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Zusammenfassung

Die Synthese von kleinen Molekülen, die die Wirkstoffeigenschaften von vorhan-
denen Medikamenten verbessern oder die wirksam in der Behandlung bisher nicht
therapierbarer Krankheiten sind, ist eine sehr schwierige Aufgabe, in welche Pharma-
Unternehmen enorme Ressourcen investieren. Dennoch zeigen Studien, dass nur ei-
ner von 5000 erforschten Wirkstoffkandidaten letztlich den Markt erreicht. Aus die-
sem Grund sind Pharma-Unternehmen auf der Suche nach Verfahren, mit denen
unwirksame Kandidaten frühzeitig, und damit billig, erkannt und aussortiert wer-
den können.

In diesem Zusammenhang sind computergestützte Methoden eine interessante Alter-
native, wenn sie die teuren und zeitaufwendigen Entwicklungsphasen Design, Syn-
these und Prüfung ersetzen können. Von diesen Methoden sind computergestützte
Ansätze zum de-novo-Design von Molekülen besonders interessant, da sie beginnend
von Null schrittweise neue molekularen Strukturen mit den gewünschten pharma-
kologischen Eigenschaften generieren können. Eine der größten Herausforderungen
solcher Systeme ist dabei die Untersuchung des praktisch unendlichen chemischen
Raumes.

In dieser Arbeit untersuchen wir eine neuartige Methode zur Navigation im Such-
raum unter Nutzung einer parametrischen Familie von Teilgraphen genannt "Rooted
neighborhood subgraphs"(RNS). Wir definieren die Struktur der molekularen Um-
gebung in Form von RNS-Substitutionen, wobei Ersetzungen auf das Vorhandensein
von identischem Kontext beschränkt sind. Wir stellen einen neuartigen Ansatz na-
mens "Graph Substitution Constructive Model (GraSCoM) vor, welcher eine loka-
le Suchstrategie verwendet. Die Bewertungsfunktion basierend auf einem schnellen
Graph-Kernel-basierten diskriminierenden Modell, welche von Costa et al. in 2010
(F. Costa and K. D. Grave. Fast neighborhood subgraph pairwise distance kernel)
eingeführt wurde. Die vorgestellte Methode wurde auf einem Datensatz mit 4337
Molekülen, welche als mutagen oder nicht mutagen klassifiziert sind, getestet. Die
Evaluation zeigte, dass GraSCoM erfolgreich zum de-novo-Design von Molekülen
genutzt werden kann.
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Summary

Synthesis of small molecules that improve on the curative properties of existing drugs
or that are effective in curing previously untreatable illnesses is a very hard task on
which pharmaceutical companies are investing enormous amounts of resources. De-
spite this, studies show that only one out of 5000 screened drug candidates reaches
the market and therefore the pharmaceutical companies are looking for fail fast, fail
cheap solutions.

In this context, computational methods become an interesting alternative if they
manage to replace the expensive and time consuming phases of design, synthesis
and test. Among such methods, the computer-aided de novo molecular design ap-
proaches are particularly interesting as they produce from scratch novel molecular
structures with desired pharmacological properties in an incremental fashion. One
of the biggest challenges such systems have to face is the exploration of a practically
infinite chemical space.

In this thesis we investigate a novel way of navigating the search space using a
parametric family of subgraphs called rooted neighborhood subgraphs (RNS). We
define the molecular neighborhood structure in terms of RNS substitutions, where
the replacement is constrained on the presence of identical contexts. We introduce
a novel approach that we call Graph Substitution Constructive Model (GraSCoM).
GraSCoM proposes a local search strategy that uses as a scoring function a fast
graph kernel-based discriminative model introduced by Costa et. al. 2010 (F. Costa
and K. D. Grave. Fast neighborhood subgraph pairwise distance kernel). We tested
the proposed approach on a dataset of 4337 molecules evaluated for their toxic
properties and showed that GraSCoM is capable of performing successful de novo
molecular design.
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1 Introduction
Synthesis of small molecules that improve on the curative properties of existing
drugs or that are effective in curing previously untreatable illnesses is a very hard
task, a task on which pharmaceutical companies are investing enormous amounts of
resources. Despite all the advances in technology and understanding biological sys-
tems, novel pharmaceutical discovery is still an expensive, difficult, and inefficient
process, primarily due to the lack of models that accurately present the appropriate
condition or that reflect the appropriate response[1].

On average, the development of a new drug takes 10 to 15 years and recent stud-
ies show that the research and development costs of a new molecular entity are of
approximately US$1.8 billion, a number that is rising rapidly[21].

1.1 Motivation

During the drug discovery process, most of the effort is spent on investigating com-
pounds that in the end turn out to be unsuitable because of bad ADMET1 properties.
As it turns out, only one in 5000 screened drugs reaches the market and because of
this the pharmaceutical industry is looking for "fail fast, fail cheap" solutions (i.e.
having fast, cheap methods for determining whether the drug candidate does or does
not have suitable properties to become a drug).

In this context, computational methods become an interesting alternative since they
can replace the time consuming and expensive drug discovery phases. Among such
computational methods, those capable to perform de novo molecular design are par-
ticularly interesting[28]. These approaches produce in an incremental fashion, novel
molecular structures with desired pharmacological properties from scratch.

1.2 Goal of this Thesis

Since de novo molecule design systems have to explore a virtually infinite search
space, exhaustive searching is infeasible and usually the systems resort to local op-

1ADMET or ADME-Tox is the acronym for "Absorption, Distribution, Metabolism, Excretion,
Toxicity", i.e. the set of properties used to describe the performance and activity of the phar-
macological compound in the organism
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Chapter 1

timization strategies.

The goal of this thesis is to investigate novel molecular space search strategies by fo-
cusing on the fast graph kernel models based on the use of neighborhood subgraphs
introduced in Costa et al. 2010[7]. Here, the subgraphs rooted in each vertex of a
molecular graph and induced by all the vertices at bounded small distance from the
root have been proved to yield information reach features.

1.3 Method Overview

The de novo molecule design system implemented for the purpose of this thesis,
named GraSCoM, can perform two main tasks:
• Task 1: based on an initial molecule database (given in GSPAN format),
GraSCoM computes its own databases of well-defined structures (cores and
interfaces); these structures will be defined in sec. 4.1.
• Task 2: given a molecule seed set, a molecule train set (with the associated

target file containing ±1 values), the tool learns a model that can then try
and predict if a new molecule is good or bad; using the databases produced
via Task 1 and the seed set, GraSCoM produces novel molecular structures
which it then scores using the learned model.

1.4 Structure of this Thesis

For the beginning, in chapter 2 we will have an in depth look into de novo molecular
design, discussing what are the challenges in this field and analyzing some of the
state of the art methods. In chapter 3 the mathematical background of graph kernels
is presented from the perspective of machine learning algorithms. Then, in chapter 4
the proposed method of this thesis will be explained. Finally, in chapter 5 we will
evaluate the GraSCoM system, whereas chapter 6 contains the conclusion and some
future work proposals.
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2 Computer-Based De Novo
Molecular Design

As discussed in chapter 1, the pharmaceutical industry has to face a lot of resource-
related challenges when it comes to releasing an new drug to the market and de-
spite all the efforts and research invested in improving the research and develop-
ment productivity, the trends over the past years show a movement in the opposite
direction[21]. One way for tackling this issue was introduced from the late ’80s and
early ’90s, when the first automated de novo design techniques were conceived[18]
and since then these computer-based techniques have became a solid complementary
approach to high-throughput screening.

Although the de novo molecule design systems still have to face a lot of challenges,
their most important asset is the ability of generating novel molecular structures in a
time- and cost-efficient manner. Even though there is research going into the design
of peptides and other polymeric structures, the focus of this study is on designing
small, drug-like molecules and thus we will focus on this area for the rest of the thesis.

There are three main main phases when it comes to drug development: design,
synthesis and test. Any de novo design system tries to effectively replace the first
two phases (Fig. 2.1), and to do this, it needs to decide on strategies for three
problems[28]:

• assembly: how to construct candidate compounds?

• scoring: how to evaluate their potential quality?

• search: how to efficiently sample the search space?

2.1 Constructing Candidate Compounds

There are two approaches when it comes to constructing new candidate structures,
that relate to the building blocks used for the "artificial" design phase: the atom- or
the fragment-based approach.

While the atom-based approach is superior to the fragment-based approach be-
cause of the structural variety that it can produce, it comes with a drawback: the

3



Chapter 2

Figure 2.1: Computational counterparts for conventional drug discovery methods[11]

search space becomes infinite (as theoretically any part could be reached) and thus
the biggest challenge is selecting the best/suitable candidates.

On the other hand, the fragment-based approach has a smaller search space to
deal with as it performs a "meaningful reduction" by focusing on relevant areas (i.e.
parts that regularly appear in compounds and/or are of interest for the particular
study). Another advantage that this second approach has is that it’s the designer’s
choice of how to define these fragments and it usually happens that a fragment can
consist of only one atom, making the first approach a subset of the second.

The pioneer de novo systems used an atom-based approach, but as it comes hand-
in-hand with a combinatorial explosion problem, most of the systems today use
fragments as basic building blocks.

There are several approaches for performing candidate structure sampling (some
of which are presented in Fig. 2.2):
• linking: key interaction sites of the receptor are saturated with preferred build-

ing blocks that once in place, are automatically connected by suitable linker
fragments
• growing: starting with a single block positioned at one of the key interaction

sites, new blocks are sequentially added to yield the final compound
• lattice-based sampling: using a grid representation of potential positions of

ligand atoms within the binding pocket, ligand candidates are formed using
the points that lie along the shortest path through the lattice connecting in-
teraction sites
• random structure mutation

4



2.2. EVALUATING CANDIDATE COMPOUNDS

• transitions driven by molecular dynamics (MD) simulations: an active site is
filled with atoms, which adopt low energy configurations during a MD simula-
tion; bonds between atoms of randomly chosen building blocks can be formed
and subsequently broken based on geometric and energetic considerations[23]

• graph-based sampling: evolutionary algorithms are applied to optimize topo-
logical molecular graphs

Figure 2.2: Structure sampling: linking, growing and lattice-based assembly[28]

2.2 Evaluating Candidate Compounds

While deciding on how to construct the candidate compounds is more of a de-
sign/approach issue, but with direct impact on the final results, one critical aspect
is how these compounds are then scored. Thus, the scoring function has a central
role in the system, as it not only judges the quality of the new molecules, but implic-
itly assigns fitness values to them and guides the design process through the search
space. The molecules used in the evaluation function’s induction phase are usually
(very) different from the "new generation" of molecules that the system wants to
score, and thus the reliability of such a function could be debatable.
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Chapter 2

These evaluation functions are mainly based on the so-called primary target con-
straints which are generated from all the information related to the ligand-receptor
interaction that the function can collect. Based on the source used for collecting
these constraints, the design strategies can be divided in two:
• receptor-based: constraints are gathered from the 3D receptor structure which

makes these approaches limited to target proteins with known 3D structure;
however, this is not always the case for relevant pharmaceutical targets
• ligand-based: constraints are gathered from known ligands of the particular

target
When it comes to the receptor-based approaches all of them attempt to approximate
the binding free energy and can be subdivided into three different types of scoring
functions[28]:
• explicit force-field functions (most costly approach)
• empirical scoring functions: fast methods using a weighted sum of individual

ligand-receptor interaction types approach(supplemented by penalty terms)
• knowledge-based scoring functions: not so popular among de novo design sys-

tem, the approach scores molecules based on statistical analysis of ligand-
receptor complex structures where the frequencies of each possible pair of
atoms in contact with each other are determined; interactions occurring more
frequently than randomly expected are considered attractive and the other
way around.

However, generally the goal of de novo molecular design goes beyond generating
molecules with high binding affinities, as there are many other important properties
to be analyzed in a molecule (i.e. the AMDET property set). Because of this, usually
so-called secondary target constraints (constraints other than the binding affinity)
are introduced, making the scoring function a weighted sum over the primary and
secondary constraints.

2.3 Sampling the Search Space

As mentioned in the previous subsection, the fact that the evaluation function de-
cides on which molecules are good to keep for the next iteration of the algorithm and
which should be discarded, makes it act as a "virtual chemist" that decides which
parts of the search space should be explored next. This brings us to another major
aspect of computer-based de novo molecular design: how to search in the (virtually
infinite) chemical space ?

The size of the search space for small organic molecules has been estimated to be in
the order of 1060[4]. Even though this number probably over-estimates the real size
of the search space relevant for drug discovery (as it does not account for chemical
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2.4. NAVIGATING THE SEARCH SPACE

stability and drug-likeness)[11], a brute-force searching remains unfeasible. Instead,
local optimization strategies are used to sample the search space, making the solu-
tion converge to a "practical" optimum (which isn’t necessarily the global optimum).

Even though deterministic approaches exist, most of the algorithms used in this area
are non-deterministic and rely on some sort of stochastic structure optimization[28].
This does not mean that the exploration of the search space is done randomly, but
that instead these algorithms have a way of narrowing it towards a goal state by
including as much chemical knowledge as possible about the structure of this space.
Details of how this navigation through the space search is done will be presented in
the next subsection (sec. 2.4).

Any algorithm based on the local search approach works on the idea of moving
from a solution to the next in the space of candidate solutions (by performing lo-
cal changes to the current set) until an optimal solution (set) has been found or a
threshold was reached. In our case of infinite search space, moving from a current
solution to the next cannot be done arbitrarily, but within the local neighborhood
of the current solution.

It is important to mention that the success of such artificially evolving systems
requires a fundamental characteristic of the underlying search space, namely the
Principle of Strong Causality. Defined in the context of Evolution Strategies, this
principle states that the variation operators (mutation and recombination) should
perform search steps in such manner that small search steps result in small fitness
changes and vice versa[27]. The principle has been reformulated for the field of
drug design as the Chemical Similarity Principle[17] and it requires for a systematic
compound optimization algorithm to have a neighborhood behavior.1

There are two types of designs one can use when implementing such a local (chem-
ical) space search algorithm:
• positive design: restricts the local search space to the areas that it considers

to be more likely for producing drug-like molecules
• negative design: defines and avoid areas of the search space containing adverse

properties and unwanted structures

2.4 Navigating the Search Space

Regardless of how a program tries to generate the molecules, almost all the time
they try to mimic the iterative process of drug discovery and consist of the following
steps:

1The property of a structural space to map onto the activity space in a way ensuring that neigh-
boring points in the former are likely to correspond to neighboring points in the latter[13].
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Chapter 2

1. select the initial seed set of molecules (real molecules, with good ADMET
properties)

2. apply changes to the seed set in order to produce new molecules
3. score the new set of molecules
4. apply a fitness function; the fittest molecules become the new seed set
5. if the new set of molecules is "optimal" or (time/iteration/etc) threshold was

reached, terminate; otherwise go back to step 1
One big problem of de novo design when trying to generate new compounds (step
2) is the combinatorial explosion. Because of this, the algorithms use combinatorial
search strategies that reduce the search space and have an efficient way of navigat-
ing over it. As depicted in Fig. 2.3, the search space for the 2D structure of new
compounds can be represented by a tree, with the root being the initial state, the
leaves representing the end states (containing the candidate compounds) and all
other nodes corresponding to intermediate states. The goal of the search strategy
is to find a path from the initial to the end state (in the context of this figure a
depth-first search strategy is used).

Several de novo design programs use breadth-first search (BFS) or depth-first search
strategies (DFS). The DFS technique does not guarantee finding the best solution,
as it advances trough the levels of the search graph by expanding the "best" node
from the current level (expansion that could be guided by the score of the node,
by chance or by a combination of both), significantly pruning the search space. On
the other hand, the BFS technique examines all nodes from each level and as a
result does guarantee to find the optimal solution. In order to be able to perform
such an exhaustive search, most of these programs reduce the search space by using
the linking method for structure assembly. Others perform an "altered" BFS, like
RASSE[19] (an approach that allows no more than 100 such fragments to become
the templates for further growing), or SPROUT[9] which uses the A∗ algorithm.

While LEGEND[20] uses pure random sampling (also known as Monte Carlo search),
CONCEPTS[22] was the first to use the Monte Carlo search with a Metropolis cri-
terion. This combined approach works as follows: every newly generated compound
gets evaluated; if it has a better score then the original compound, it gets through
to the next round; otherwise, it can still get accepted with a probability based on
the difference between the score of the new molecule and the seed molecule and a
random number.

Finally, the last big class of algorithms used in de novo design that we will briefly
discuss are the evolutionary algorithms (EA). These approaches use mechanisms in-
spired by biological evolution: reproduction, mutation, recombination and selection.
There exist a number of different techniques used for this type of algorithms, out of
which three are relevant with respect to our field of study:

8



2.4. NAVIGATING THE SEARCH SPACE

• genetic algorithms: populations of fixed-length strings (binary or real values)
are used for encoding the phenotype (molecular structures); in the context of
EA, these strings are referred to as chromosomes

• genetic programing: the phenotype is encoded as a tree, facilitating the ex-
tension and contraction of the chromosome

• evolution strategies: instead of using a chromosome to encode the phenotypic
features when performing structure generation, the phenotype itself becomes
a molecular graph

Figure 2.3: Input (initial state):binding pocket+predicted key interaction sites; Yellow
circles indicate sites for a ligand hydrogen-bond donor and blue circles represent regions
for lipophilic ligand parts. Partial structures are partial solutions (light green) if they
satisfy the primary target constraints. Some of the partial structures are rejected due
to boundary violation (L1&L2) or due to mismatching interaction types (L2).[28]
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Chapter 2

2.5 Successful de novo Design Approaches

There have been several successful approaches to de novo molecular design and in
this section we will cover some of them in order to emphasize the potential of such
techniques.

Introduced 20 years ago, LUDI[3] is an early linking approach that showed promis-
ing results. First the interaction sites are defined either by a set of rules or as
discrete positions in space suitable to form hydrogen bonds or to fill a hydropho-
bic pocket[3]. Then fragments from a user-inputted database are placed inside the
binding cavity. In the final step LUDI applies an empirical scoring function and
connects the best fragments to form the new molecule. Using this approach, LUDI
generated compounds that with some manual optimization to ease synthesis, proved
to be inhibitors of HIV-RT2.

The evolutionary algorithm SYNOPSYS[30] was able to produce 10 (synthesized
and tested) new inhibitors of the HIV-1 protein reverse transcriptase. The method’s
success was achieved by starting with a database of existing molecules and enforcing
synthesizability to the new generation of compounds by using only chemical reac-
tions.

Based on a fragment-based approach, BREED[24] was the first approach to use
the structural information emerging from the field of high-throughput structural
biology. With a fast, automated approach for generating new inhibitors by joining
fragments of known ligands, BREED produced over 100 novel, chemically viable,
protease and kinase inhibitors for the HIV-1 virus.

We won’t cover all de novo successful programs (like LEGEND[20], TOPAS[29],
BOMB[31] and others) even if they all contain very interesting approaches with
promising results. We should however mention that there are numerous other ex-
amples that maybe didn’t produce immediate results, but did introduce interesting
new ideas for approaching the problem.

2.6 Expectations and Limitations

Throughout the previous sections (sec. 2.1 - sec. 2.5) we gave an overview on how an
"in silico laboratory" for performing de novo molecular design tries to replace the
traditional methods of drug design. Given the properties of such a system, there
are a couple of points worth mentioning related to the expectations and limitations
of such a setup:

2Human Immunodeficiency Virus Reverse Transcriptase
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2.6. EXPECTATIONS AND LIMITATIONS

• there is no guarantee that the produced molecules will be chemically valid
(synthetically feasible with drug- or lead-like properties)
• as the approach tries to generate new molecules from existing knowledge (used

to guide the design process through the search space), it could be that inter-
esting candidates don’t pass the threshold of the fitness function or don’t even
get discovered at all during the iterative process; a way of preventing this is
performing stepwise knowledge extrapolation
• the system will rarely yield novel lead structures with the desired pharmaco-

logical behavior in the first instance; however they could represent an inspiring
example that medical chemists can further improve
• if the compounds produced by such a system represent a reasonable sugges-

tion for investigating new bioisoteres, or it performed a scaffold-hop3, we can
consider that the system fulfilled its purpose

3The process of identifying isofunctional structures with different backbone architectures.
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3 Graph Kernels

This chapter presents the theoretical background of graph kernels, an approach
allowing efficient graph comparison that finds its application in a variety of problems
where the item of study can be represented as a graph, including de novo molecular
design. It is important to mention that even if in the literature sometimes the term
of graph kernels is used to describe kernels between two nodes in one graph, in this
thesis we will use graph kernels to denote functions that compare two graphs to each
other (i.e. defined on G × G).

3.1 Using Kernels for Nonlinear Classification

Generally speaking, kernels are used in algebra to measure the degree to which a
homomorphism fails to be injective[8]. In mathematical terms, we define a kernel as
a continuous and symmetric function k, that given two arguments x and x’, it maps
them to a real value (that measures the similarity between them):

k : X × X → R
k(x, x′) = k(x′, x), ∀x, x′ ∈ X

In the machine learning (ML) field, the main interest is to design algorithms that
based on empirical data, are able learn and make successful predictions about new,
unseen data. The linear case has been studied in depth from the early days of ML
and is now very well developed. However, most of the time the (real world) data
that we would like to learn from, requires the use of nonlinear methods for inducing
the dependencies needed to make successful predictions.

Using kernel methods, it is possible to map the nonlinear input data into a different
feature space where linear classifiers can be used. As this mapping can substantially
increase the number of features to consider, one would like to still be able to evaluate
the data efficiently. A common way to do this is by using the kernel trick.

3.1.1 The Kernel Trick

First we will introduce a series of definitions that will help understanding how this
technique works.

13
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Definition 3.1.1 (Cauchy Sequence). Given a metric space X = (x, ρ), a sequence
{xn}∞n=1 is called a Cauchy sequence if

∀ε > 0, there ∃n0 = n0(ε) such that for ρ(xn, xm) < ε,∀n,m > n0 (3.1)

In other words, a Cauchy sequence is a sequence whose elements become arbitrarly
close to each other as the sequence progresses.

Definition 3.1.2 (Complete metric space). A metric space X = (x, ρ) is called
complete if every sequence in X converges in X.

Definition 3.1.3 (Hilbert space). A Hilbert space is a real or complex inner product
space that is also a complete metric space with respect to the distance function
induced by the inner product.

Usually, the empirical data that a ML algorithm uses in order to learn a model con-
sists of a vector of inputs xi, alongside with the targets vector yi. Mathematically,
we specify this as (x1, y1), ..., (xn, yn) ∈ X ×Y . Once a model was learned using this
data, we would like to be able to make predictions for unseen data x ∈ X , i.e. to
choose y ∈ Y such that (x, y) is similar to the training examples.

To do this we first define a function Φ that maps our data into a Hilbert space
H (also known as the feature space). A good choice of this function (also known
as the feature map) would make the input data in X be linearly separable in H, as
shown in the simple example in Fig. 3.1.
The question rising now is how do we still keep our ML algorithm efficient if we now
have to process data in a higher-dimensional space? The answer lies in Mercer’s
Theorem, but in order to understand how it is connected to kernel functions, we
first need to make a couple of definitions.

Definition 3.1.4 (Kernel matrix). Given a kernel function k : X × X → R and a
set of patterns x1, ..., xn ∈ X , the n× n matrix K with elements

Ki,j = k(xj, xi), i, j = [1, n]

is called the kernel matrix(or Gram matrix) of k with respect to x1, ..., xn.

Definition 3.1.5 (Positive definite matrix). A real n× n symmetric matrix Ki,j is
called positive definite if∑

i,j

cicjKi,j ≥ 0, ∀ci ∈ R

Definition 3.1.6 (Positive definite kernel). Given X 6= ∅, we call k : X ×X → R a
positive definite kernel if for ∀n ∈ N and ∀xi ∈ X , i = [1, n] gives rise to a positive
definite Gram matrix.

14
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Figure 3.1: Mapping data from R2 into R3 (Carlos C. Rodriguez, The Kernel Trick)

Theorem 1 (Mercer’s Theorem). A continuous, symmetric function k can be ex-
pressed as an inner product for some feature map Φ, if and only if k is positive
semidefinite, i.e

k : X × X → R, Φ : X → HK

k(x, x′) = 〈Φ(x),Φ(x′)〉 ⇔
∫
k(x, x′)g(x)g(x′)dxdx′ ≥ 0,∀g

In other words, for any positive definite kernel there exists a Hilbert space HK of
real valued functions defined on X and a feature map Φ, such that the value of the
kernel function is equal to the inner product of the mappings Φ(x),Φ(x′) in HK .

With Mercer’s Theorem we finally arrived to the essence of the kernel trick, which
suggests that instead of having to explicitly map the data with a Φ function and
take the dot product, one can just use any positive definite kernel, without having
to care at all about the feature map.

Once introduced to the field of learning, kernel methods became more and more
popular due to the nice properties they have, like efficiency in computation or flexi-
bility with respect to the input data (doesn’t have to be linearly separable, doesn’t
have to be represented as a vector). This flexibility property is something that all
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ML algorithms can benefit from, as for example one would like to have multiple,
heterogeneous data sources. For this purpose multiple kernel learning approaches
have been developed, allowing intelligent ways of recombining results from a large
number of kernels[2].

3.2 Kernels for Graphs

When it comes to defining kernels for measuring the similarity between highly struc-
tured data, graphs have become of more and more interest as they can represent a
lot of real world data like biological sequences, phylogenetic trees, RNA structures,
natural language texts, semi-structured data (such as HTML and XML) and much
more[15]. Of particular interest for the topic of this thesis is representing chemical
compounds as undirected, labeled graphs where the atom types are encoded in the
vertex labels and the bond types are encoded in the edge labels).

3.2.1 Graph Generalities

In the following we will introduce some general graph definitions (that will be used
in to coming parts of the chapter) while following the notations in Handbook of
Graph Theory[10]. We define a graph as an ordered pair G = (V,E) comprising of
a set of vertices V and a set of edges E and the following graph-related notations:

V (G)−the set of vertices of graph G
E(G)−the set of edges of graph G
D(u, v)−the distance between v ∈ V (G) and u ∈ V (G)

(defined as the length of the shortest path between them)
Nr(v)−the neighborhood of radius r ∈ N of a vertex v ∈ V (G)

={u|D(u, v) ≤ r, u ∈ V (G)}

Definition 3.2.1 (Induced subgraph). Given a graph G, we define the induced
subgraph on a set of vertices W = {w1, ..., wk}, the graph G′ for which V (G′) = W
and E(G′) = {(u, v)|u, v ∈ W, (u, v) ∈ E(G)}

Definition 3.2.2 (Neighborhood subgraph). We define the neighborhood subgraph
of radius r of vertex v denoted by N v

r , as the subgraph induced by Nr(v).

Definition 3.2.3 (Labeled Graph). Given a function L that maps a vertex/edge
to its corresponding label, G = (V,E,L) is a labeled graph (i.e. a graph whose
vertices and/or edges are labeled, possibly with repetitions, with symbols from a
finite alphabet).
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Definition 3.2.4 (Isomorphic graphs). Two graphs G = (V,E) and G′ = (V ′, E ′)
are called isomorphic if there exists a bijection Φ : V ′ → V ′ such that

for ∀u, v ∈ V (G) there ∃(u, v) ∈ E(G)⇔ (Φ(v),Φ(u)) ∈ E(G′)

We denote the isomorphism between G and G′ by G ' G′. Two labeled graphs are
isomorphic if there is an isomorphism that also preserves the label information, i.e.
L(Φ(v)) = L(v).

3.2.2 Graph Kernel Types

While there are many different classes of graph kernels, of particular interest for this
thesis are the R-convolution Kernels. Thus, there will be a more detailed presenta-
tion of the latter and just a brief talk about the rest.

Random Walk Kernels These type of kernels measure the similarity of two graphs
by performing random walks1 on both and measuring the similarity between the la-
bels of the visited nodes. While they are indeed a good way to measure graph simi-
larity (by taking into account the whole structure of the graph), they lack efficiency,
usually being somewhere around the magnitude of O(n6). If in some situations the
complexity can be improved, there are two known problems that are not as easy to
deal with as dealing with one, worsens the other and vice-versa:

• tottering: as the walks cannot restrict repetitions of nodes/edges and they
are probability based, it could happen that due to cycles or undirected edges,
the same vertices get considered too many times and artificially improve the
similarity score

• halting: to avoid cycles, a series of decaying factors need to be used to down-
weight the longer walks; however this usually causes longer walks to be (com-
pletely) ignored and thus less of the graphs structure is taken into account.

Subtree-Pattern Kernels By considering all pairs of vertices from both graphs
and iteratively comparing their neighborhoods, these kernels count some subtree
patterns in order to produce the similarity score. The patterns they look for are:
rooted subgraphs such that there is a tree homomorphic to the subgraph, and the
number of distinct children of both root nodes in the pattern and in the tree to be
the same[26]. These kernels also face the tottering problem and as it turns out, the
run-time complexity is even worse than the one of the random walk kernels.

1A random walk is a graph traversal where the starting node, the next neighbor to visit each step
and the node that ends the walk are chosen based on some probability.
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Cyclic-Pattern Kernels The idea is to decompose the graphs into cyclic patterns
and count how many are shared between the two graphs. The approach is efficient
when restricted to graph databases in which there exists a natural small upper
bound on the number of simple cycles for almost every graph[14] but turns out to
be NP-hard when applied to a general graph.

Fingerprint and Depth First Search Kernels A series of kernels specifically cre-
ated to work on small molecular graphs. They take use of some generalized versions
of molecular fingerprints2 and depth first search exploration of depth d[25].

R-Convolution Kernels In 1999, D. Haussler introduced the R-convolution ker-
nels as a way to construct kernels on sets whose elements are discrete (i.e. strings,
graphs)[12] and till today they remain the most used approach when dealing with
such instances. The core idea behind R-Convolution kernels is that composite ob-
jects can be expressed via their constituent parts and the relation R between them.

Assume x ∈ X is the composite structure and x1, ..., xD are its parts (not nec-
essarily disjoint), with xd ∈ Xd for d = [1, D], D ∈ N+ and each Xd is a countable
set. Let R be a boolean predicate defined as

R : X1 × ...×XD ×X → {true, false},

R(x1, ..., xD, x) =
{

true, if x1, ..., xD is a valid decomposition of x
false, otherwise

We can now define R−1 as the inverse relation that given a composite structure, it
yields all valid decompositions: R−1(x) = {x1, ..., xD|R(x1, ..., xD, x) = true}.

In the original paper[12] it is proven that if two instances x, y ∈ X admit a valid
decomposition as x1, ..., xD and y1, ..., yD and

there ∃kd : Xd ×Xd → R, ∀d = [1, D],

then k(x, y) =
∑

x1,...,xD∈R−1(x)
y1,...,yD∈R−1(y)

D∏
d=1

kd(xd, yd)

is a valid kernel called a convolution or decomposition kernel. Thus, a convolution
kernel is a sum (over all possible decompositions of a composite structure) of the
product of valid kernels over the constituent parts of that structure. The power
and flexibility of this approach comes from the vagueness surrounding the relation
function R, allowing the definition of a multitude of kernels just by changing the
decomposition.

2A molecular fingerprint is a bit-string representation for the structure of a molecule.
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In this context, probably one of the first approaches that comes to mind is decom-
posing two graphs into all their subgraphs and compare them pairwise. This is
exactly the idea behind the all-subgraphs kernel.

Definition 3.2.5 (All-Subgraphs Kernel). Given two graphs G and G′, the all-
subgraphs kernel is defined as

ksubgraph(G,G′) =
∑
S⊆G

∑
S′⊆G′

kisomorphism(S, S ′),

where kisomorphism(S, S ′) =
{

1, if S ' S ′

0, otherwise

While the Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) is also an
R-convolution kernel, because it is the one we use in our design approach, we will
present it in detail in the following section.

3.3 Neighborhood Subgraph Pairwise Distance Kernel

The NSPDK is the kernel used in this thesis for measuring the similarity between
two graphs. The relation function R that it uses, decomposes the graph in all paris
of neighborhood subgraphs of radius r that are at distance d from each other (as in
the example from Fig. 3.2).

Figure 3.2: Pairs of neighborhood subgraphs for radius r=1,2,3 and distance d=1[7].
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3.3.1 Definition

Formally, given a graph G and two rooted subgraphs Av and Bv that are isomorphic
to some Nr, if D(u, v) = d the Rr,d can be defined as

Rr,d(Av, Bu, G) =
{

true, iff Av, Bu ⊆ {N v
r : v ∈ V (G)}

false, otherwise

Definition 3.3.1 (Exact matching kernel). The exact matching kernel δ(G,G′) is
defined as

δ(G,G′) =
{

1, if G ' G′

0, otherwise

The decomposition kernel kr,d on the relation Rr,d that counts neighboring graphs
of radius r at distance d between two graph G and G′ can now be defined as

kr,d : G × G → N+

kr,d(G,G′) =
∑

Av ,Bu∈R−1
r,d

(G)
A′v′ ,B

′
u′∈R−1

r,d
(G′)

δ(Av, A
′
v′)δ(Bu, B

′
u′)

Definition 3.3.2 (NSPDK). Using kr,d, the Neighborhood Subgraph Pairwise Dis-
tance Kernel is a sum over all possible radiuses and distances:

K(G,G′) =
∑

r

∑
d

kr,d(G,G′)

For efficiency in computation and relevant similarities scores, the approach in this
thesis follows the suggestion of Costa et. al.[7] and uses a zero-extension of K by
setting an upper limit for both r and d, as well as a normalized version of kr,d that
ensures an equal weight to all relations, regardless of the size of the induced part
sets. The final version of the NSPDK used here becomes

K(G,G′) =
r∗∑

r=0

d∗∑
d=0

kr,d(G,G′)√
kr,d(G,G)kr,d(G′, G′)
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4 Method

This chapter will present in detail the approach for de novo molecular design used by
the GraSCoM system. First, sec. 4.1 will explain the concepts that are fundamental
for the novel molecular space search strategy used, strategy that will be detailed in
sec. 4.2.4. The last part of the chapter presents the challenges that appeared when
designing and implementing this system and how they were tackled.

4.1 Terms and Definitions

In order to understand the method, one needs to know the concepts it uses. In-
spired by the notion of substitutable languages[6], we introduce two well-defined
graph structures which we call core and interface, and the procedure called core
substitution.

4.1.1 Interface

For a vertex v, we define as the interface border at radius r the set of vertices that
are exactly at distance r from v, that is

Ir
v(G) = {u|D(u, v) = r;u, v ∈ V (G); r ∈ N+}

We now introduce the notion of the interface rooted in v of radius r and thickness t
as the subgraph induced by all the nodes inside the neighborhood of radius t of the
vertices on the interface border. Formally,

Ir,t
v (G) = {u|u ∈ Nt(p); p ∈ Ir

v(G); v, u, p ∈ V (G); r ∈ N+}

Given the molecule in Fig. 4.4, an interface rooted in vertex 2 (highlighted with a
red circle) of radius 5 and thickness 2 will look like the one in Fig. 4.1.

4.1.2 Core

Given a graph G, we rename the notion of neighborhood subgraph of radius r ∈ N
induced by vertex v ∈ V (G) (as introduced 3.2.2) as the core of radius r with root
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Figure 4.1: Interface of radius 5 and thickness 2 rooted in node 2 of the graph in Fig. 4.4.

v, denoted by Cr
v . Thus, Cv

r is the subgraph induced by the set of vertices at distance
less than or equal to r from v. We do this renaming because we believe the term
core to be more suggestive with respect to the procedure we will introduce next.
Moreover, in our approach a core is defined only in relation to its corresponding
interface. Fig. 4.2 shows the core of radius 5 rooted in node 2 (highlighted with a
red circle) of the graph presented in Fig. 4.4.

4.1.3 Core Substitution

The core substitution procedure is how we call the approach we use for generating
new chemical compounds. In the context of languages, Clark et. al.[6] introduced
the notion of substitutable words (and languages) in the sense that two words are
substitutable if they have the same context. We generalize this idea to graphs and
we say that if we have two graphs in which we are able to identify the same interface,
then we can substitute their corresponding cores.

4.1.4 Hypergraphs

It is important to mention that if we want to use this core substitution procedure
and just apply it as is on regular graphs, we lose any information that could be
stored in the edges. This is of course undesired, especially in the case of chemical
compounds where the equivalent graph representation contains edges labeled with
the type of chemical bonds.

For performing the substitution without loss of information on any type of graph,
internally we apply a simple transformation to a hypergraph in which the edges from
the original graph become a node that stores the label of the edge it represents and
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Figure 4.2: The core of radius 5 rooted in node 2 of the graph in Fig. 4.4.

is connected to both of its initial source and destination vertices. We denote the set
of vertices in the hypergraph H corresponding to real vertices representing atoms in
the original graph G by VV (G)(H) and the set of "edge" nodes by VE(G)(H). Thus,
V (H) = VV (G)(H)∪ VE(G)(H). Fig. 4.3 presents a molecule in it’s graph representa-
tion form while Fig. 4.4 shows the equivalent hypergraph transformation.

We now need to make a couple of natural restrictions that ensure we benefit from
this transformation:

1. we can root for defining cores/interfaces only in nodes in v ∈ VV (G)(H)

2. 1 ≤ r, r ∈ {2k + 1|∀k ∈ N+}: alongside with restriction 1, ensures that the
nodes on the interface border (which are also the border of the core) are in
v ∈ VE(G)(H)

3. 0 ≤ t < r, t ∈ {2k|∀k ∈ N}: alongside with restriction 1, ensures that the end
nodes of the interface are also in v ∈ VE(G)(H) and that the interface does not
include the whole core (which would make core substitution useless)

Therefore, by applying the hypergraph transformation and satisfying the conditions
above, we now ensure that when we extract any of the two structures, we also
preserve the edge information from the original graph.
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Figure 4.3: A molecule read in from the dataset as a graph.

4.2 Graph Substitution Constructive Model
(GraSCoM)

As presented in the chapter 2, every de novo design system has to present solutions
to three problems, all of crucial importance with respect to the final results: how
does it search for new compounds, how does it assemble them and how does it score
new ones. In the following we will discuss each of these issues from the perspective
of GraSCoM, the system implemented for the purpose of this thesis.
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Figure 4.4: The equivalent hypergraph transformation to the molecule in Fig. 4.3

4.2.1 Searching

GraSCoM proposes a novel way for navigating over the chemical space. Given an
input (train) set of valid molecules (internally represented as 2D hypergraphs as
described in sec. 4.1.4), for each molecule we iterate over the complete set of nodes
v ∈ VV (G)(H) and extract for different radiuses and thicknesses interfaces together
with their corresponding cores, and store them in a meaningful way into a database.
At the end of this database computation step, we will have stored interfaces along-
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side with a list of cores that were found for each particular interface.

We then start with an initial seed set and again for every compound, we iterate
over a set of vertices and using the same values for radiuses and thicknesses, we
identify interfaces. If we find an interface that is stored into our database, we then
get the previously computed list of valid cores for that interface and perform the
core substitution procedure. When doing this we check that we are not substitu-
tion identical cores, and thus ensure that we are not copying molecules over to the
next generation. Nevertheless, it could happen that a molecule from the seed set is
generated by substituting cores in a different molecule or that the same molecule is
generated in different iteration steps. For this type of situations, we consider a new
compound only if we haven’t done it before.

This type of navigating over the search space is very interesting. While being a
local search technique, the "width" of the neighborhood considered varies depending
on how frequently the interfaces identified in the current molecule were found in the
list of molecules used to populate the database. Thus, it could be considered as a
special type of the adaptive neighborhood width approach, where the area of the
neighborhood to consider is not necessarily controlled by an internal parameter of
the system, but by the similarity to other valid molecular structures.

There are however ways of influencing how the search space sampling is done. The
straight forward way of doing it is by controlling the maximum allowed value for
the radius (Maxr) and the minimum one for the thickness (Mint). These are both
very powerful as the difference CF = Maxr −Mint is directly correlated to what
could be referred as the creativity factor. When a big CF is used, it makes the
algorithm perform substitutions of big cores while having a thin interface, and thus
make massive changes to the structure of the compound. On the other hand, a small
CF would make the approach much more conservative in the sense that it would
perform a substitution of a small core only when the structure of the thick interface
is the same and thus requesting the current molecule to be structurally very similar
to the molecule that was considered when extracting the corresponding interface
and core.

Another way of sampling the search space the system allows is based on computing
a score for each vertex that tells what influence does a particular node have with
respect to the final score of that compound. It then considers only the nodes with
a negative influence (or the top n > 0 such nodes) and tries to search for known
interfaces that are rooted in these vertices. The way these scores are obtained will
be discussed in sec. 4.2.3.
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4.2.2 Assembling

New compounds are assembled by substituting cores (i.e. fragments) identified in
valid chemical compounds and therefore the approach is fragment-based. However,
with a radius r = 1 and thickness t = 0 it gets the capabilities of an atom-based
technique as the cores will consist of an atom connected to its "edge" vertices and the
interfaces will be only of thickness t = 0 and thus consist of "edge" nodes. Actually
for any pair 〈radius, thickness〉 where the difference between the two parameters
is 1, the method will perform an atom substitution. The difference will consist in
how big the thickness is, and thus how much structure similarity do we require to
perform the core substitution.

4.2.3 Scoring

The scoring problem is the last of the three problems a de novo design system has
to deal with. After performing a local search and assembling the new molecules, the
algorithm needs to score them and then retain the best ones as a seed for the next
generation.

Support Vector Machine One of the most popular and best performing ways for
doing classification analysis in ML is by using support vector machines (SVM). The
general idea of this approach is that given a set of training examples each marked
as belonging to one of two classes (usually denoted as positives and negatives), the
SVM constructs a hyperplane in a higher dimensional space that separates the two
classes of input data. The need for this mapping makes the use of kernels functions
be the most efficient and natural choice.

Stochastic Gradient Descent To be able to make predictions, a ML algorithm first
needs to learn a model. The question is what technique to apply for this purpose.
One popular choice is the gradient descent where at each iteration the algorithm
performs a step proportional to the negative gradient of the learning function in the
current point. As this is done by looking at all the training data, serious computa-
tional issues can arise when dealing with big datasets. A similar, but much faster
technique is the stochastic gradient approach where instead of looking at the whole
dataset, at each step only one randomly picked example is taken into account. If in-
tuitively this approach would suggest a worse performance and in fact convergence is
much more noisier, the literature shows that when dealing with large scale datasets
it actually performs better because more training examples can be processed in the
allowed time[5].

For the purpose of scoring molecules’ and vertices’ contributions to the scores, GraS-
CoM uses an SVM with an NSPDK kernel and a stochastic gradient approach for
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learning. As explained before in sec. 4.2.1, for each molecule in the seed set, a num-
ber of new candidate compounds are generated. Out of this number we keep only
top k, where k is either a fixed number, or the number of new compounds that have
a score greater than the highest score obtained by a molecule in the previous round.
With the latter constraint, we restrict the algorithm to produce better molecules
each round (with respect to the scoring function). For the first iteration we restrict
the score to be greater than 0. Once the complete seed set was processed, all top k
molecules are merged, sorted and then top m are kept as seed molecules for the next
iteration, but top s > m are saved to a file for computing performance measures
later on. All three parameters k,m, s are given as an input to the system.

4.2.4 The Method in a Nutshell

Now that we’ve explained how GraSCoM addresses the three key problems of com-
puter based de novo design, we will present a summarized pseudocode description
to have a complete overview of the approach. Algorithm 1 and 2 present the pro-
cedure for identifying core-interface pairs (one inducing the features into the graph
construction model while the other performs the core substitution procedure). Al-
gorithms 3 presents the vertex selection policy and finally algorithm 4 introduces
the main loop of the procedure.

Algorithm 1 Identify all cores and interfaces rooted in a vertex v and induce them
into the graph construction model MGC .
procedure InduceGCModel( G, v, Minr, Maxr, Mint, MGC )

for r ←Minr; r ≤Maxr; r ← r + 2 do
Cv

r ← ExtractCore( G, v, r )
CID ← ComputeGraphHashID( Cv

r (G) )
SetGraphID( Cv

r , CID )
for t←Mint; t < r; t← t+ 2 do
Ir,t

v ← ExtractInterface( G, v, r, t )
IID ← ComputeGraphHashID( Ir,t

v (G) )
SetGraphID( Ir,t

v (G), IID )
AddInterfaceCorePairToGCModel( Ir,t

v , Cv
r , MGC )

end for
end for

end procedure

4.3 Identifying Graphs

As suggested by the ComputeGraphHashID(G) function inside the pseudocode of
algorithms 1 and 5, we need a way of producing unique and meaningful ids for each
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Algorithm 2 Identify all cores and interfaces rooted in a vertex v and perform core
substitutions when the current graph G contains an interface also found inside the
graph construction model MGC ; return the rewired graphs.
procedure ConstructGSet( G, v, Minr, Maxr, Mint, MGC )

for r ←Minr; r ≤Maxr; r ← r + 2 do
Cv

r ← ExtractCore( G, v, r )
CID ← ComputeGraphHashID( Cv

r (G) )
for t←Mint; t < r; t← t+ 2 do
Ir,t

v ← ExtractInterface( G, v, r, t )
IID ← ComputeGraphHashID( Ir,t

v (G) )
IM ← GetInterface( IID, M )
C ← GetCores( IM )
for all Ci ∈ C do

if CID 6= GetGraphHashID( Ci ) then
Ḡ← Ḡ ∪ SubstituteCore( G, Ir,t

v , Cv
r , Ci )

end if
end for

end for
end for
return Ḡ

end procedure

core/interface we identify (meaningful with respect to the labels of the hypergraphs
vertices and its structure). For this, we use the exact matching kernel introduced in
Costa et. al.[7].

4.3.1 Hash Codes for Exact Matching

The purpose of assigning such meaningful ids is to later be able to efficiently check if
two graphs (i.e. two interfaces) are isomorphic. The exact matching kernel efficiently
checks for graph equality by using a two-step approach: first it computes a graph
invariant encoding for both graphs using a label function, and then it generates a
hash out of this encoding such that in the end the comparison between the two
graphs is reduced to comparing two strings.

Encoding the graph as a string As mentioned above, the graph invariant en-
coding is done via a label function Lg : Gh →

∑∗, where Gh is the set of rooted
subgraphs and ∑∗ is the set of strings over the finite alphabet ∑. To understand
how it works we need to introduce two more label functions, one for the vertices and
one for the edges.
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Algorithm 3 Given a graph G, a scoring function f : G × {2|V (G)|} 7→ R and a
Policy, return the appropriate vertices.
procedure VertexSelectionPolicy( G, f , Policy )

if Policy == 0 then . Root in all vertices
V̄ ← V (G)

else
for all v ∈ V (G) do

idToScore[v] ← f(G, v)
end for
SortMapBySecondElement( idToScore )
V ′ ←GetMapFirstElementList( idToScore )
if Policy > 0 then . Root in top policy vertices with negative score

iterator ← 1
for all vi ∈ V ′ do

if iterator ≤ Policy then
V̄ ← V̄ ∪ {vi}
iterator ← iterator + 1

else
break

end if
end for

else . Root in all vertices with negative score
for all vi ∈ V ′ do

V̄ ← V̄ ∪ {vi}
end for

end if
end if
return V̄

end procedure
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Algorithm 4 The main GraSCoM loop first induces the graph construction model
MGC and learns a scoring function. This function is then used alongside with a
Policy for selecting the vertex set in which the algorithm further roots to iden-
tify known interfaces. Each constructed Ḡ set is then filtered by getting the top
GSetBeamSize scoring graphs. At the end of each iteration the filtered reunion of
the best scoring graphs, ḠF is filtered similarly for the top SetBeamSize to produce
the SeedSet for the next iteration.
procedure ConstructGSet( GCModelInput, Minr, Maxr, Mint,
MaxIterationNumber, SupervisedSample, SupervisedSampleTarget,
InitSeedSet, GSetBeamSize, SetBeamSize, MGC , Policy )

for all G ∈ GCModelInput do
for all v ∈ G do

InduceGCModel( G, v, Minr, Maxr, Mint, MGC )
end for

end for
f ← LearnScoreFunction( SupervisedSample, SupervisedSampleTarget )
SeedSet← InitSeedSet
for i← 1 . . .MaxIterationNumber do

for all Gi ∈ seedSet do
for all v ∈VertexSelectionPolicy( Gi, f, Policy ) do

Ḡ← ConstructGSet( G, v, Minr, Maxr, Mint, MGC )
end for
ḠF ← ḠF∪ FilterGCSet( Ḡ, GSetBeamSize )

end for
SeedSet← FilterGCSet( ḠF , SetBeamSize )

end for
return ḠF

end procedure
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The vertex labeling function Ln assigns to each vertex v ∈ V (Gh) the concate-
nation of all lexicographically sorted distance-label pairs 〈D(u, v),L(u)〉,∀u ∈ Gh,
alongside with the distance to the root D(u, h) (given that Gh is a rooted graph).
Using this, the edge labeling function Le assigns to each edge (u, v) ∈ E(Gh) the
triplet 〈Ln(u),Ln(v),L(u, v)〉. In the end, Lg assigns to the rooted graph Gh the
lexicographically sorted list of Le(u, v), ∀(u, v) ∈ E(Gh).

For efficient comparison, this graph encoding is then mapped to a 32-bit integer
using a Merkle-Damgård hashing function H : ∑∗ → N, and thus verifying if two
graphs are isomorphic becomes a numerical equality test between H(Lg(Gh) and
H(Lg(G′h′).

The graph isomorphism problem is known as one of the few NP problems for which
finding polynomial algorithms is still an open issue. Because of this, there are differ-
ent techniques used that either work on specific types of graphs, or give approximate
solutions. Using the hashing function is what makes the exact matching kernel give
fast solutions, but at the same time it could be that different, non-isomorphic graphs
get the same id. As mentioned in the paper, the error introduced by hash collisions
is negligible[7], but nevertheless it needs to be accounted for.

4.3.2 Mapping Interface Vertices

Another issue that needs to be tackled regards the core substitution procedure (i.e.
rewiring a database core to the current interface). When we store a 〈interface, core〉
pair into our database we also keep a mapping between the nodes that are on the
interface border. This way we know how to rewire the core back.

However, in the second part of the GraSCoM algorithm (where we produce novel
compounds), as explained before when we identify a interface in the current seed
molecule we want to rewire all the corresponding cores we have in our database.
The problem is that to do this we need to know the correspondence between the
vertex ids of the current and the database interface.

So how do we know which node corresponds to which? Well, once again we take
use of the labeling function Ln we introduced before. Given that these labels are
produced only with respect to the features of the graph and not the ids, for each
interface we can lexicographically sort the list of labels and then perform a hash
induced1 breadth-first view (BFV) on both graphs starting from the first node in
each of the lists that hasn’t been already visited. We do this until all nodes have
been visited (i.e. we traversed all the connected components). Algorithms 5 and

1We call a hash induced BFV a visiting of the nodes in a breadth-first manner, where after ex-
panding the current nodes’ child instead of always choosing in a predefined (left-right) manner,
we first visit the vertex that has the smallest hash id.
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6explain this procedure in pseudocode.

Using this approach we obtain a structure-based vertex mapping between the two
interfaces and thus know how to perform the rewiring.

Algorithm 5 Hash-induced connected component BFV
StartId: the id of the node where to start the BFV
IdToHash: id 7→ hashed label
procedure HashInducedBFView( StartId, IdToHash )

Q.push( StartId )
while ¬Q.empty() do

v ← Q.pop() . Get first element from queue
visitedNodes← visitedNodes ∪ {v}
next← NextNodesToVisit( v ) . Get child nodes of v
next.SortByHashId( IdToHash ) . Get sorted by hash list of ids
for all v ∈ next do

Q.push( v )
end for

end while
return visitedNodes

end procedure

4.3.3 Extended Interface

The last important procedure that needs to be introduced is what we called ex-
tending the interface and is performed before generating the id in order to encode
more information inside this value. For every interface Ir,t

v (G) we do this simple but
crucial two-step method: first instead of considering Ir,t

v (G) we consider Ir,t+1
v (G)

(artificially increasing the thickness by 1) and then we perform a relabeling of all
vertices.

The relabeling mean adding context information to the interface by following these
sequential steps:

1. ∀v ∈ Ir
v(G) the original label is prepended with a "i_"

2. ∀v ∈ Ir,t
v (G)− Ir

v(G) ∧ v ∈ Cr
v the original label is prepended with a "c_"

3. ∀v ∈ Ir,t+1
v (G)− Ir,t

v (G), if Cr
v relabel with "c_", otherwise with "e_".

As one can notice, while for all vertices that are part of the interface the relabeling
adds extra information to the existing one (by marking if the node is inside the core,
on the interface border, or between), for the artificially considered nodes we discard
the existing label information and just mark them with respect to their apparte-
nance to the core. By doing this, a lot of context information is added to the labels
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Algorithm 6 Hash-induced dual interface breath-first view; returns v2 7→ v1 map
IC/IDB: current/database interface
IC_Hashes/IDB_Hashes: id 7→ hashed label
procedure DualBFView( IC , IDB, IC_Hashes, IDB_Hashes )

for all v ∈ IDB do
alreadyExplored1[v]← false

end for
for all v ∈ IC do

alreadyExplored2[v]← false
end for
SortLexicographicallyByHashID( Ic_Hashes )
SortLexicographicallyByHashID( IDB_Hashes )
n1 ← NextUnvisitedNode( IDB, alreadyExplored1 )
n2 ← NextUnvisitedNode( IC , alreadyExplored2 )
while n1 6= ∅ ∧ n2 6= ∅ do

alreadyExplored1[n1]← true
alreadyExplored2[n2]← true
visited1 ← HashInducedBFView( n1, IDB )
visited2 ← HashInducedBFView( n2, IC )
for i← 1 . . . visited1.size() do

alreadyExplored1[visited1[i]]← true
alreadyExplored2[visited2[i]]← true
vertexMapping[visited2[i]]← visited2[i]

end for
n1 ← NextUnvisitedNode( IDB, alreadyExplored1 )
n2 ← NextUnvisitedNode( IC , alreadyExplored2 )

end while
return vertexMapping

end procedure
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and implicitly to the final hash id.

This transformation ensures a successful hash-induced breath first view (and map-
ping of the vertices) as explained in sec. 4.3.2. At the same time it causes a stricter
isomorphism between two interfaces and thus the whole core substitution procedure
to be more rigorous with respect to the structure of the molecule.
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5 Evaluation

In this chapter we will present and discuss various results obtained on GraSCoM
under different parameter and experiment setups.

Dataset The experiments we have performed all used the Bursi[16] dataset that
contains a list of 4337 molecular structures with corresponding Ames data (2401 mu-
tagens and 1936 nonmutagens). The dataset focuses on the study of toxic properties
which are usually related to subparts of the chemical structure.

5.1 Methodology

Limited, positive seeds For all the experiments we used as an input for com-
puting the database a set of positive molecules. This is of course due to the fact
that the algorithm is going to identify and extract cores and interfaces from these
compounds and we want to populate our database with structures that come from
valid sources. Due to computational expenses (time and memory) which are caused
by a combinatorial explosion that happens every iteration, we only keep from one
iteration to the next a limited subset of the newly generated molecules. We will
refer in detail to this issue in sec. 5.3.

Training the model In order to score the molecules (or the contribution of each
vertex) we need a model. For this purpose in every setup we learned a model from
the complete Bursi dataset.

Cross-validation Generally we used the cross-validation technique for estimating
the accuracy of the model. In this sense, we performed a 70/30 split of the dataset
into train and test. We then learned a model from the complete train set and per-
formed predictions on the test set. These predictions were then confronted with the
known, true target values. The resulting measures represent the reference values.
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Iterations The default parameter we used for the number of iterations GraSCoM
should perform is 5. For every experiment setup we then performed 5 repetitions,
every time generating different "random" train and test sets. While we do call a
random number generator for selecting the molecules to consider every round, we
also use a fixed seed every time (the current repetition number) in order to produce
the same sets over different runs of the experiment. This makes the results over
different setups comparable.

Performance measures We used the perf 1 software to compute the following three
performance measures:

• Receiver Operating Characteristic(ROC). The ROC curve is generated by plot-
ting the fraction of true positives out of the positives against the fraction of
false positives out of the negatives at different thresholds.

• F-measure(PRF)= 2×Precision×Recall
Precision + Recall

• Accuracy (ACC) = True Positives + True Negatives
True Positives + False Positives + True Negatives + False Negatives

• Area under the precision recall curve (APR): Given that we plot the precision
as a function of the recall (i.e. p(r)), APR=

∫ 1
0 p(r) dr

For evaluating the quality of our newly generated molecules we used two approaches:

• merge the train negatives with the new molecules considered as positives (fur-
ther refer to this as the full train set merge) or,

• merge the whole train set with the new molecules considered as positives (fur-
ther referred to as the negative train set merge).

The purpose of the full train set merge experiment is to see what is the influence
that the newly generated compounds have on the predictive performance of the
model. The second experiment is meant to test how "powerful" the newly generated
molecules are, by considering them the only positives in the set used to induce the
model. Once we’ve done the merging, we learn a model that we then use to try and
classify the test set. The predicted values and the true values are given as an input
to perf which returns the measures mentioned above.

5.2 Experiments

With the types of experiments we’ve set up, we tried to answer different questions
with regards to the behavior of the system under various parameters.

1http://osmot.cs.cornell.edu/kddcup/software.html
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5.2.1 Size of the Input Dataset

For this type of experiment we made the only exception from the cross-validation
scheme and instead of performing 5 repetitions of the experiment with 70/30 ran-
domly split sets, we start from the same train/test sets every repetition, but we
gradually increase the size of the train set proportional to the iteration number.
This way, initially we will extract structures from one fifth of the train set in the
first repetition, two fifths in the second and so on until the 5th repetition uses the
whole train set (which in this setup consists of 1696 positive molecules).

By doing this we are keeping the same test set every repetition while varying only the
size of the train set from which we extract core/interface structures. Fig. 5.1-Fig. 5.8
present the measures collected under the two "merging" approaches for generating
the new train set that induces the model. Apart from the APR and PRF in the
negative train set merge evaluation, all other performance measures show what we
would have expected, i.e. that the more knowledge out of which the system can
learn, the better it can perform.

Figure 5.1: APR value measured for the "Size of the input dataset" experiment
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Figure 5.2: APR value for the "Size of the input dataset" experiment

Figure 5.3: ACC value measured for the "Size of the input dataset" experiment
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Figure 5.4: ACC value measured for the "Size of the input dataset" experiment

Figure 5.5: PRF value measured for the "Size of the input dataset" experiment
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Figure 5.6: PRF value measured for the "Size of the input dataset" experiment

Figure 5.7: ROC value measured for the "Size of the input dataset" experiment
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Figure 5.8: ROC value measured for the "Size of the input dataset" experiment

We can also analyze how does the number of extracted structures change under this
linear growth of the input set. As one can notice from the the plots in Fig. 5.9-
Fig. 5.10, a linear growth in the set used for inducing our graph construction model
causes a similar linear growth in the size of cores and interfaces. This is a bit
surprising, as one would expect to see a faster "saturation" w.r.t. the number of
features that the system can extract given an increasing number of inputs.

Figure 5.9: Linear growth of the input set causes linear growth in the number of cores
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Figure 5.10: Linear growth of the input set causes linear growth in the number of inter-
faces

5.2.2 Probability of Finding Similar Molecules to the Test Set

The purpose of this experiment is to check how does the similarity between the
newly generated molecules and the test set evolve over iterations and under differ-
ent parameter constraints. For measuring this, we use the NSPDK to which we
feed a list containing a merge between the 1000 top new compounds we generate
after each iteration and the test set molecules (which lets assume are of size t). The
NSPDK computes the similarity between all pairs of given molecules and returns a
matrix of (1000+t)x(1000+t) containing scores between 0 and 1, where 1 is a perfect
match. Obviously, the matrix will contain 1 on the diagonal.

What we have noticed in this experiment is that the more iterations we make,
the less similar the newly generated molecules are to the test set. This is something
to be expected, as the method tends to grow the size of the molecules. However, this
can be controlled by the the creativity factor and in fact we actually managed to
recreate compounds from the test set in some of our first iterations. The most im-
pressive figures were always achieved under a creativity factor of 1 ( i.e. 〈Maxr = 5,
Mint = 4〉 or 〈Maxr = 3, Mint = 2〉). For these values we got up to 26 hits when
comparing to the positives from the test set, which is a spectacular result given that
the number of test positives was around 700.

The reason why these hits happened under these parameter values is because, as
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explained in sec. 4.2 a thick interface with a radius that is as close as possible to
it makes the system perform really small steps in the search space, be very conser-
vative, and thus inspect the similar structures to the ones it gets as seeds. When
the creativity factor has a value of one, it means that the system is performing only
atom swapping, and depending on the thickness it expects more and more from the
molecule in terms of structure similarity.

This is a very promising result which shows that the system is indeed capable to
perform de novo molecular design and and the same time learn meaningful features
from a dataset that contains molecules with similar (toxic) properties. Fig. 5.11
shows some examples of the valid positive molecules that the system generated.

Figure 5.11: Valid de novo molecules created by GraSCoM

5.2.3 Radius Parameter

As we mentioned in the description of the method, the radius and the thickness are
two parameters that influence a lot the way in which the search space is sampled.
If we allow big radiuses, it means we allow substitutions of large cores and thus
big changes with respect to the structure between the seed and the new generation.
This causes the model to have actually worse performances as one can see in figures
Fig. 5.12-Fig. 5.27 and this is because the learned model prefers molecules that are
similar in structure to what it already knows.
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Figure 5.12: ACC value measured for 200 seeds, and radius 3 on full train set merge

Figure 5.13: ACC value measured for 200 seeds, and radius 5 on full train set merge
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Figure 5.14: ACC value measured for 200 seeds, and radius 3 on negative train set merge

Figure 5.15: ACC value measured for 200 seeds, and radius 5 on negative train set merge
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Figure 5.16: APR value measured for 200 seeds, and radius 3 on full train set merge

Figure 5.17: APR value measured for 200 seeds, and radius 5 on full train set merge
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Figure 5.18: APR value measured for 200 seeds, and radius 3 on negative train set merge

Figure 5.19: APR value measured for 200 seeds, and radius 5 on negative train set merge
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Figure 5.20: PRF value measured for 200 seeds, and radius 3 on full train set merge

Figure 5.21: PRF value measured for 200 seeds, and radius 5 on full train set merge
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Figure 5.22: PRF value measured for 50 seeds, and radius 3 on negative train set merge

Figure 5.23: PRF value measured for 200 seeds, and radius 5 on negative train set merge
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Figure 5.24: ROC value measured for 50 seeds, and radius 3 on full train set merge

Figure 5.25: ROC value measured for 200 seeds, and radius 5 on full train set merge
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Figure 5.26: ROC value measured for 50 seeds, and radius 3 on negative train set merge

Figure 5.27: ROC value measured for 200 seeds, and radius 5 on negative train set merge
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5.2.4 Number of Seeds Parameter

Here we analyzed how the system behaves under different sized seed sets through
out complete runs. Interestingly, if intuitively one would expect a direct relation-
ship between the seed set and the final performance, at least for the values we’ve
considered (10,50,100,150) the difference in negligible. When one comes to think
about it, it actually makes sense that there variation is so low, as the size of the
database is the one that heavily influences the number of generated new molecules
from each seed molecule.

In this sense, given a train set of around 1400 positives, the database can contain a
number of over 7000 cores and more than 3200 interfaces. With these numbers the
rewiring of every seed molecule generates from around 2500 new compounds to over
7000. One can imagine that the jumps performed in the search set are impressively
big even if we take the lower bound of 2500 molecules.

Figure 5.28: ACC value measured for 50 seeds, and radius 5 on full train set merge
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Figure 5.29: ACC value measured for 200 seeds, and radius 5 on full train set merge

Figure 5.30: ACC value measured for 50 seeds, and radius 5 on negative train set merge
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Figure 5.31: ACC value measured for 200 seeds, and radius 5 on negative train set merge

Figure 5.32: APR value measured for 50 seeds, and radius 5 on full train set merge

56



5.2. EXPERIMENTS

Figure 5.33: APR value measured for 200 seeds, and radius 5 on full train set merge

Figure 5.34: APR value measured for 50 seeds, and radius 5 on negative train set merge
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Figure 5.35: APR value measured for 200 seeds, and radius 5 on negative train set merge

Figure 5.36: PRF value measured for 50 seeds, and radius 5 on full train set merge
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Figure 5.37: PRF value measured for 200 seeds, and radius 5 on full train set merge

Figure 5.38: PRF value measured for 50 seeds, and radius 5 on negative train set merge
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Figure 5.39: PRF value measured for 200 seeds, and radius 5 on negative train set merge

Figure 5.40: ROC value measured for 50 seeds, and radius 5 on full train set merge
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Figure 5.41: ROC value measured for 200 seeds, and radius 5 on full train set merge

Figure 5.42: ROC value measured for 50 seeds, and radius 5 on negative train set merge
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Figure 5.43: ROC value measured for 200 seeds, and radius 5 on negative train set merge

5.2.5 Iteration Parameter

These weren’t necessarily a standalone set of experiments, but actually we can de-
rive a general conclusion from all previous experiments regarding to how the system
performs over all 5 iterations we perform.

First we should notice that the newly generated molecules are not as powerful as the
set of positives, as they do not manage to induce a model which could classify data
better (the negative train set merge). One reason of this could be that the system
finds a structure that if believes to be really toxic and the propagates and prefers all
molecules that contain it in terms of the scoring function (Fig. 5.45). However, as
we mentioned in the chapter 2 section, there can’t be immediate high expectations
from a computer-based de novo design approach, as it could be that a scaffold hop
was performed, and then the model that induces the scoring function is irrelevant. It
could also happen that the proposed molecules are a good inspiration to the chemist
and then again, the approach can be considered successful.

Nevertheless, the second type of experiment (the full set train merge) shows that
when these compounds are added to an existing set of positive molecules, then the
performance measure start to have a increasing tendency.

Even though looking at the standard deviations one could argue that this tendency
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is not relevant, considering that we’ve learned the scoring functions on a relatively
small dataset, the fact that for some iterations the performances are almost always
above the reference values and that the experiment measuring the similarity to the
database showed that there are indeed some hits with the test set, we believe that
the approach has a great potential. We are confident that with further research,
GraSCoM could become a really efficient and robust way of learning context-based
features from graphs.

Figure 5.44: Molecules generated by GraSCoM after the first iteration

5.3 Complexity

When it comes to evaluating the complexity of this system, the most important
factor that influences the run time and memory usage is the exponential growth
between generations which makes an unrestricted run of GraSCoM unfeasible.

5.3.1 Exponential Growth

While of course the size of the input set is important w.r.t to the number of gener-
ated compounds, as we will see insec. 5.3.2 the number of identified structures grows
linearly with the size of the dataset and thus has a linear influence to the final time
of reassembling a graph. The two parameters that are heavily influencing this ex-
ponential growth are the radius and the thickness, and the difference between these
values (what we previously introduced as the creativity factor).
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Figure 5.45: Molecules generated by GraSCoM after the fifth iteration

Tab. 5.1 shows a rounded average of the number of proposed candidates under dif-
ferent variations of the maximum/minimum radius and minimum thickness values.

Minr Maxr Mint Average number of generated candidates
0 1 0 50
0 3 0 1500
0 3 2 90
2 3 0 750
0 5 0 7000
0 5 2 250
0 5 4 30
3 5 0 3200

Table 5.1: Influence of the creativity factor on the exponential growth
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5.3.2 Run Time

In this subsection we will provide some run time figures that we have collected
from different runs of the GraSCoM system on a machine with X5650 @2.67GHz
processors.

Populating the database The time needed to identify the cores and interfaces,
alongside with computing the hash ids for the interface vertices (for having them
already computed when a DualBFView is performed) also shows a linear behavior
with respect to the size of the input set (Fig. 5.46 and Tab. 5.2). This is an expected
behavior: more graphs to analyze, more time needed.

Figure 5.46: Linear growth of the input set causes linear growth on the time needed to
populate the database.

However, it is important to mention that the method for populating the database
can easily be parallelized thus one can just split the input set into small fractions
and then just merge the results ensuring that identical structures are added only
once to the final set.

Core substitution The time needed to perform all possible core substitutions given
a graph, obviously depends on the size of the graph and the on the radius-thickness
parameters, but also a big influence has the similarity of that graph with respect to
the dataset used for identifying the structure. In this sense, if a molecule is similar
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Size of input set Time(sec)
348 246.29
692 482.81
1045 736.39
1405 988.62
1696 1196.07

Table 5.2: Time needed for identifying the cores and interfaces w.r.t the size of the input

to the dataset, then there will be a lot of common structures with the database.
Through out the runs we have performed, we estimate an average of 10 seconds to
rewire 100-200 graphs.

Scoring the molecules The time needed to score the graphs is generally very close
to the the one that was needed to rewire them, the differences being in the order of
seconds in the advantage of one or another.
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6 Conclusion

6.1 Discusion

In this thesis we have introduced GraSCoM, a system that proposes a novel way of
exploring the chemical/search space using a so-called core substitution procedure.
The main goal of the thesis was to see how meaningful such a exploration would be
and given the results we can say without doubt that it is indeed a very promising
and powerful technique.

An interesting fact about the implementation of GraSCoM is that internally it deals
with graphs (or hypergraphs) and only the scoring function is the one that makes it
a molecular design approach. This gives room to a lot of ideas of what such a tool
could do. In other words, given an entity that could be represented as a graph and
a scoring function for the type of problem one is interested in, the system is capable
of extracting meaningful structures from an input set and then propose new (viable)
solutions for improving.

6.2 Future Work

As one can imagine, there are a lot of ideas such a setup generates and also a lot of
things that one could think of adding.

One useful addition would be allowing another input parameter where one could
be specify as a string a policy about how the parameters should change every iter-
ation. For example, one could give the system a big creativity factor for the first
iteration (thus allowing big jumps in the search space) and then make the system
conservative for the next couple of iterations (similar to the simulated annealing
strategy).

Another idea would be to allow a finer way of filtering the top molecules by us-
ing domain-specific constraints. In this sense one could prefer graphs with some
desired property and discard others that would be of no interest for that particular
study.
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