristics of the current methods, such that it gives the 

good accurate alignments as well as significantly fast and requiring low memory.  

If we use the idea of probabilistic alignment constraint of Dynalign in the LocARNA 

method, we expect that the new generated improved version of LocARNA will be 

much faster and taking into consideration the preservation of the accurate alignments. 

The same positive effect is expected, if we use the pruning idea of the Foldalign 2.1 in 

the LocARNA method.  

On the other side, if we use the idea of significant base pairs of LocARNA in the 

Dynalign or Foldalign (especially for Foldalign 2.1), we expect that the new generated 

versions for Dynalign or Foldalign 2.1 will improve to be more efficient methods much 

faster and still have accurate alignments. 
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