
Albert-Ludwigs-Universität
Freiburg

Diploma Thesis

Efficient solving of alignment-problems with
side conditions using constraint techniques

Sebastian Barth
May 10, 2007

Fakultät für Angewandte Wissenschaften
Institut für Informatik
Lehrstuhl für Bioinformatik

Gutachter Prof. Dr. Rolf Backofen
Prof. Dr. Christoph Scholl

ERKLÄRUNG

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst
habe, keine anderen als die angegebenen Quellen/Hilfsmittel verwendet habe
und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften
entnommen wurden, als solche kenntlich gemacht habe. Darüber hinaus
erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits
für eine andere Prüfung angefertigt wurde.

Ort, Datum Unterschrift

4

Danksagung

An dieser Stelle möchte ich all jenen danken, die durch ihre fachliche
und persönliche Unterstützung zum Gelingen dieser Diplomarbeit beigetra-
gen haben.

Prof. Dr. Rolf Backofen danke ich für die Vergabe einer herausfordernden
und überaus interessanten Themenstellung, die mir einen tieferen Einblick in
die Bioinformatik ermöglichte.

Prof. Dr. Christoph Scholl danke ich für seine Bemühungen.

Meinem Betreuer Dr. Sebastian Will danke ich ganz herzlich für zahl-
reiche fruchtbare Diskussionen und viele Anregungen.

Große Dankbarkeit empfinde ich gegenüber meiner geliebten Frau, meiner
Mutter und meinem Großvater für ihre liebevolle Unterstützung.

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Related Works . 9

1.3 Overview . 9

2 Fundamentals 11

2.1 Definition of an alignment . 11

2.2 Further constraints for alignments 12

2.2.1 Anchor constraints . 12

2.2.2 Precedence constraints 12

2.2.3 Aligned segments . 13

2.2.4 Sequence structure alignment 13

3 The approach of dynamic programming 15

3.1 Alignment using dynamic programming 15

3.2 Extended alignment problems 19

3.2.1 Anchor constraints . 19

3.2.2 Precedence constraints 20

3.2.3 Aligned segments . 21

4 Cluster tree decomposition, elimination 27

4.1 A constraint model for sequence alignment 27

4.2 Definition of a cluster tree . 29

4.3 Cluster tree elimination . 29

4.4 Using CTD/CTE for solving alignments 30

4.5 Extended alignment problems 33

4.5.1 Anchor constraints . 34

4.5.2 Precedence constraints 34

4.5.3 Aligned segments . 34

4.6 Sequence structure alignment 36

5

6 CONTENTS

4.6.1 Cluster-tree decomposition for a sequence structure align-
ment . 37

4.6.2 Attributes of the decomposition 39
4.6.3 Cluster-tree elimination for sequence structure align-

ments . 39
4.6.4 Construction of a cluster tree for sequence structure

alignment . 41
4.7 Combining several constraints 42

4.7.1 Multiple constraints of one type 42
4.7.2 Different multiple constraints combined 45

5 Progressive alignment 47
5.1 Aligning three sequences . 47

5.1.1 Aligning an alignment of two sequences with a sequence 48
5.2 Progressive alignment . 49

5.2.1 How to align alignments using CTD and CTE 50
5.3 Combining with constraints 51

5.3.1 Induced constraints . 52
5.3.2 Following the guide tree 54

6 Multiple alignments using CTD/CTE 55
6.1 Aligning three sequences . 55

6.1.1 A constraint model for three sequences alignment . . . 55
6.1.2 Cluster tree decomposition 58
6.1.3 Cluster tree elimination 58

6.2 Aligning m sequences . 59
6.3 Adding constraints . 60

6.3.1 Anchor constraints . 60
6.3.2 Precedence constraints 60

7 Conclusion 61
7.1 Further perspectives . 62

Chapter 1

Introduction

1.1 Motivation

Since the discovery of the structure of the genome, RNA and DNA, we try
to understand its code. A DNA consists of two sequences bound together by
base pairs of the nitrogenous bases cytosine, guanine, adenine and thymine
forming hydrogen bounds. RNA is a single sequence of the nitrogenous bases
cytosine, guanine, adenine and uracil (see fig. 1.11). A RNA sequence can
form hydrogen bounds with itself. This forms the secondary structure, a
general three dimensional structure. Proteins also exist as sequences.

Many problems and open questions of modern microbiology demand the
comparison of RNA, DNA or protein sequences. The computational effort in
performing these calculations is high and microbiology urges the development
of efficient tools. An important requirement is the capability of these tools
to deal with certain constraints. Examples might be a specified number of
matches of two compared sequences within certain regions or a consideration
of the secondary structure of a proteine [3, 13, 15, 22, 19].

Subject of this thesis is the efficient alignment of sequences, where we
focus especially on different constraints on the alignment and how to combine
these constraints, even in multiple alignments.

1taken from http://de.wikipedia.org/wiki/Bild:RNA-comparedto-DNA.PNG

7

8 CHAPTER 1. INTRODUCTION

Figure 1.1: RNA compared to DNA

1.2. RELATED WORKS 9

1.2 Related Works

A short overview of a computation of an alignment using dynamic program-
ming can be found at [8]. The method of cluster tree decomposition and
elimination is described in detail by [17]. [21] extends this approach to solve
alignments and to handle with constraints. Multiple alignments are discussed
in [7, 4, 14, 18, 20, 6], many of them use progressive alignment.

1.3 Overview

With a short theoretical introduction in chapter 2, we will start with stan-
dard dynamic programming approach for computing alignments inspired by
[8] (chapter 3). Even though dynamic programming is an important method
in bioinformatics it is hard to find an enlargement that can deal with con-
straints. We will show some possibilities for computing alignments with
anchor, precedence and aligned segments constraints by using dynamic pro-
gramming.

Chapter 4 is about cluster tree decomposition and elimination. The chap-
ters 4.1 to 4.5 are based a lot on the the work [21]. In these chapters a
constraint model for sequence alignments and the cluster tree decomposi-
tion, elimination are developed, as well as anchor, precedence and aligned
segments constraints are added. [21] describes briefly how to deal with sec-
ondary structure alignments. This description is extended, formalised and a
method to construct a decomposition for secondary structure alignment of a
cluster tree decomposition for an alignment without any secondary structure
is shown. Then we will concentrate on how to deal with combinations of
several constraints, even if these are of a different type.

Chapter 5 gives an heuristic approach for solving multiple alignments us-
ing cluster tree decomposition and elimination. At the beginning we will
compute an alignment on three sequences. After a short introduction on
progressive alignment we show how to compute a multiple alignment using
progressive alignment and continue by handling with anchor and precedence
constraints on multiple alignments.

After computing the optimal alignment between three sequences, we show
in chapter 6 an approach for finding an optimal multiple alignment. This
approach is exponential in the number of sequences that should be aligned

10 CHAPTER 1. INTRODUCTION

and uses cluster tree decomposition and elimination. We close this work on
adding anchor and precedence constraints on multiple alignments.

Chapter 2

Fundamentals

2.1 Definition of an alignment

Considering two strings we are interested in the degree of similarity if we
compare them. An important term in the comparison of strings is the align-
ment.

Definition 2.1.1 An alignment A of two strings S1 and S2 over the alphabet
Σ is a subset of {1, . . . , n}∪{−}×{1, . . . , m}∪{−}, where n is the number of
characters in S1 and m the one in S2 (see [1]). A has to satisfy the following
conditions:

• (−,−) /∈ A

• ∀(i, j) ∈ A ∩ {1, . . . , n} × {1, . . . , m}: i and j appear only once in A.

• ∀(i′, j′), (i, j) ∈ A ∩ {1, . . . , n} × {1, . . . , m} : i′ < i ⇔ j′ < j. Any
pairs in A are non crossing.

In an alignment each character of both strings is allocated to an other char-
acter in the other string or to a gap, represented by ′−′. If aligning DNA-,
resp. RNA-sequences, we can define Σ as: Σ = {a, c, g, t} ∪ {−}, resp.
Σ = {a, c, t, u} ∪ {−}.

In order to be able to measure the similarity we need a scoring scheme:
Let δ(x) → R be a cost-function, where x = (x1, x2) ∈ Σ × Σ. δ measures
the quality of aligning an element of S1 with an element of S2

1. The score of
A is:

1if aligning RNA, it is a measure for the quality of aligning two unpaired nucleotides

11

12 CHAPTER 2. FUNDAMENTALS

Definition 2.1.2 Score of an alignment

score(A) =
∑

x∈Σ×Σ

δ(x)

For example, we can allocate a positive value for δ if the two characters differ
and 0 otherwise. This way we receive score(A) = 0 for equivalent strings a,
low value for similar strings and a high value for different ones.

Example 2.1.1 Editing distance
As an other interpretation, we consider min score(A), where A is any align-
ment of S1 and S2, equal to the editing distance. If we determine δ(s1, s2) = 1,
where s1 is a character of S1 and s2 one of S2, as the costs of a conversion
of s1 into s2 if s1 6= s2 and δ(s1, s2) = 0 if s1 = s1 and δ(s1,−) = 1 resp.
δ(−, s2) = 1 as the costs of deletion of s1 in S1 resp. a insertion of s2 into
S1, the editing distance of S1 and S2 expresses the minimal costs, with respect
to δ and the number of operations to transform S1 into S2.

With a high value of δ for matchings and lower, possibly negative, for mis-
matches, we can formulate the following definition.

Definition 2.1.3 Optimal alignments
Let A∗, resp A∗(S1,S2) denote the optimal alignments of two strings regard-
ing the score. I.e. the alignments A∗ have to fulfill the following equation:

score(A∗) = max
A of S1,S2

score(A)

Definition 2.1.4 Optimal alignment of subsequences
A∗(xi, yj), where x1 . . . xi and y1 . . . yj are substrings of S1 and S2 beginning
at the first position and ending at position i, resp. j, denote the optimal
alignments of the substrings x1 . . . xi and y1 . . . yj.

2.2 Further constraints for alignments

2.2.1 Anchor constraints

This simple constraint forces the element at position i in the first sequence
to be aligned with an element at a position less or equal to j in the second
one.

2.2.2 Precedence constraints

Here an element at position i in the first sequence has to be aligned left (resp.
right) to the position of j’th element in the second sequence.

2.2. FURTHER CONSTRAINTS FOR ALIGNMENTS 13

2.2.3 Aligned segments

The aligned segments extend the normal alignments by the following con-
straint: Given two sequences a and b and the segments k, . . . , k′ of sequence
a, l, . . . , l′ of sequence b. A certain percentage of the elements in segment
k, . . . , k′ have to be matched with elements of segment l, . . . , l′.

2.2.4 Sequence structure alignment

In contrast to the other problems observed so far, we now also consider the
secondary structure of our sequences [21].

Let two structures Pa and Pb be given with Pa ⊂ {1, . . . , n} × {1, . . . , n}
over a sequence A = {a1, . . . , an} and Pb ⊂ {1, . . . , m} × {1, . . . , m} over
the sequence B = {b1, . . . , bm}. A pair (il, ir) ∈ Pa (resp. (jl, jr) ∈ Pb),
l < r, expresses dependencies in sequence A between the bases al and ar

(resp. bl, br in B), as for instance in the case of base pairings. For any two
pairs (il1 , ir1

), (il2, ir2
) ∈ Pa (resp. (jl1 , jr1

), (jl2 , jr2
) ∈ Pb) it holds: il1 6= il2

and ir1
6= ir2

(resp. jl1 6= jl2 , jr1
6= jr2

)

Let ω : {1, . . . , n}× {1, . . . , n}×{1, . . . , m}× {1, . . . , m} → R be a func-
tion that weights a structural element of Pa in comparison to one of Pb.

In extension to def. 2.1.2 we can define the score of two aligned structures
as following:

Definition 2.2.1 The score of two aligned sequence structures
Let Pa and Pb be two structures of the sequences A and B. Let A be an
alignment of A and B. The score of an alignment APa,Pb

of two structures
is defined as

score(APa,Pb
) = score(A) +

∑

(il,ir)∈Pa,(jl,jr)∈Pb

(il,jl)∈A,(ir ,jr)∈A

ω(il, ir; jl, jr)

A special type of secondary structures are pseudoknots and pseudoknot-
free structures.

Definition 2.2.2 Pseudoknot-free structure [5]
A structure P over a sequence is called pseudoknot-free iff for any two pairs
(il, ir), (jl, jr) ∈ P , with il < jl, holds

• il < ir < jl < jr or

14 CHAPTER 2. FUNDAMENTALS

Figure 2.1: Example of a pseudoknot-free structure

• il < jl < jr < ir

A visualisation of a pseudoknot-free structure is given in figure 2.12.

2taken from [5]

Chapter 3

The approach of dynamic
programming

Dynamic programming is one of the very basic programming principles in
computer science. It often allows to solve combinatorial optimisation prob-
lems over a search space of exponential size in polynomial space and time
[11]. Dynamic programming was formalised in the early 1950s by the math-
ematician Richard Bellman.

Definition 3.0.3 Dynamic algorithm
A dynamic algorithm is distinguished by four different parts [8]:

• A recursive definition of the optimal score of the corresponding optimi-
sation problem.

• A dynamic programming matrix for remembering the optimal scores of
subproblems in order to avoid multiple computation of the same values.

• A bottom-up approach for filling the matrix which contains the partial
solutions. The smallest subproblems will be solved first, the others not
until the needed values are accessible.

• A traceback algorithm that traverses the filled matrix in order to find
the structure of the optimal solution that gave the optimal score.

3.1 Alignment using dynamic programming

If we want to receive an optimal alignment of the two segments S1 and S2 we
have to consider how we can alter our four parts adequately. Let us assume,

15

16 CHAPTER 3. THE APPROACH OF DYNAMIC PROGRAMMING

we want to transform S1 into S2.

Let xi, 1 ≤ i ≤ m, be a character1 at position i of S1 and yj , 1 ≤ j ≤ n,
one of S2, where m, n are the number of characters in S1 resp. S2. If we
want to receive the optimal score, score(A∗(xi, yj)) of an alignment of the
subsequences x1 . . . xi of S1 and y1 . . . yj of S2 there are three different cases
for a recursive definition to consider:

• xi and yj will be aligned, i.e. xi = yj or we will replace xi by xj . The
pair (xi, yj) will appear in our alignment of the subsequences.

• xi will be aligned with ′−′ , i.e. xi will be deleted in the subsequence of
S1.The pair (xi,−) will appear in our alignment of the subsequences.

• yj will be aligned with ′−′, i.e. yj will be inserted into the subsequence
of S1 The pair (−, yj) will appear in our alignment of the subsequences.

That leads to the following recursive equation

score(A∗(xi, yj)) = max







































score(A∗(xi−1, yj−1)) + δ(xi, yj)

for replacing xi by yj

score(A∗(xi−1, yj)) + δ(xi,−)

for deleting xi in S1

score(A∗(xi, yj−1)) + δ(−, yj)

for inserting yj in S1

. (3.1)

If we introduce constant gap costs γ, we receive

score(A∗(xi, yj)) = max











score(A∗(xi−1, yj−1)) + δ(xi, yj)

score(A∗(xi−1, yj)) + γ

score(A∗(xi, yj−1)) + γ

. (3.2)

Our dynamic programming matrix M will store the scores. At position
M(i, j) the score(A∗(xi, yj)) will be stored . M is of size O(nm) since we
need entries for every combination i × j. In addition we need the column
M(0, j) and the row M(i, 0). The matrix will be initialised with the values
M(0, 0) = 0 and M(i, 0) =

∑i

k=1 δ(xi,−), M(0, j) =
∑j

l=1 δ(−, yj) respec-
tively M(i, 0) = iγ, M(0, j) = jγ in case of constant gap costs.

1A protein base for RNA resp. DNA

3.1. ALIGNMENT USING DYNAMIC PROGRAMMING 17

Once we initialised M we can fill the matrix bottom up by examining for
each M(i, j) the three adjacent entries M(i−1, j−1), M(i−1, j), M(i, j−1)
and choosing the maximal value. We can begin with M(1, 1) and complete
the first row, afterwards we do the same with the second one and so on.

Since each cell M(i, j) contains the optimal alignment score of the subse-
quences x1 . . . xi and y1 . . . yj of S1 and S2, the score of the optimal alignment
A∗ of S1 and S2 is score(A∗) = M(n,m).

Now we know the score of an optimal alignment, but we are interested
in the structure, too. Due to our recursive equation, we can be sure that
M(m,n) refers to at least one of the adjacent cells M(m−1, n), M(m,n−1)
or M(m− 1, n− 1). As seen in equation 3.1 these entries can be interpreted
as a replacement, insertion or deletion of a character resp. a protein base in
our sequence S1. Since ∀i, j, where 0 < i, j ≤ n,m the entry in M(i, j) is,
due to equation 3.1, only influenced by one of the cells M(i−1, j), M(i, j−1)
or M(i− 1, j − 1)2 we only need to consider this tree adjacent cells to find
the structure of the optimal alignment via traceback. If we recompute the
entry in (M)(i, j) we know which cell is responsible for M(i, j). This gives
the traceback path. The corresponding structure of the alignment and the
adequate action for transforming S1 into S2 is given by the traceback path.
Figure 3.13 shows an example. In this example a scoring scheme of +5 for
a match, −2 for a mismatch and −6 for each insertion or deletion is used.
The traceback path is shown red and the arrowheads are ’traceback pointers’
indicating which of the three cases were optimal for reaching each cell.

The storage capacity needed for this algorithm is O(mn) since this is the
dimension of our dynamic programming matrix M. The filling of one cell
takes constant time, therefore the filling of the complete matrix is also in
O(mn) time. Since we do the same computation for the traceback as before
when we filled M and we consider each cell at most 2 times4 it is also in
the time complexity O(mn). Therefore the time complexity of the complete
algorithm is in O(mn).

2Of corse, the optimal score can be obtained by one, two or even all three adjacent cells,
but an algorithm would only take one and we are only interested in one representative of
all optimal alignments.

3taken from [8]
4M(i − 1, j − 1) will be considered twice if we chose M(i − 1, j) or M(i, j − 1).

18 CHAPTER 3. THE APPROACH OF DYNAMIC PROGRAMMING

Figure 3.1: Dynamic programming matrix of an alignment

3.2. EXTENDED ALIGNMENT PROBLEMS 19

Figure 3.2: Dynamic programming matrix with one anchor constraint
Traceback path is marked red.

3.2 Extended alignment problems

In this chapter we will discuss, how we can deal with further constraints using
algorithms based on the dynamic programming approach discussed before.

3.2.1 Anchor constraints

If we want to force character xi in sequence S1 to align with yj in S2 it suffices
to have a look at the alignments of the subsequences x1, . . . , xi, y1, . . . , yj and
xi+1, . . . , xm, yj+1, . . . , yn.

Since the traceback path of our alignment has to pass M(i, j) (see figure
3.2) we fill our dynamic programming matrix as mentioned before for all
cells M(k, l), with 0 ≤ k ≤ i and 0 ≤ l ≤ j. We consider M(i, j) as if it
would be a start point of a normal traceback path. In this way we obtain the
dynamic programming matrix for the alignment of the first subsequences.
For i ≤ k ≤ m and j ≤ l ≤ n we fill M in the following way:

• M(i, l) = M(i, j) +
∑l

o=i+1 δ(−, yo), j ≤ l ≤ n

• M(k, j) = M(i, j) +
∑k

p=j+1 δ(xp,−), i ≤ k ≤ m

• M(k, l), where k 6= i and l 6= j, will be filled using the same bottom
up mechanism like the standard alignment (equation 3.1).

20 CHAPTER 3. THE APPROACH OF DYNAMIC PROGRAMMING

For 0 ≤ k ≤ i and j < l ≤ n or i < k ≤ m and 0 ≤ l ≤ j we can fill M(k, l)
with −∞ because these areas are not of interest since our traceback path
won’t pass them.

Once we received M(m,n), we can compute our traceback path as we did
in chapter 3.1. The time and space complexity of this approach is in O(mn).

3.2.2 Precedence constraints

Here we distinguish two different cases depending on if the i’th element in
segment S1 has to be aligned to an element in segment S2 at a position
smaller or bigger position j. Let x be the mentioned position of the element
in S2.

1. Element i in S1 is aligned left to element j in S2.
I.e. 0 ≤ x < j (see figure 3.3). In this case, the traceback path can’t
pass the cells M(k, l) with 0 ≤ k < i and j ≤ l ≤ n. These cells can
be filled with −∞. The rest of M(k, l) will be filled as following:

• For 0 ≤ k ≤ m and 0 ≤ l < j:
The cells of M can be filled as if we compute a standard alignment
for the subsequences x1, . . . , xm of S1 and y1, . . . , ym of S2.

• For k = i and j ≤ l ≤ n:
M(k, l) = M(i, j − 1) +

∑l
p=j δ(xp,−)

• For i < k ≤ m and j ≤ l ≤ n:
M(k, l) can be computed convenient (formula 3.1) by using the
boundary values M(k, j − 1) and M(i, l).

2. Element i in S1 is aligned right to element j in S2.
I.e. j < x ≤ n (see figure 3.4). Like above, we can fill certain cells of
M with −∞. In this case they are the cells M(k, l) with i < k ≤ m
and 0 ≤ l ≤ j. For filling the rest of M(k, l) we have to consider the
following cases:

• For 0 ≤ k ≤ i and 0 ≤ l ≤ n:
M(k, l) can be computed as if we consider an alignment for the
subsegments x1, . . . , xi of S1 and y1, . . . , yn of S2.

• For i < k ≤ m and l = j + 1:
M(k, l) = M(i, j + 1) +

∑k

o=i+1 δ(−, yo)

3.2. EXTENDED ALIGNMENT PROBLEMS 21

Figure 3.3: Dynamic programming matrix with one precedence constraint,
’left’

Traceback path is marked red.

• For i < k ≤ m and j + 1 < l ≤ n:
In this case we can compute M(k, l) using the recursive formula
3.1 and the starting values at the boundary given by the two cases
above.

It is quite obvious that these approaches take O(mn) time and space com-
plexity.

3.2.3 Aligned segments

Let |k| be the number of elements in the segment xk, . . . , xk′ of S1 and |l|
be the number of elements in yl, . . . , yl′ of S2. Let x be the number of
characters in the segment xk, . . . , xk′ of S1 which have to be aligned with
characters in the segment yl, . . . , yl′ of S2 in order to satisfy the constraint
in chapter 2.2.3. Let |l| ≥ x, i.e. yl, . . . , yl′ contains enough elements
to fulfill the constraint. Due to the recursive equations 3.1 we need at
least x diagonal steps in the traceback path. A closer look on the square
M′ = (M(k, l), M(k′, l), M(k′, l′), M(k, l′)) shows that a possible trace-
back path can’t pass all cells of M within this square. We can only legally
enter the square at positions in {M(k, l),M(k + 1, l), . . . ,M(k′ − x, l)} or
{M(k, l),M(k, l+1), . . . ,M(k, l′−x)} and leave it at {M(k+x, l′),M(k+
x+1, l′), . . . ,M(k′, l′)} or {M(k′, l+x),M(k′, l+x+1), . . . ,M(k′, l′)} (see

22 CHAPTER 3. THE APPROACH OF DYNAMIC PROGRAMMING

Figure 3.4: Dynamic programming matrix with one precedence constraint,
’right’

Traceback path is marked red.

figure 3.5). Let I ′
1, . . .I

′
4 be coordinates of cells of M lying on the border of

M′. Let them be defined as following.

• I ′
1 = (k′ − x, l)

• I ′
2 = (k′, l + x)

• I ′
3 = (k + x, l′)

• I ′
4 = (k, l′ − x)

Let L1 be the straight line passing M(I ′
1),M(I ′

2) and L2 the one passing
M(I ′

3),M(I ′
4). It holds that L1 and L2 pass exactly x cells within the square

M′. If L1 or L2 is part of the traceback path, this path has exactly x parts
on the diagonal and no part parallel to the borders of M. I.e. exactly x ele-
ments of the considered segments are aligned. A legal traceback path can’t
pass cells within M′ but below L1 or above L2: such a path wouldn’t consist
of enough diagonal elements.

Let I1, . . . , I4 be the projection of I ′
1, . . . , I

′
4 on the margin of M. I1, . . . , I4

represent the following coordinates:

• I1 = (k′ − x, 0)

• I2 = (m, l + x)

3.2. EXTENDED ALIGNMENT PROBLEMS 23

Figure 3.5: Dynamic programming matrix with aligned segment constraint
Traceback path is marked red.

• I3 = (k + x, n)

• I4 = (0, l′ − x)

Let P be the area limited by the polygon

((0, 0), I1, I
′
1, I

′
2, I2, (m,n), I3, I

′
3, I

′
4, I4).

For geometrical reasons, due to our recursive definition (eq. 3.1), a possible
tracebackpath can’t pass cells outside P. The value of these cells can be set
to −∞.

We will initialise M(i, j) as following.

• M(0, 0) = 0

• M(i, 0) = iδ(xi,−), 0 < i ≤ k′ − x

• M(0, j) = jδ(−, yj), j < j ≤ l′ − x

• M(k′ − x, j) = M(k′ − x, 0) +
∑

j δ(−, yj), 0 < j ≤ l

• M(i, l′ − x) = M(0, l′ − x) +
∑

i δ(xi,−), 0 < i ≤ k

• M(k′−x+a, l+a) = M(k′−x+a−1, l+a−1)+δ(k′ −x+a, l+a) =
M(k′ − x, l) +

∑a

b=1 δ(k
′ − x+ b, l + b), 0 < a ≤ x

24 CHAPTER 3. THE APPROACH OF DYNAMIC PROGRAMMING

• M(k+a, l′−x+a) = M(k+a−1, l′−x+a−1)+δ(k+a, l′ −x+a) =
M(k′ − x, l) +

∑a

b=1 δ(k + b, l′ − x+ b), 0 < a ≤ x

• M(i, l + x) = M(k′, l + x) +
∑

i δ(xi,−), k′ < i ≤ m

• M(k + x, j) = M(k + x, l′) +
∑

j δ(−, yj), l
′ < j ≤ n

The initialisation can be done in linear time according to the size of the se-
quences.

Let P ′ be the area limited by the polygon

((0, 0), I1, I
′
1, I

′
2, (k

′, l′), I ′
3, I

′
4, I4).

Initially we can compute the cells of M that are covered by P ′ as we did
before for the simple alignment. Due to the constraints we have to fulfill, we
have to take a closer look on the values of the cells in M′.

Let M′ be represented by an additional matrix. We keep the coordinates
of M to identify the cells of M′. We are interested in the scores saved at the
margins M′(i, j), where i = k′, j > l + x or i > k + x, j = l′, and the cor-
responding traceback paths. Let T be an adequate datastructure for storing
all traceback paths, like a list of lists. Let P be a cell on the mentioned area
on the margin (fig. 3.6). We will compute for each P a tracebackpath. Let
d be the diagonal straight line passing P within M′, let |d| be the number of
cells within M′ passed by d. Let g = |d| − x be the number of gaps allowed
in an alignment aligning the elements corresponding to P in S1 and S2, resp.
the maximal number non-diagonal steps in the traceback path in order to
fulfill our constraint. d− g and d+ g denote parallels of d in such a distance
to d that d− g, d+ g can be reached from d in g horizontal or vertical steps.
It holds that all possible traceback paths through P in M′ lie in the area lim-
ited by the margin of M′, d−g and d+g containing d. Let A denote that area.

The initial values of the considered area can be taken from M which
values are already computed for the cells covered by P ′. All other cells of
M′ can be initialised by −∞. The cells within A have to store g values, e.g in
an array, since we need to know how many non-diagonal steps are contained
in a traceback path passing the corresponding cells. The value stored at
position 0 of one cell corresponds to a traceback path with 0 non-diagonal
elements and the value stored at position h with h non-diagonal elements.
Let M′

h(i, j) denote the hth value stored at position (i, j) in the matrix M′.

3.2. EXTENDED ALIGNMENT PROBLEMS 25

Figure 3.6: Closer look on M′ for segment constraint
Traceback path is marked red.

The recursive formula (eq. 3.1) will alter as following:

M′
h(i, j) = max











M′
h(i− 1, j − 1) + δ(xi, yj), for 0 ≤ h ≤ g

M′
h−1(i− 1, j) + δ(xi,−), for 0 < h ≤ g

M′
h−1(i, j − 1) + δ(−, yj), for 0 < h ≤ g

(3.3)

We begin our traceback path at the cell corresponding to P . When we
reached the cell Mh(i, j)

′ the next cell on our path will be:

• M0(i, j)
′ if h = 0.

• The cell of M′ with the according h corresponding to the value which
was used for the computation of Mh(i, j)

′.

The traceback path will be stored in T .

For filling M at the area P\P ′ we use the already computed initial val-
ues and the maximal values stored in M′

h limiting P\P ′. Beside these initial
values, we can continue using the standard algorithm (eq. 3.1).

The complete traceback path will start at M(m,n). It will be computed
as used until it enters the cells corresponding to M′ at the cell named P . The
next part of the path will looked up in P. When leaving M′, we can compute
the traceback path using the standard approach and the values stored in M.

M requires O(mn) storage and M′ needs O(|k||l|g). T stores O(|k|+ |l|)
traceback paths of the length O(|d| + g), i.e. T needs O((|k| + |l|)(|d| + g))

26 CHAPTER 3. THE APPROACH OF DYNAMIC PROGRAMMING

storage. For the worst case we will assume g = |d| = O(|k|)5, without any
restrictions, that leads to O(mn + |k|2|l|) total storage complexity. Since
we have to consider at most three adjacent cells for filling our matrices and
computing the traceback paths the time complexity is also O(mn+ |k|2|l|).

5We could also assume g = |d| = O(|l|).

Chapter 4

Cluster tree decomposition,
elimination

4.1 A constraint model for sequence align-

ment

In contrast to chapter 2.1 we treat the gaps in an alignment separately and
introduce a new scoring scheme.

We are interested in aligning two sequences a = a1, . . . , an and b =
b1 . . . bm, both consist of letters of the alphabet Σ. According to [21] an
alignment A of a and b can be defined as an ordered matching of positions
in a and b, i.e. as a subset of {1, . . . , n} × {1, . . . , m}, with the following
constraints:

1. i = i′ if and only if j = j′ and

2. i < i′ implies j < j′

for all (i, j), (i′, j′) ∈ A.
i and j are called matched by A if and only if (i, j) ∈ A.

With the similarity function σ : {1, . . . , n}×{1, . . . , m} ⇒ R and the gap
costs γ one can define the score of an alignment A:

Definition 4.1.1 The scoring scheme for cluster tree decomposition

score(A) = (n+m− 2|A|)γ +
∑

(i,j)∈A

σ(i, j)

27

28 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

The first part of this equation are the total gap costs, the second one repre-
sents the similarity of all matches in an alignment. By maximising score(A)
we receive a measure for the similarity of the sequences a and b according to
σ and γ. Definition 4.1.1 is equivalent to def. 2.1.2 considering

δ =

{

σ for aligning two bases

γ for a gap

Definition 4.1.2 Representation of an alignment as valuation.
Here an alignment of a and b will be represented as a valuation of finite
domain variables Xi, 1 ≤ i ≤ n with the domains dom(Xi) = {0, . . . , m}.
X0 and Xn+1, being fixed values, are introduced for technical reasons: X0 = 0
and Xn+1 = m+ 1. σ is extended by σ(n+ 1, m+ 1) = 0. Now an alignment
can be uniquely represented by a valuation (X0 = 0, . . . , Xn+1 = Xn + 1) of
the variables X0, . . . , Xn+1. Furthermore is:

1. xi = j if (i, j) ∈ A and

2. xi = xi−1, for every i that is not matched in A

It holds, that i and j are matched if and only if xi = j and xi > xi−1.

Example 4.1.1 The valuation x = (0, 1, 2, 5, 6, 6, 6, 7, 8) of X0, . . . , X8 cor-
responds to the alignment {(1, 1), (2, 2), (3, 5), (4, 6), (7, 7)} with, as already
mentioned X0 = 0 and X8 = 8. The same alignment can also be represented
by aligning the elements of pairs one upon the other. Gaps are represented
by a bar aligned with an element of one sequence.

a1 a2 − − a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 − − b7

We have to take care of the following hard constraints on the the variables; it
holds, that Xi−1 ≤ Xi for 1 ≤ i ≤ n+1. They are modeled by the functions:

leqi : dom(Xi−1) × dom(Xi) → {−∞, 0} (4.1)

If these constraints are broken leqi assigns −∞ otherwise 0.

We can express the score by functions fi(Xi−1, Xi) for 1 ≤ i ≤ n+ 1 that
considers two adjacent variables in our variable valuation by the following
scoring scheme.

fi(j
′, j) =

{

σ(i, j) + (j − j′ − 1)γ if j′ < j

γ otherwise
(4.2)

4.2. DEFINITION OF A CLUSTER TREE 29

Where (j − j′ − 1)γ in the first case counts the gaps in sequence a caused
by the alignment and weights them by γ directly in front of ai . The second
case occurs if j′ = j i.e. there is a gap in sequence b at the position of aj in
alignment A. Note that fi correctly models the score of an alignment. The
valuation (X0 = x0, . . . , Xn+1 = xn+1) represents an alignment A of a and b
if and only if

∑

1≤i≤n+1 fi(xi−1, xi) + leqi(xi−1, xi) is not −∞. In that case

∑

1≤i≤n+1

fi(xi−1, xi) = score(A) (4.3)

(see Def. 4.1.1) [21].

4.2 Definition of a cluster tree

Definition 4.2.1 Cluster tree decomposition
According to [16, 17, 21] a cluster tree decomposition (CTD) consists of

a triple < T, χ, ψ > , with T = (V,E) with vertices V and edges E =
{(vi, vj)|vi, vj ∈ V }. χ and ψ are labeling functions. Each vertex v ∈ V
can be classified to the two sets χ(v) ⊆ X and ψ(v) ⊆ F . X is the set of
variables and F the set of functions of a reasoning problem. For a cluster
tree the following conditions must be satisfied:

1. For each function fi ∈ F , there is exactly one vertex v ∈ V such that
fi ∈ ψ(v).

2. If fi ∈ ψ(v) then for every variable x of F it holds, that x ∈ χ(v)

3. For each variable x ∈ X, the set of vertices labeled by x {v ∈ V |x ∈
χ(v)} induces a connected subtree.

4. ∀i Zi ⊆ χ(v) for some v ∈ T .

According to [21] vertices are called cluster. Variables which are shared by
two clusters that are connected by an edge, are called separator variables.

4.3 Cluster tree elimination

A reasoning problem represented by a CTD is solved by using the method
of cluster tree elimination (CTE). First the functions of each cluster are
combined to one function that marginalise them to the separator variables.

30 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

Figure 4.1: Cluster tree of a sequence alignment

Secondly the values of these functions are exchanged repeatedly by messages1

between two clusters that share a common edge. Each message becomes a
new message of the receiving cluster. According to the problem, the CTE
maximises or minimises the functions. [21]

4.4 Using cluster tree decomposition and elim-

ination for solving the alignment problem

For a simple sequence alignment the cluster tree degenerates to a linear list
(Figure 4.12). The cluster containing fi, Xi−1, Xi and leqi (equation 4.2 and
4.1) is called cluster i. The clusters i and i− 1 share the separator variable
Xi−1. The messages sent between cluster i and cluster i + 1 are called gi,
where gi are functions over the separator variables Xi.

Beginning with cluster 1 (the leave of our degenerated tree), the messages
are sent upwards to the root. Cluster i can only send its message gi to clus-
ter i + 1 when it received gi−1 since gi depends on the results of gi−1. The
procedure finishes when cluster n + 1 receives its message gn.

The marginalisation of the functions in cluster n+ 1 to the empty set of
variables is max1≤j≤m(gn(j) + fn+1(j,m + 1)). According to [21] it can be

1different values of one message caused by different valuations can be expressed in
tabular form e.g. by using arrays

2taken from [21]

4.4. USING CTD/CTE FOR SOLVING ALIGNMENTS 31

shown, that this marginalisation is the maximal alignment score due to the
correctness of the method of cluster-tree decomposition and elimination

Here we show an alternative proof that max1≤j≤m(gn + fn+1(j,m+ 1)) is
equal to the maximal alignment score of the two sequences a = (a1, . . . , an)
and b = (b1, . . . , bm). Let max score(Ai,j) denote the maximal alignment
score of the sequences (a1, . . . , ai) and (b1, . . . , bj). We only consider legal
alignments, i.e. leqi(j

′, j) = 0 since illegal alignments would lead to a values
equal to −∞ and won’t be the maximal value chosen by our maximisations.
This proof uses induction.

• We suppose

max
1≤j≤m

(

gi(j) + fn+1(j,m+ 1)
)

= max score(An,m)

holds for all 0 ≤ i ≤ n.

• It holds

max
1≤j≤m

(

g1(j) + f2(j,m+ 1)
)

= max
1≤j≤m

(

max
0≤j′≤m

(

g0(j
′) + f1(j

′, j)
)

+ f2(j,m+ 1)

)

= max
1≤j≤m

(

max
0≤j′<j

(

fi(j
′, j)
)

+ fi+1(j,m+ 1)

)

eq. 4.3

= max score(A1,m)

since Xn+1 = m+ 1 in our valuation.

• i− 1 → i

max
1≤j≤m

(

gi(j) + fi+1(j,m+ 1)
)

= max
1≤j≤m

(

max
0≤j′≤m

(

gi−1(j
′) + fi(j

′, j)
)

+ fi+1(j,m+ 1)

)

= max
1≤j≤m

(

max score(Ai−1,m) + fi+1(j,m+ 1)
)

= max score(Ai,m)

Note that 0 ≤ j′ ≤ m can be replaced by 1 ≤ j′ < j due to our
constraints and since gi−1(0) = 0.

32 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

According to the CTE algorithm the message gi, 0 ≤ j ≤ m is defined as:

gi(j) = max
0≤j′≤m

(gi−1(j
′) + fi(j

′, j) + leqi(j
′, j)) (4.4)

gi(j) is the maximal alignment score of the subsequences a1, . . . , ai and
b1, . . . , bj of the two sequences a and b. The initial values g0(j) and gi(0)
are set to 0. For computing gi this approach takes O(m2) time and space.
Since O(n) messages are sent while traversing the tree this approach takes
O(nm2).

In the following way Will, Busch and Backofen improved this complexity
in their paper [21] to O(nm), the same complexity as the dynamic program-
ming approach:

By inserting the equation 4.2 for the fi and using the definition 4.1 of leqi
we receive

gi(j) = max
0≤j′≤j

(

gi−1(j
′) +

{

σ(i, j) + (j − j′ − 1)γ if j′ < j

γ otherwise

)

. (4.5)

Since leqi is mapped to −∞ iff j′ > j, we can adjust the index of max to
0 ≤ j′ ≤ j.

Now, we can resolve the case distinction of fi and move the constant
σ(i, j) out of the maximisation.

gi(j) = max

{

σ(i, j) + max0≤j′<j(gi−1(j
′) + (j − j′ − 1)γ)

gi−1(j) + γ
(4.6)

Now we only have to select the maximum of both equations.

The inner maximisation can be replaced by a helper function

gm(j) = max
0≤j′<j

(gi−1(j
′) + (j − j′ − 1)γ), (4.7)

which is the maximal alignment score of all subsequences a1, . . . , ai−1 and
b1, . . . , bj′ with 0 ≤ j′ < j to sum with the gap costs in the subsequence of
a. gm(j) can be defined recursively by

gm(0) = −∞, gm(1) = gi−1(0),

4.5. EXTENDED ALIGNMENT PROBLEMS 33

and for

j > 1 : gm(j) = max

{

gm(j − 1) + γ

gi−1(j − 1)
.

This definition makes sense, since gm(0) is the beginning of the recursive
function and the constraint 0 ≤ j′ < j = 0 can’t be fulfilled, furthermore

gm(j − 1) = max
0≤j′<j−1

(gi−2(j
′) + (j − j′ − 2)γ)

⇒

gm(j) = max
0≤j′<j

{

(gi−2(j
′) + (j − j′ − 2)γ) + γ for j′ < j − 1

gi−1(j − 1) for j′ = j − 1

= max

{

gm(j − 1) + γ

gi−1(j − 1)

therefore

gm(1) = max

{

gm(0) + γ

gi−1(0)
= max

{

−∞

gi−1(0)
= gi−1(0).

Finally the gi(j) can be evaluated with the following function:

gi(j) = max

{

σ(i, j) + gm(j)

gi−1(j) + γ
(4.8)

With its simple recursive definition of the helper function gm(j), gi(j) can be
calculated in O(m). Using this improved approach the algorithm for com-
putation of the alignment score finishes in time O(nm) like the approaches
using dynamic programming.

4.5 Extended alignment problems

We regarded possibilities to extend alignments in dynamic programming to
compute alignments with anchor, precedence or aligned segments constraints.
This chapter focuses on the question if the approach of modeling sequence
alignments with cluster trees, as described above, can be extended easily to
further problems and how these extensions look like. The simple anchor and
precedence constraints as well as alignment segments were discussed by Will,
Busch and Backofen in their paper [21].

34 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

For example, if we want to force that position k in sequence a to be
aligned to position l1, or l2, or . . . , or li, in sequence b, where i ≤ m with m
being the number of elements in b, it is sufficient to adjust the domains of
our valuation (4.1, page 27):

Xk ∈ {l1, l2, . . . , li} and Xk−1 < Xk

4.5.1 Anchor constraints

If we want to apply anchor constraints3 to our model, it is sufficient to add
the following constraints to our valuation:

Xi−1 < j,Xi+1 > j, and Xi = j ∨Xi = Xi−1 (4.9)

In this case we want to align ai in sequence a with bj in sequence b. The
first constraints imply that the elements left (resp. right) to ai in sequence a
have to be matched with elements left (resp. right) to bj in sequence b. The
second ones ensure, that ai is matched with bj or with a gap.

4.5.2 Precedence constraints

Similar to the anchor constraints problem we can reduce the precedence con-
straints4 to an adjustment of the domains of our cluster tree decomposition.

The following constraints are adequate for adjusting the domains:

Xi < j (resp. Xi > j) (4.10)

This ensures that ai in sequence a will be matched left (resp. right) to bi in
sequence b.

4.5.3 Aligned segments

For this problem it is not enough to alter the domains, we will need to
introduce new variables and functions which have to be added to our cluster
tree decomposition. We also have to adjust the functions gi. A graphical
representation is shown in Figure 4.25.

3as described in 2.2.1, page 12
4as described in 2.2.2, page 12
5taken from [21]

4.5. EXTENDED ALIGNMENT PROBLEMS 35

Figure 4.2: CTD of an alignment with segment constraints

For ensuring that at least x% of the positions in the segment {k, . . . , k′}
in sequence a match with the positions {l, . . . , l′} in sequence b, we add
the variables Ak−1, . . . , Ak′. The additional functions ci(Ai−1, Ai, Xi−1, Xi)
encode the hard constraint

Ai = Ai−1 +

{

1 if Xi−1 < Xi and l ≤ Xi ≤ l′

0 otherwise.
(4.11)

Ak−1 is fixed to 0. It holds, that Ai counts the number of proper matches in
the segment {k, . . . i}. Now we restrict the domains of Ai to {max(0, ⌈ x

100
(k′−

k + 1)⌉ − (k′ − i)), . . . , i− k + 1} for expressing our constraint. i − k + 1 is
the maximal number of matches at position i. The minimal number of this
interval is the maximum of 0 and the minimal number of matches needed
(x

100
(k′− k+1)) without the matches we can still achieve (k′− i), if positive.

ci, with k ≤ i ≤ k′, Ai−1 and Ai will be added to cluster i in our cluster
tree decomposition. We now have to adjust our equations gi to our new
constraints. For gi(Xi, Ai) we receive according to the CTE algorithm and
the definition of Ai:

gi(j, a) = max
0≤j′≤j

{

gi−1(j
′, a− 1) + fi(j

′, j) if j′ < j and l ≤ j ≤ l′

gi−1(j
′, a) + fi(j

′, j) otherwise
(4.12)

36 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

Like before our functions leqi disappear due to the index of our maximisation
function. Using the definition of our scoring scheme 4.2 we receive

gi(j, a) = max

{

σ(i, j) + gm(j, a)

γ + gi−1(j)
.

Where
gm(j, a) = max

0≤j′<j
((j − j′ − 1)γ + gi−1(j

′, a′))

with

a′ =

{

a if l ≤ j ≤ l′

a− 1 otherwise

Finally, as in the previous section, we define gm recursively like in the previous
section.

gm(0, a) = −∞

gm(1, a) = g(1, a′)

and for j > 1, gm(j, a) = max

{

gm(j − 1, a′′) + γ

gi−1(j − 1, a′′)

with a′′ = a if l ≤ j ≤ j′ and a′′ = a − 1 otherwise. One can derive this
equation equivalent to the derivation of 4.7. Again, this approach can be
computed in O(nm).

4.6 Sequence structure alignment

The sequence structure problem, as described in chapter 2.2.4, can be solved
very elegant using cluster tree decomposition and elimination [21].

For given structures Pa and Pb, with Pa is pseudoknot-free (def. 2.2.2),
we first we extend our alignment model by adding for each (il, ir) functions
hil,ir(Xil−1, Xil, Xir−1, Xir) that are defined as following:

hil,ir(j
′
l, jl, j

′
r, jr) =

{

ω(il, ir; jl, jr) if j′l < jl, j
′
r < jr and (jl, jr) ∈ Pb

0 otherwise.

In contrast to the known cluster trees our decomposition won’t degener-
ate to a linear list, this tree will contain unary and binary nodes. An example
cluster tree structure for an sequence structure alignment with two structural
bindings (kl, kr), (ll, lr) ∈ Pa is shown in figure 4.36.

6taken from [21]

4.6. SEQUENCE STRUCTURE ALIGNMENT 37

4.6.1 Cluster-tree decomposition for a sequence struc-

ture alignment

A decomposition for a sequence a with m bases and a given structure Pa with
p ∈ N base pairings will look as following. Let jl, jr, 1 ≤ j ≤ p denote the left
and the right position of the j’th structural element in sequence a and the
corresponding index of the variable valuation. It holds that 0 < jl < jr ≤ m.
As before, an unary cluster containing Xi, Xi−i, fi, leqi will be called cluster i,
0 < i ≤ m, a binary cluster containingXkr

, Xkr−1
, fkr

, leqkr
, Xkl

, Xkl−1
, leqkl

, hklkr

will be called cluster kr. Binary clusters will refer the right endpoints of a
base binding in sequence a in our variable valuation, unary clusters all other
valuations except X0 and Xn+1. Therefore the indeces of all nodes, unary or
binary, are unique and for every index 0 < i ≤ m exists exactly one cluster.

• Cluster i is a unary vertex iff it holds for all jr that i 6= jr, 1 ≤ j ≤ p.

• Cluster i is a binary vertex iff there exists a jr that i = jr, 1 ≤ j ≤ p.

• Let ci1 and ci2 be two clusters of the cluster tree. Let ci1 be part of the
path from ci2 to the root of the cluster tree. It holds: i1 > i2.

• The left subtree of a binary cluster jr contains the clusters jl, . . . , jr−1.

• The right subtree of the cluster jr contains the clusters 1, . . . , jl−1 iff jr
is not part of a left subtree of another binary cluster.

• Let car
denote the nearest binary cluster above jr on the path to the

root of the cluster tree under the condition that jr is part of the left
subtree of car

.

– If jr is part of the left subtree of car
, it holds that the right subtree

of the cluster jr contains the clusters cal
, . . . , jl−1. cal

is a leaf since
it refers to the element at the smallest position.

– Let cmin denote the cluster with the minimal index in the right
subtree of car

and jr be element of this subtree. The right subtree
of jr contains the clusters cmin, . . . , jl−1.

If no binary cluster above jr exists, the right subtree contains the clus-
ters 1, . . . , jl−1.

• Let ca be a binary cluster above a cluster c. Let c be element of the
left subtree of ca on the path from the leaf cl. It holds: Xcl

∈ c

38 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

X_

Figure 4.3: Sequence structure alignment CTD

• For an unary cluster cu that is a leaf node it holds: Xu−1, Xu, fu, lequ ∈
cu

• For a binary cluster cbr
it holds:

hblbr
, cbr

, cbr−1
, cbl

, cbl−1
, fbr

, fbl
, leqbr

, leqbl
∈ cbr

• A leaf node is either cluster 1 or a cluster referring to the ’left’ base
of a pairing in a since this position refers to the smallest index of the
clusters of the subtrees, due to the construction of this tree.

As a small summary one could assume, that a binary cluster cir stands for the
right endpoint ir of a binding in sequence a. Let Ts be a subtree representing
the interval Ts1

, . . . , Ts2
where Ts1

is either 1 or the next smaller index than
cil in the structural binding7 and Ts2

analogously the next bigger index of a
binding or n. The right subtree of cir contains the clusters Ts1

, . . . , cil−1
, the

left cil , . . . , cir−1
. Above cir within Ts lie the clusters cir , . . . , Ts2

.

7if such an index exists

4.6. SEQUENCE STRUCTURE ALIGNMENT 39

4.6.2 Attributes of the decomposition

The structure of the obtained cluster tree can be reduced to a binary tree by
only considering the binary nodes, therefore a cluster tree for the sequence
structure alignment with n binary clusters contains n + 1 leaves. n leaves
contain variables referring to the left endpoints of a binding, the last leaf is
the cluster 0 due to the construction of our cluster tree. Each edge e contains
only one or two separator variables since:

• If e is not part of the left subtree of a binary cluster and the only
variable shared by the clusters xi, xi+1 connected by e is xi due to the
construction of the cluster tree.

• If e is part of a left subtree of a binary cluster and cbr
denotes the

nearest binary cluster above e with e is part of the left subtree of cbr
.

Let c1 and c2 denote the clusters connected by e. c1 refers to an element
at position i1 and c2 at i2, let i1 > i2. e lies either on the path from
the leaf cbl

to cbr
or not.

Let Ts denote the subtree below e with the root cluster c2. Let Ts

contain n binary clusters i.e. Ts contains n + 1 leaves. Every binary
cluster cr in our subtree induces exactly one leaf cluster cl in the same
subtree.

– If e isn’t on the path, than it won’t contain a separator variable
Xbl

but it only contains Xi2.

– If e is part of the path, than n leaves of Ts belong to the different
binary clusters in our subtree, the last leaf is cbl

. All leaves except
cbl

belong to a binary cluster below e, therefore the only path
between a leaf and a binary cluster, c1 and c2 can lie on, is the
path between cbl

and cbr
, this means that the separator variables

which c1 and c2 share are Xi2 and Xbl
.

4.6.3 Cluster-tree elimination for sequence structure
alignments

Finally we have to define the functions gssa marginalising the functions of two
connected clusters on the separator variables. Let gissa

, 0 ≤ i ≤ m a function
sent from cluster i to cluster i + 1 over the separator variables. There are
several different cases to be regarded, dependent on if edge (i, i+1) contains
one or two separator variables and if i is a unary or binary cluster. According
to the CTE algorithm we receive:

40 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

• Edge (i, i + 1) contains one separator variable, j 6= 0, cluster i is no
leaf:

gissa
(j) =































max0≤j′≤m(gi−1ssa
(j′) + fi(j

′, j) + leqi(j
′, j))

if i is an unary cluster

max0≤j′
l
,j′′

l
,j′r≤m(gi−1ssa

(j′l, j
′
r) + fi(j

′
r, j) + leqi(j

′
r, j)+

gil−1(j
′
l−1) + fil(j

′
l, j

′′
l) + leqil(j

′
l, j

′′
l) + hili(j

′
l , j

′′
l , j

′
r, j))

if i is a binary cluster

(4.13)

• Edge (i, i+ 1) contains two separator variables, cluster i is no leaf:

gissa
(jl, jr) =







































maxjl≤j′≤jr
(gi−1ssa

(jl, j
′) + fi(j

′, j) + leqi(j
′, j))

if i is an unary cluster

maxjl≤j′
l
,j′′

l
,j′r≤jr

(gi−1ssa
(j′l, j

′
r) + fi(j

′
r, jr) + leqi(j

′
r, j)+

gil−1(j
′
l′′ , jl − 1′) + fil(j

′
l, j

′′
l) + leqil(j

′
l , j

′′
l)+

hili(j
′
l, jl, j

′
r, j))

if i is a binary cluster

(4.14)

The initial values and the messages from leave nodes can be formulated
as following:

• g0ssa
= 0

• gissa
(0) = 0

• Cluster i is a leaf
Exploiting the fact that the initial values are 0 we can formulate gissa

over one separator variable as following:

g1ssa
(j) = max

0≤j′≤m

(

f1(j
′, j) + leq1(j

′, j)
)

In the case gissa
is defined over two variables we omit the recursive call:

gissa
(jl, jr) = max

jl≤j′≤jr

(

fi(j
′, j) + leqij

′, j
)

It holds, that max1≤j≤m gnssa
(j) + fn+1(j,m + 1) is equal to the maximal

alignment score, due to the correctness of the cluster tree elimination.

4.6. SEQUENCE STRUCTURE ALIGNMENT 41

Supposing the size of the sequences is O(n), we need O(n3) for computing
one message gissa

(jl, jr). Since O(n2) messages are exchanged the total time
complexity is in O(n5).

Note, if we use this method for aligning two sequences without any struc-
tural information, we receive the same algorithm as in chapter 4.4.

4.6.4 Construction of a cluster tree for sequence struc-
ture alignment

We can obtain a cluster tree for sequence structure alignments starting with
the CTD of a standard alignment and changing its structure by adding the
structural elements sequentially.

Let Pa denote the set of structural elements of sequence a, Pa is pseudoknot-
free. Let Ti denote a cluster tree after adding the i’th structural element. Let
(li+1, ri+1) ∈ Pa denote the i + 1’th structural element. Note, since for any
two structures of Pa it holds that the right and left endpoints are different
(see 2.2.4), cluster ri+1 in Ti is unary. Let Tsubi

(v) denote the subtree of an
unary node with cluster v−1 as root after adding the i’th structural element.
Let mincluster(T) be the minimal index of a cluster of the cluster tree T .
Let Tsubil

(v), Tsubir
(v) denote the left and right subtree of a binary cluster v

after adding the i’th structural element. Let STi
(l, r) denote the subgraph

of T containing the clusters l, . . . , r after adding the i’th structural element.
Let χi(v) denote the set of variables of cluster v and ψi(v) denote the set of
functions of cluster v after adding the i’th structural element.

When adding the structural element i+ 1 we have to:

1. Alter the elements of the clusters

• χi+1(ri+1) = χi(ri+1) ∪ χi(li+1)

• ψi+1(ri+1) = ψi(ri+1) ∪ ψi(li+1) ∪ hli+1ri+1

• χi+1(v) = χi(v) ∪Xli+1
, where v ∈ {li+1 + 1, . . . , ri+1 − 1}

2. Change the structure of the CTD
Let Tsubi

(ri+1) be abbreviated by Tsub

• Cluster ri+1 becomes a binary cluster

• Tsubli+1
(ri+1) = Tsub\STsub

(mincluster(Tsub), li+1 − 1)

• Tsubri+1
(ri+1) = Tsub\STsub

(li+1 + 1, ri+1 − 1)

42 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

Let m = |Pa| and the size of sequence a be n. Constructing a CTD for a
sequence structure alignment has the time complexity O(mn) since we have
to change for each structural element the set of variables for O(n) clusters.

4.7 Combining several constraints

This chapter deals with the question what happens if several constraints of
the same or of different type are combined. Since anchor and precedence
constraints in CTD and CTE only affect the domains of our values Xi in
the valuation and add some exra functions and doesn’t affect the structure
of the cluster tree or the messages gi exchanged by the clusters, they can be
simply added to the sequence structure alignment. Only the domains of the
Xi have to be changed in the way mentioned in 4.5.1 and 4.5.2.

Let dom(Xi) denote the domain of the variable Xi in our valuation. Let
a set C of constraints be called consistent according to two sequences iff an
alignment of these two sequences exists, that fulfills all constraints of C.

4.7.1 Multiple constraints of one type

In this section we will discuss what happens if we consider several constraints
but all of the same type.

Anchor constraints

Of corse, not every combination of different anchor constraints makes sense.

Example 4.7.1 An example for two anchor constraints on two sequences a
and b that makes aligning a and b impossible:

Let c1 be a constraint that forces element a1 of sequence a to align with
element b1 of b and c2 a constraint that a2 has to be aligned with b2. It is
obvious, that if a1 < a2 and b1 > b2 it is impossible to fulfill both constraints,
c1 and c2, when aligning a and b.8

Let {c1, . . . , cn} be a set C of n given constraints, that force elements
in sequence a to be aligned with especial elements in sequence b. Each
ci, cj ∈ C force element ai to be aligned with bi and aj to be aligned with bj

9.

8Note: In this case a1 does not mean the first element in sequence a but the element
of sequence a according to constraint c1.

9again ai, bi and aj , bj refer to the elements in the sequence according to ci, cj .

4.7. COMBINING SEVERAL CONSTRAINTS 43

C is consistent iff one of the following constraints is fulfilled for each pair of
different constraints ci, cj ∈ C:

• ai = aj and bi = bj

• ai < aj and bi < bj

• ai > aj and bi > bj

A consistency check can be done while adjusting the domains. We can add
successively all constraints. Let domk(Xi) denote dom(Xi) after adding con-
straint ck. At the beginning dom0(Xi), Xi ∈ {X0, . . . , Xm+1} is {0, . . . , m+
1}. When adding a constraint ck which forces ai to align with bj

10 the do-
mains will change according to eq. (4.9), page 34, like followed:

• domk(Xl) = domk−1(Xl)\{j, . . . ,m+ 1}, l < i

• domk(Xl) = domk−1(Xl)\{0, . . . , j}, l > i

We still have to add a function αk(Xi, Xi−1) to cluster i encoding the
constraint, that Xi = Xi−1.

αk(Xi, Xi−1) =

{

0 if Xi = Xi−1 ∨Xi = j

−∞ else

αk(Xi) will be accumulated to the message gi or gissa
.

An inconsistent set of constraints c would lead for at least one Xi ∈
{X0, . . . , Xm+1} that dom(Xi) = ∅.

Precedence constraints

Let cr resp. cl denote a precedence constraint where element ai of sequence
a has to be aligned right resp. left to element bj of sequence b11. Let Cr be
a set of precedence constraints ’right’ and Cl a set of precedence constraints
’left’. Let C = Cr ∪ Cr. C is consistent iff for each pair of different pair of
constraints ci, cj ∈ C one of the following conditions is fulfilled:

• ci ∈ Cr ∨ cj ∈ Cr

• ci ∈ Cl ∨ cj ∈ Cl

10In this case ai, bj refer to the i’th and j’th element in the sequences a, b
11Here ai, bi and aj, bj refer to the elements in the sequence according to ci, cj .

44 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

• (ci ∈ Cr ∨ cj ∈ Cl) ∨ (ai > aj ∨ bi > bj)

• (ci ∈ Cl ∨ cj ∈ Cr) ∨ (ai < jj ∨ bi < bj)

Again we iteratively restrict the domains of our variablesXi, i ∈ {0, . . . , m+
1} by adding one constraint after the other. dom0(Xi) = 0, . . . , m+ 1, after
adding the k’th constraint ck the domains will be restricted like followed:

• If ck ∈ Cr, i.e. ai has to be aligned right to bj
12

– domk(Xl) = domk−1(Xl)\{j + 1, . . . , m+ 1}, l ≤ i

– domk(Xl) = domk−1(Xl)\{0, . . . , j}, l > i

• If ck ∈ Cl, i.e. ai has to be aligned left to bj

– domk(Xl) = domk−1(Xl)\{j + 1, . . . , m+ 1}, l < i

– domk(Xl) = domk−1(Xl)\{0, . . . , j}, l ≥ i

If during the computation of the domains for any Xi, ck the case occurs
that domk(Xi) = ∅ than we can conclude that C is inconsistent.

Aligned segments

Let C be a set of aligned segments constraints. LetAzi
, czi

(Azi−1
, Azi

, Xi−1, Xi)
encode the counter of the matches in segments of sequences a, b according to
cz ∈ C referring the segments {kcz

, . . . , k′cz
}, {lcz

, . . . , l′cz
} (see 4.5.3 eq. 4.11).

Messages gi that are only defined on the separator variable Xi are equal to
eq. 4.4. Messages defined on Xi and one Aki

are equal to eq. 4.12.

Let gi be defined on (Xi, Ari
, . . . , Asi

). Let A1, . . . , Ah denote the counters
of all aligned segments constraints c1, . . . , ch on cluster j. With ∆c(j

′, j),
c ∈ C defined as

∆c(j
′, j) =

{

1 if j′ < j and lc ≤ j ≤ l′c
0 else

our message gi now modifies as following:

gi(j, a1 . . . , ah) =

max
0≤j′≤j

gi−1(j
′, a1 − ∆c1(j

′, j), . . . , ah − ∆ch
(j′, j)) + fi(j

′, j)

Again the complexity can be improved equivalent to eq. 4.12 in 4.5.3.

12Now ai, bj refer to the i’th and j’th element of a, b

4.7. COMBINING SEVERAL CONSTRAINTS 45

4.7.2 Different multiple constraints combined

Anchor and precedence constraints restrict the domain of the possible val-
ues of the elements Xi of our valuation and add new variables and functions.
Aligned segment constraints change the messages gi on the affected segments
and introduce new variables and equations but they don’t affect the domains
of the variables Xi. The new variables of the different constraints don’t affect
each other. Even adding the counters of the aligned segments constraints
to the messages of the sequence structure alignment only imply marginal
changes that doesn’t affect the structure of the tree or the equations of the
messages but admitting the counters to recursive call of gissa

.

Since we can simply add sequence structure information by changing the
structure and the messages of a cluster tree with or without constraints and
since we can add the constraints mentioned above to any cluster tree with or
without sequence structure information or any other constraints, it is possible
to add constraints and structures in any order and mix them.

46 CHAPTER 4. CLUSTER TREE DECOMPOSITION, ELIMINATION

Chapter 5

Multiple alignments using
progressive alignment

Here, we try to enlarge the concept of cluster tree elimination and decom-
position in order to align more then two sequences. We will use heuristic
approaches to solve multiple alignments. For these approaches we will need
to align sequences with alignments or even alignments with alignments. As
an example we will first try to enlarge the concept of CTE and CTD dis-
cussed so far to align three sequences. Later progressive alignment will be
used to align multiple sequences and combine them with constraints.

5.1 Aligning three sequences

In this part an alignment of three sequences will be solved using the known
mechanism of cluster tree decomposition and elimination.

Definition 5.1.1 Alignment of three sequences
An alignment A3 of three sequences a = a1, . . . , an, b = b1, . . . , bm and c =
c1, . . . , co is a subset of {1, . . . , n}∪{−}×{1, . . . , m}∪{−}×{1, . . . , o}∪{−}
with the following conditions:

• (−,−,−) /∈ A3

• ∀(i, j, k) ∈ A3: i, j and k appear exactly once in A3

• Any pairs in A3 are non crossing, i.e.

– ∀(i′, j′, k′), (i, j, k) ∈ A3 ∩ {1, . . . , n} × {1, . . . , m} × {1, . . . , o}:
i′ < i⇔ j′ < j ⇔ k′ < k

47

48 CHAPTER 5. PROGRESSIVE ALIGNMENT

– ∀(i′, j′, k′), (i, j, k) ∈ A3∩{1, . . . , n}∪{−}×{1, . . . , m}×{1, . . . , o}:
j′ < j ⇔ k′ < k, with i′ =′ −′ or i =′ −′

– ∀(i′, j′, k′), (i, j, k) ∈ A3∩{1, . . . , n}×{1, . . . , m}∪{−}×{1, . . . , o}:
i′ < i⇔ k′ < k, with j′ =′ −′ or j =′ −′

– ∀(i′, j′, k′), (i, j, k) ∈ A3 ∩ {1, . . . , n} × {1, . . . , m} × {1, . . . , o} ∪
{−}: i′ < i⇔ j′ < j, with k′ =′ −′ or k =′ −′

With the similarity function σ : {1, . . . , n} ∪ {−} × {1, . . . , m} ∪ {−} ×
{1, . . . , o} ∪ {−} ⇒ R we can define the score of an alignment:

score(A) =
∑

(i,j,k)∈A

σ(i, j, k)

Let A(s1, s2) denote the alignment of sequences s1, s2. We will now
pairwise align all pairs (s1, s2) ∈ {a, b, c}, where s1 6= s2. Afterwards, we
will compute for each pair (s1, s2) the alignment A3(s1, s2, s3) by aligning
A(s1, s2) with s3, where s3 ∈ {a, b, c}\{s1, s2}. We will choose the best
alignment according to:

max
s1,s2,s3∈{a,b,c}

where s1 6=s2 6=s3 6=s1

score(A3(s1, s2, s3))

Note that the received alignment mustn’t be the optimal alignment of the
sequences s1, s2, s3.

5.1.1 Aligning an alignment of two sequences with a

sequence

Let A2(s1, s2) denote an alignment of the sequences s1, s2 given by a set of
pairs A = {(s11

, s21
), . . . , (s1ω

, s2ω
)} where maximal one element of each pair

can be a gap. Let i denote the i’th pair of A. Let j denote the j’th element
of sequence s3. Note that σ(i, j) = σ(s1i

, s2i
, s3j

).

Definition 5.1.2 Valuation
An alignment of (s1, s2) and s3 will be represented as a valuation of finite
domain variables Xi, 1 ≤ i ≤ ω with the domains dom(Xi) = {0, . . . , o}.
Additionally X0 = 0, Xω+1 = o+ 1. Furthermore is:

1. xi = j if (i, j) ∈ A3(s1, s2, s3) and

2. xi = xi−1 for every i that is not matched in A3(s1, s2, s3)

5.2. PROGRESSIVE ALIGNMENT 49

Cluster tree decomposition

With the new definition of the valuation, we can maintain the functions
leqi, fi(j, j

′) of 4.1 with the marginal difference, that σ(i, j) in fi is defined
on a triple where one element of the pair i can be a gap. We can obtain the
decomposition on the very same way than for an alignment of two sequences.

Cluster tree elimination

Again, we can use the very same messages gi as in 4.4 for computing the
alignment by adjusting σ.

It holds that A2 has maximal 2n pairs, since it can contain at most n
gaps, therefore this approach is in O(n2) since we compute a constant number
of alignments.

5.2 Progressive alignment

There exist several algorithms for computing an optimal alignment between
two sequences. But finding an optimal alignment for multiple sequences is
NP-hard [20]. Progressive alignment is an heuristic approach for finding a
good multiple alignment. This will only be a rough description of progressive
alignment according to [6]. It consists of three phases :

1. a pairwise alignment of all sequences

2. production of a guide tree using the alignment scores of step one

3. a progressive alignment of the sequences, guided by the tree

In phase one we align all sequences and remember their scores. We can
use any preferred technique for aligning the sequences especially the one us-
ing cluster tree decomposition and elimination. According to the score, we
construct the guide tree, hoping that close related sequences will be aligned
at the beginning of the algorithm and that this leads to a nearly optimal
solution. An example for an alignment of six sequences is shown in fig. 5.1.
s1, . . . , s6 represent the sequences, a1, . . . , a4 intermediate result alignments
and MA is the final multiple alignment. Phase three computes the progres-
sive alignment starting with the sequences at the bottom of the guide tree,
ending at the root by obtaining the multiple alignment.

The quality of the result of a progressive alignment depends heavily on the
starting order, which is influenced by the scores of the pairwise alignments.

50 CHAPTER 5. PROGRESSIVE ALIGNMENT

Figure 5.1: Guide tree of a multiple alignment

5.2.1 How to align alignments using CTD and CTE

Let two Alignments A1,A2 over n,m sequences be given. Let A1 be repre-
sented in the following way:











a11 a12 · · · a1x

a21 a22 · · · a2x

...
...

...
...

an1 an2 · · · anx











Equivalently we will represent A2 as











b11 b12 · · · b1y

b21 b22 · · · b2x

...
...

...
...

bm1 bm2 · · · bmx











Where aij , bkl are either elements of the sequences ai, bk or gaps. When
A1 or A2 is only defined over one sequence, it will represent the sequence
without any gaps.

Let A1i,A2j denote the i, j’th column of A1,A2. With σ(i, j) denoting
the score for aligning A1i and A2j and an adequate γ, representing a row
only filled with gaps, we can use the very same algorithm for cluster tree
decomposition/elimination as used.

5.3. COMBINING WITH CONSTRAINTS 51

5.3 Combining multiple alignments with con-

straints

In this section we consider what happens if alignments with constraints are
aligned with other alignments. Constraints between sequences can induce
new constraints between other sequences in multiple alignments which we
have to consider when using e.g. progressive alignment. We will only consider
anchor and precedence constraints.

Example 5.3.1 Constraints in multiple alignments
Given three sequences A,B,C with an anchor constraint between ai, bj and
a precedence constraint between B and C that force ck to be aligned with a
position bigger than bl. If bj < bl, a precedence constraint between A and C
is induced, namely ck has to be aligned to a position bigger than ai.

Let S = {s1, . . . , sg} be a set of sequences and C = {c1, . . . , ch} a set of
constraints. Let ∼1 be a relation symbol such that si ∼1 sj ⇔ ∃ck ∈ C : ck is
a constraint on the sequences si, sj, where si, sj ∈ S. Let ∼ be a transitive
relation symbol with si ∼ sj, si, sj ∈ S iff:

• si ∼1 sj or

• ∃sl1 , . . . , sle ∈ S : si ∼1 sl1 ∼1 · · · ∼1 sle ∼1 sj

We will restrict the set of constraints C so far, that only constraints cj ∈ C
are allowed for all si, sk, sl ∈ S such that it is not possible to form a chain of
relations ∼1 as following: si ∼1 sk ∼1 · · · ∼1 sl ∼1 si with sk 6= sl

1

Now we have to compute a transitive closure of the constraints on the
sequences and consider what happens with the constraints on other levels of
the guide tree during progressive alignment when aligning alignments with
sequences or other alignments.

Let G be a graph with vertices V = S and undirected edges E = {(si, sj) ∈
S × S : si ∼1 sj}. For each si ∈ S the transitive closure of relation ∼ is
given by the connectivity component of si. Due to the restriction, G is cycle
free and a connectivity component is given by a spanning tree. We can now
compute the transitive closure of each si ∈ S by using the spanning tree Tsi

with the root si.

1i.e. it is impossible for a constraint c on sequence s to induce further constraints on s

52 CHAPTER 5. PROGRESSIVE ALIGNMENT

Let Cij be the set of all constraints on si and sj , with si ∼1 sj. Let Ch be
the set of all constraints on sh induced by any other sequence sg below node
si in the tree Tsi

, where sh ∈ Tsi
. That means sh ∼ sg.

Let depth(Tsi
) denote the depth of the tree Tsi

and depth(Tsi
, n) the depth

of node n in the tree Tsi
. With nodes(Tsi

, j), the set of all nodes of the tree
Tsi

at the depth j we can compute the set Ci, i.e. all constraints on si. We
begin computing Cj for all nodes nj ∈ nodes(Tsi

, depth(Tsi
) − 1). Next we

will compute the set of all constraints of the nodes one level above nj , suc-
cessively until we reach the root si as below:

Cn =
⋃

n′∈V

Cnn′

⋃

n′′∈V, where

n′′ is a child of n

inducedconsts(n, n′′)

With inducedconsts(n, n′′) gives the set of constraints that are induced
by constraints cn′′,n′′′ on the sequences sn, sn′′′.

This gives us the set of all constraints on the sequence si. Let cj be a
constraint on the sequence si. Let si be already be aligned by the alignment
Ak. Let p be the set of positions that are affected by cj . The set of rows of
Ak that are affected by cj are all rows, that contain an element of p. The
case, that an alignment with constraints is aligned is equivalent.

5.3.1 Induced constraints

Here we discuss the function inducedconsts(i, j) over i, j ∈ V : ∃ci,j ∈ C,
where j is a child of i. Let K = {cj,k ∈ C|i 6= j 6= k}. Let Result = ∅. Let
α, β, γ, δ, ω be positions in a sequence. For each pair cij ∈ Cij , cjk ∈ K we
will do the following:

• If cij is an anchor constraint:
Let cij force siα of sequence si to match with sjβ in sequence sj or with
an element at a smaller position than the one of sjβ.

– If cjk is an anchor constraint:
Let cjk force sjγ of sequence sj to match with skδ in sequence sk

or with an element at a smaller position then the one of skδ.

∗ If β = γ:
Result = Result ∪ cik, where cik is an anchor constraint be-
tween siα and skδ.

5.3. COMBINING WITH CONSTRAINTS 53

∗ If β > γ:
Result = Result ∪ cik, where cik is a precedence constraint
that forces siα to align with skω, where ω > δ

∗ If β < γ:
Result = Result ∪ cik, where cik is a precedence constraint
that forces siα to align with skω, where ω < δ.

– If cjk is a precedence constraint:
Without loss of generality let cjk force sjγ with positions less than
skδ.

∗ If β < γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω < δ − 1.

∗ If β = γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω < δ.

∗ If β > γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω > δ − 1.

• If cij is a precedence constraint:
Without loss of generality let cij force siα with positions less than sjβ.

– If cjk is an anchor constraint:
Let cjk force sjγ of sequence sj to match with skδ in sequence sk

or with an element at a position smaller than the one of skδ
.

∗ If β > γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω > δ − 1.

∗ If β = γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω < δ.

∗ If β < γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω < δ − 1.

– If cjk is a precedence constraint:
Let cjk be a precedence constraint, that forces sjγ to match with
positions less skδ.

∗ If β > γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω > δ − 1.

54 CHAPTER 5. PROGRESSIVE ALIGNMENT

∗ If β = γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω < δ.

∗ If β < γ:
Result = Result ∪ cik, where cik is a precedence constraint,
that forces siα to align with skω, where ω < δ − 1.

Note a precedence constraint that force siα to match with positions less
that sjβ is equal to a precedence constraint that force sjβ to match with
positions greater than siα.

When computed the set Result for all pairs cij ∈ Cij , cjk ∈ K mentioned
above it holds: inducedconsts(i, j) = Result.

5.3.2 Following the guide tree

When we computed all constraints on all sequences si ∈ S we can start com-
puting the multiple alignment aided by the guide tree.

Let bi be either a sequence si or an alignment ai. Let Γi denote the set
of all constraints of bi. Let

Σi :=

{

the set of all sequences that form the alignment ai

{si} for one sequence si

After computing the alignment ai of bi−1 and bi−2 we can compute Γi:

Γi = (Γi−1∪Γi−2)\{cxy ∈ C|(sx ∈ Σi−1∧sy ∈ Σi−2)∨(sx ∈ Σi−2∧sy ∈ Σi−1)}

Now we can add the constraints of Γi to ai.

Chapter 6

Multiple alignments using the
method of cluster tree
decomposisiton and elimination

Finding an optimal multiple alignment is NP-hard [20]. This chapter gives
an approach for computing alignments using the method of cluster tree de-
composition and elimination. This approach is exponential in the number of
sequences.

We will assume constant gap costs γ and discuss an alignment over three
sequences first. The obtained results will be extended in order to solve a
multiple alignment.

6.1 Aligning three sequences

Let three sequences a = a1a2 . . . an, b = b1b2 . . . bm and c = c1c2 . . . co be given.
Let A3 be an alignment on a, b, c according to definition 5.1.1. Let σ(d) be
a cost function, where d ∈ A3. Let σ(−, x, y) = σ(x, y) + γ. Let A2(i, j, k, l)
denote an alignment and A∗

2(i, j, k, l) denote the optimal alignment of the
subsequences bi . . . bj and ck . . . cl with 1 ≤ i < j ≤ m and 1 ≤ k < l ≤ o.

6.1.1 A constraint model for three sequences align-

ment

Definition 6.1.1 Valuation for three sequences alignment
The valuation of an alignment A3 of the sequences a = a1a2 . . . an, b =

55

56 CHAPTER 6. MULTIPLE ALIGNMENTS USING CTD/CTE

b1b2 . . . bm and c = c1c2 . . . co is represented by the vectors

Xi =

(

X1i

X2i

)

, 1 ≤ i ≤ n.

X1i
and X2i

are finite domain variables with dom(X1i
) = {0, . . . , m} and

dom(X2i
) = {0, . . . , o}. Again X0, Xn+1 are additional fixed values, intro-

duced for technical reasons.

X0 =

(

0

0

)

, Xn+1 =

(

m+ 1

o + 1

)

For the variables X1i
, X2i

, 1 ≤ i ≤ n it holds:

• 1. X1i
= j, if (i, j, α) ∈ A, with α ∈ {c1, . . . , co} ∪ {−}

2. X1i
− 1 else

• 1. X2i
= k. if (i, β, k) ∈ A, with β ∈ {b1, . . . , bm} ∪ {−}

2. X2i
− 1 else

Unfortunately, a valuation according to definition 6.1.1 is ambiguous as
we can see in example 6.1.1. For finding an optimal alignment we can trace
back these ambiguities to an alignment of two sequences.

Example 6.1.1 Ambiguities in the valuation
Let an alignment A3 over the sequences a = a1 . . . a4, b = b1 . . . b6 and a =
c1 . . . c7 be given as following:

− − a1 a2 a3 − − a4 − −
b1 b2 b3 b4 − b5 − − − b6
c1 − − c2 c3 c4 c5 − c6 c7

The valuation for A is given by X = (X0, . . . , X5):

X =

(

(

0

0

)

,

(

3

0

)

,

(

4

2

)

,

(

4

3

)

,

(

4

3

)

,

(

7

8

)

)

When we keep the matchings of the elements of a, every alignment of the
subsequences b1b2 with c1 would lead to the same valuation. Even every other
possible alignment A2(5, 6, 4, 7) extended by (a4,−,−) at any position doesn’t
change our valuation.1

1Each pair of these alignments over two sequences will be aligned with ′−′ to fit to the
alignment of three sequences.

6.1. ALIGNING THREE SEQUENCES 57

We still have to encode the hard constraints X1i−1
≤ X1i

andX2i−1
≤ X2i

,
for 1 ≤ i ≤ n+ 1. Analogous to 4.1 this is done by the following function:

leqi : dom(X1i−1
) × dom(X1i

) × dom(X2i−1
) × dom(X2i

) → {−∞, 0} (6.1)

Again −∞ will be assigned if these constraints are broken, 0 else.

Given the following part of an alignment A∋

ai ax aj

· · · bk · · · − · · · bl · · ·
cm − cn

with

• ai, ax, aj ∈ {a1, . . . , an}, i < x < j

• bk, bl ∈ {b1, . . . , bm} ∪ {−}, k < l if bk 6= − ∧ bl 6= −

• cm, cn ∈ {c1, . . . , co} ∪ {−}, m < n if cm 6= − ∧ cn 6= −

• Only one element of each pair (bk, cm), (bl, cn) can represent a gap.

• For each (ar, bs, ct) between (ai, bk, cm) and (aj , bl, cn) it holds that
(ar, bs, ct) is of the following form

– (−, bs, ct) or

– (ai,−,−).

Assuming constant gap costs γ we can place (ax,−,−) anywhere between
(ai, bk, cm) and (aj, bl, cn), especially direct after (ai, bk, cm), without chang-
ing the score of A3 and the valuation.

Since we can move elements (ax,−,−) of an alignment A3 up to a certain
extend, we can define the scoring scheme of A3 as fi(X1i−1

, X1i
, X2i−1

, X2i
),

1 ≤ i ≤ n+ 1 as following:

fi(j
′, j, k′, k) =



















σ(i, j, k)+

score(A∗
2(j

′, j, k′, k))+ if j′ < j ∧ k′ < k

|A∗
2(j

′, j, k′, k)|γ

2γ else,

(6.2)

with |A∗
2(j

′, j, k′, k)| denoting the number of elements in the alignment of the
subsequences b′j . . . bj , c

′
k . . . ck given by A∗

2(j
′, j, k′, k).

58 CHAPTER 6. MULTIPLE ALIGNMENTS USING CTD/CTE

It holds that
∑

1≤i≤n+1

fi(X1i−1
, X1i

, X2i−1
, X2i

) = score(A). (6.3)

6.1.2 Cluster tree decomposition

The cluster tree of an alignment of three sequences forms a list and consists
of n + 1 clusters. Cluster i is connected with cluster i− 1 and cluster i+ 1,
1 < i < n + 1. Cluster 1 is only connected with cluster 2 and cluster
n + 1 with cluster n. The elements contained by cluster i are the functions
fi(X1i−1

, X1i
, X2i−1

, X2i
), leqi(Xi−1, Xi) and the vectors Xi−1, Xi. This forms

the very same structure as visualised in figure 4.1, page 302.

6.1.3 Cluster tree elimination

According to the CTE algorithm, we will define the messages gi(j, k) ex-
changed by the clusters i, i+ 1 as following

gi(j, k) = max
0≤j′≤m

0≤k′≤o

(gi−1(j
′, k′) + fi(j

′, j, k′, k) + leqi(j
′, j, k′, k)). (6.4)

The initial values are g0(j, k) = 0 and gi(0, 0) = 0. For computing an optimal
alignment A∗

3 we need O(nm3o3) space and time. One factor mo is caused
by the computation of the alignments of the subsequences of the sequences
b and c.

Equation 6.4 can be improved by inserting equation 6.2 and adjusting the
maximisation using equation 6.1.

gi(j, k) = max
0≤j′≤j
0≤k≤k

gi−1(j
′, k′) +



















σ(i, j, k) + score(A∗
2(j

′, j, k′, k)) + |A∗
2(j

′, j, k′, k)|γ

if j′ < j ∧ k′ < k

2γ

else

= max















σ(i, j, k) + max 0≤j′<j

0≤k′<k

(gi−1(j
′, k′)+

score(A∗
2(j

′, j, k′, k)) + |A∗
2(j

′, j, k′, k)|γ)

gi−1(j, k) + 2γ

(6.5)

2Note that the functions leqi are omitted in that representation

6.2. ALIGNING M SEQUENCES 59

These slight improvements don’t change the order of the time and space
complexity. Unfortunately, introducing functions gm(j, k) in a similar way
than we did in chapter 4.4 doesn’t induce any further improvements . This
is due to the fact, that we can’t eliminate the variables j′, k′. These variables
are needed if we try to reduce gm(j, k) to its recursive ancestors, since we
have to compute the alignments A∗

2 of the subsequences in the sequences b, c.
These alignments need j′, k′ as boundary for the subsequences.

6.2 Aligning m sequences

Given m sequences s1
1s

1
2 . . . s

1
n1
, s2

1 . . . s
2
n2
, . . . , sm

1 . . . s
m
nm

. The valuation
according to an alignment Am of these sequences will be defined equivalently
to definition 6.1.1, with some slight differences:

Xi =







X2i

X3i

...
Xmi






, 1 ≤ i ≤ n1, 1 ≤ X2i

≤ n2, . . . , 1 ≤ Xmi
≤ nm

X0 =





0
0

...
o



 , Xn1+1 =





n2+1
n3+1

...
nm+1





The value assigned to the variables Xyi
, 2 ≤ y ≤ m is equivalent to the values

in definition 6.1.1.

The hard constraints Xyi−1
≤ Xyi

, 2 ≤ y ≤ m are encoded by the func-
tions:

leqi : dom(X2i−1
) × dom(X2i

) × · · · × dom(Xmi−1
) × dom(Xmi

) → (−∞, 0)

Let A∗
m−1(j

′
2, j2, . . . , j

′
m, jm) denote an optimal alignment of the subse-

quences s2
j′2
, s2

j2
, . . . , sm

j′m
, sm

jm
. Let σ be a cost function on an alignment over

m sequences.

The very same considerations as in chapter 6.1 lead to the scoring scheme:

fi(j
′
2, j2, . . . , j

′
m, jm) =







































σ(j1, j2 . . . , jm)+

score(A∗
m−1(j

′
2, j2, . . . , j

′
m, jm))+

|A∗
m−1(j

′
2, j2, . . . , j

′
m, jm)|γ

if j′2 < j2 ∧ · · · ∧ j′m < jm

(m− 1)γ

else

(6.6)

60 CHAPTER 6. MULTIPLE ALIGNMENTS USING CTD/CTE

The cluster tree decomposition is equivalent to chapter 6.1.2.

Finally we obtain the following recursive function for the messages ex-
changed by the clusters

gi(j2, . . . , jm) = max
0≤j′

2
≤n2

...
0≤j′m≤nm

(gi−1(j
′
2, . . . , j

′
m) (6.7)

+fi(j
′
2, j2, . . . , j

′
m, jm) + leqi(j

′
2, j2, j

′
m, jm)).

Using this approach for computing an optimal alignment of m sequences
we achieve a time and space complexity of O(n1n

3
2n

5
3 . . . n

2m−3
m−1 m

2m−3
m).

6.3 Adding constraints

In this chapter, we will add constraints on an alignment over m sequences
s1, . . . , sm. We will focus on anchor and precedence constraints. We will
only allow constraints between s1 and sx, 2 ≤ x ≤ m. This is very similar to
chapter 4.5.

6.3.1 Anchor constraints

When we add an anchor constraint between the elements s1
i and sx

j we have
to add the following constraints to our valuation:

X1i−1 < j,X1i+1
> j, and X1i

= j ∨X1i
= X1i−1

6.3.2 Precedence constraints

When we want to force s1
i to align left (resp. right) to sx

j we have to adjust
the domains of the valuation as following:

X1i
< j, (resp. X1i

> j)

Chapter 7

Conclusion

After a short intoduction on computing alignments using the method of
dynamic programming, we discussed how to solve anchor, precedence and
aligned segments constraints. Even though it is possible to compute align-
ments under anchor, precedence and aligned segments constraints using dy-
namic programming, it is difficult to adapt them to the standard approach
especially the anchor constraints. Therefore it is hardly possible to combine
them when computing the alignment with this approach.

In contrast to the approach mentioned above we regarded the approach
using cluster tree decomposition and elimination. After a review of the article
of Will, Busch and Backofen [21] about computing alignments using CTD,
CTE and adding constraints, we formalised the mechanism of adding con-
straints. We also discussed the sequence structure constraints in detail and
developed a mechanism that transforms a CTD without sequence structure
constraints into a CTD that encodes these constraints. Sequence structure
constraints were examined rather briefly in [21]. Later we have shown how
to combine several constraints in an alignment. Though the theory behind
cluster trees is a slightly more complicated, it is to a great extend easier to
add constraints and mix them than with the approach of dynamic program-
ming. Sequence structure alignments can be computed and combined with
different constraints in a very elegant way - simply by changing tree struc-
tures, changing the messages exchanged by the clusters and restricting the
domains of the variables in the clusters.

Furthermore we solved multiple alignments using the heuristic method of
progressive alignment. Later on we added anchor and precedence constraints
to our multiple alignments and we have shown how they influence each other.
We discussed how to handle with constraints when we follow the guide tree

61

62 CHAPTER 7. CONCLUSION

in order to solve the multiple alignment. It not surprising that it is possi-
ble to solve multiple alignments using the approach of progressive alignment
with cluster trees. Due to the variability toward constraints of the cluster
tree approach it is possible to add different constraints, such as anchor and
precedence constraints.

We found an exponential approach to solve multiple alignments that uses
cluster tree decomposition and elimination. For this approach we developed
a new constraint model, related to the constraint model used in chapter 4
[21]. In contrast to the progressive alignment we were able to find an optimal
alignment using this approach. Up to a certain extend, we were able to add
some further constraints to this approach, namely anchor and precedence
constraints.

7.1 Further perspectives

In chapter 5 we only discussed constraints for which the undirected graph
that represents the relation ’∼’ is cycle free. One could try to formulate the
constraints and compute induced constraints using constraint handling rules
[9]. With an inconsistency check using constraint handling rules, we would
be able to enlarge our approach to constraints without any restriction. An-
other interesting task is to enlarge our approach in order to deal with aligned
segments and segment structure constraints and to examine how they inter-
act with other constraints.

We were able to find an exponential approach to solve an optimal multiple
alignment. Sadly the order of the time and space complexity of this approach
is much worse than the complexities of the that of dynamic programming1.
We only added anchor and pecedence constraints on two sequences, where
one sequence has to be the one that is represented by the structure of the
cluster tree decomposition. It would be useful to find a constraint model for
multiple alignments that admits to:

• solve multiple alignments more efficiently, perhaps in the same order
than the method of dynamic programming

• add constraints between any sequences

Furthermore one coud try to add aligned segments and sequence structure
constraints to the cluster tree decomposition of the multiple alignments as

1O(nm) for m sequences of the length n

7.1. FURTHER PERSPECTIVES 63

well as mix several constraints and consider their influences on the cluster
tree decomposition and elimination.

64 CHAPTER 7. CONCLUSION

List of Figures

1.1 RNA compared to DNA . 8

2.1 Example of a pseudoknot-free structure 14

3.1 Dynamic programming matrix of an alignment 18
3.2 Dynamic programming matrix with one anchor constraint . . 19
3.3 Dynamic programming matrix with one precedence constraint,

’left’ . 21
3.4 Dynamic programming matrix with one precedence constraint,

’right’ . 22
3.5 Dynamic programming matrix with aligned segment constraint 23
3.6 Closer look on M′ for segment constraint 25

4.1 Cluster tree of a sequence alignment 30
4.2 CTD of an alignment with segment constraints 35
4.3 Sequence structure alignment CTD 38

5.1 Guide tree of a multiple alignment 50

65

66 LIST OF FIGURES

Bibliography

[1] Rolf Backofen, Danny Hermelin, Gad M. Landau, and Oren Weimann.
Local alignment of rna sequences with arbitrary scoring schemes. volume
4009 of Lecture Notes in Computer Science, pages 246–257. Springer,
2006.

[2] Rolf Backofen and Sven Siebert. Fast detection of common sequence
structure patterns in RNAs. Journal of Discrete Algorithms, 2005. ac-
cepted.

[3] Rolf Backofen and Sebastian Will. Local sequence-structure motifs in
RNA. Journal of Bioinformatics and Computational Biology (JBCB),
2(4):681–698, 2004.

[4] Michael Brudno, Alexander Poliakov, Asaf Salamov, Gregory M.
Cooper, Arend Sidow, Edward M. Rubin, Victor Solovyev, Serafim Bat-
zoglou, and Inna Dubchak. Automated whole-genome multiple align-
ment of rat, mouse, and human. Genome Res, 14(4):685–92, 2004.

[5] Anke Busch and Rolf Backofen. INFO-RNA–a fast approach to inverse
RNA folding. Bioinformatics, 22(15):1823–31, 2006.

[6] Deniz Dalli, Andreas Wilm, Indra Mainz, and Gerhard Steger. STRAL:
progressive alignment of non-coding RNA using base pairing probability
vectors in quadratic time. Bioinformatics, 22(13):1593–9, 2006.

[7] Chuong B. Do, Mahathi S. P. Mahabhashyam, Michael Brudno, and
Serafim Batzoglou. ProbCons: Probabilistic consistency-based multiple
sequence alignment. Genome Res, 15(2):330–40, 2005.

[8] Sean R. Eddy. What is dynamic programming? Nat Biotechnol,
22(7):909–10, 2004.

[9] Thom Frühwirth. Theory and practice of constraint handling rules. The
Journal Of Logic Programming, 19, 1994.

67

68 BIBLIOGRAPHY

[10] Robert Giegerich. Lecture notes on algebraic dynamic programming.
Technische Fakultät, Universität Bielefeld, 2002.

[11] Robert Giegerich, Carsten Meyer, and Peter Steffen. Towards a disci-
pline of dynamic programming. Technical report, Faculty of Technology,
Bielefeld University Postfach 10 01 31, 33501 Bielefeld, Germany, 2002.

[12] J Gorodkin, LJ Heyer, and GD Stormo. Finding the most significant
common sequence and structure motifs in a set of RNA sequences. Nu-
cleic Acids Res, 25(18):3724–32, 1997.

[13] H. W. Hellinga and F. M. Richards. Optimal sequence selection in
proteins of known structure by simulated evolution. 91(13):5803–7, 1994.

[14] Ian Holmes. Using guide trees to construct multiple-sequence evolution-
ary hmms. Bioinformatics, 19, 2003. Proceedings of the 11th Interna-
tional Conference on Intelligent Systems for Molecular Biology (ISMB
2003).

[15] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit
distance between RNA structures. 9(2):371–88, 2002.

[16] Kalev Kask, Rina Dechter, and Javier Larossa. Unifying cluster-tree
decompositions for automated reasoning. 2003.

[17] Kalev Kask, Rina Dechter, Javier Larossa, and Avi Dechter. Unifying
cluster-tree decompositions for reasoning in graphical models. 2005.

[18] Arun Siddharth Konagurthu, James Whisstock, and Peter J. Stuckey.
Progressive multiple alignment using sequence triplet optimizations and
three-residue exchange costs. J Bioinform Comput Biol, 2(4):719–45,
2004.

[19] Giuseppe Lancia, Robert Carr, Brian Walenz, and Sorin Istrail. 101
optimal PDB structure alignments: a branch-and-cut algorithm for the
maximum contact map overlap problem. ACM Press, 2001.

[20] Bin Ma, Zhuozhi Wang, and Kaizhong Zhang. Alignment between two
multiple alignments. In Combinatorial Pattern Matching, 14th Annual
Symposium, CPM 2003, Morelia, Michocán, Mexico, June 25-27, 2003,
Proceedings, 2003.

[21] Sebastian Will, Anke Busch, and Rolf Backofen. Efficient sequence align-
ment with side-constraints by cluster tree elimination. Constraints Jour-
nal, 2007. submitted.

BIBLIOGRAPHY 69

[22] Sebastian Will, Kristin Reiche, Ivo L. Hofacker, Peter F. Stadler, and
Rolf Backofen. Inferring non-coding rna families and classes by means of
genome-scale structure-based clustering. PLOS Computational Biology,
2007. to appear.

