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Abstract

A RiboNucleic Acid (RNA) is a single stranded nucleic acid that plays an important
role in the cell. An RNA sequence string is a string over the alphabet {A,U,C,G}.
The function performed by a non-coding RNA is dictated by its structure. Therefore to
understand more about the similarities and differences between RNA strands we need a
tool that given two RNA sequences would get the maximum non-overlapping set of exact
pattern matchings. Knowing about these similarities and differences would help us more
in understanding the functions of the RNAs.

In this thesis, we develop a new version of the tool FxpaRNA, called ExpaRNA-P which
uses a different algorithm than the one used in EzpaRNA; it considers the entire ensemble
of structures possible to an RNA sequence in order to find the longest non-overlapping
set of exact pattern matches in both sequences whereas FxpaRNA solves this problem
but only for a fixed structure. The output from both EzpaRNA and EzpaRNA-P can
later be fed into the alignment program LocARNA as anchor constraints speeding up the
algorithm.
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Chapter 1

Introduction

1.1 Motivation

A RiboNucleic Acid (RNA), is a macromolecule that is present in all living cells. Its
chemical structure is very similar to that of DNA; it consists of a single chain (unlike
double chain in DNA) of nucleotides. Each nucleotide is formed from a nitrogenous base,
a ribose sugar and a phosphate group. In an RNA sequence, there are four different types
of nitrogenous bases that exist; Adenine (A), Uracil (U), Cytosine (C) and Guanine (G).
RNA plays a major role in the cell as it encodes genetic information and thus controls
gene expression. Its roles also include protein synthesis; it plays an important role in the
transcription and the translation process, catalyzing biological reactions and sensing and
communication responses to cellular signals [15].

For any given RNA sequence, there exists more than one possible structure. Since the
structure of the RNA was known to define its function and role in the cell, more interest
grew into finding the similarities and differences between different RNA families and
structures.

In the paper by Heyne et al. [13] ExpaRNA was developed, which is a tool for finding the

longest set of non-overlapping exact matches in RNA sequences. The input to EzpaRNA
is two RNA sequences and their fixed structure, and the output is the maximal non-
overlapping set of maximal exact pattern matchings. This output can then be fed into
the LocARNA tool [11] as constraints for the alignment. The benefit gained from this
is a faster output from LocARNA as the constraints would restrict the LocARNA search
space and thus speeding up the alignment process.
In this thesis, we use a different algorithm for calculating the exact pattern matches than
the one used by Heyne et al [13] for EzpaRNA. Instead of assuming a fixed structure for
the RNA sequence, the entire ensemble of structures is considered. The output is the
best scored set of maximal non-overlapping exact pattern matchings under restriction by
time and space complexity, to remain as comparable as possible to the ExpaRNA tool.



1.2 Aim of the project

The aim of this project is to design a tool that given two RNA sequences would output the
maximal non-overlapping set of exact pattern matchings, while considering all possible
structures. We combine our tool with RNA alignment tools and test it against the k2
data set from the Bralibase benchmark [2], [6] to measure the accuracy of the produced
alignment in comparison to the EzpaRNA tool.

1.3 Thesis structure
The thesis below is further classified into four chapters as follows:

e Background: This chapter discusses in detail all the technologies used in the
research to create the tool and any background information required to understand
the novel algorithm.

e Exparna-P: This chapter presents all the theoretical and algorithmic details re-
garding the implementation of the application. It describes how to install the tool;
what are the prerequisites. It also gives a walk-through for the parameters that can
be set by the user, explaining each one briefly.

e Implementation: This chapter discusses the working environment of the tool from
programming languages and repositories. It also discusses the parameters of the
tool, their default values and the logic behind setting them to such values.

e Evaluation: This chapter contains the details of the evaluation of our tool and a
comparison to other alignment tools. It has two main parts, a small scale evaluation
where we do a comparative structural analysis for large RNA sequences. The second
part would be a more large scale analysis which will be evaluated with the Bralibase
2.1 benchmark [2].

e Conclusion: This chapter contains the final discussion and summary of the whole
research and how it has managed to solve the problems that were presented. It will
further discuss the limitations of the project and what could be done in the future
to improve the application features upon the work presented in this thesis.



Chapter 2

Background

This chapter describes in detail the theoretical background technologies required and
used in the development and research of the application presented in this thesis. It starts
off with some formal definitions and technical abbreviations (Section 2.1). Then in the
Technical Background (Section 2.2) we discuss briefly the tools and libraries that were
useful or related in a way to our work. The last section of this chapter discusses the
algorithms that were used in our tool (Section 2.3).

2.1 Preliminary Definitions
We begin this section by formally defining an RNA sequence S:
Definition 2.1.1 (Sequence) S is a string such that:
VS, Sli] € {A,U,C,G}
where S[i] is the nucleotide at the i-th position of S.

Definition 2.1.2 (Structure) A structure P of S is defined as follows:

P=A{p1,...,p}

where p = (i,7) such that 1 < i < j < n, where S[i] and S[j| must be complementary
Watson-Crick base pairs (A-U or C-G) or a non-standard base pair G-U.

For a base pair p = (i, j), its right end j can be referred to by p’. The left end of the arc
i can be referred to by p*.

For a single structure, we assume that each sequence position is involved in at most one
base pair i.e. for all (i,j), (i,j) € P,i =14 < j = j and i # j' and base pairs do not
CTOSS.

Consider two structures P;, P, with arcs p; = (i1, j1) € S1,p2 = (i, J2) € So.

Definition 2.1.3 (Arc match) Arcsp; and py are said to form an arc match if S[i1] =
Sg[ig] CLTLd Sl [jl] = SQ[]Q]



Different types of loops that could exist within a RNA structure.

A stem is substructure within an RNA strand where positions (i,7), (i+ 1,7 — 1)etc form
base pairs. Fig. 2.1 (A) shows the appearance of a stem within an RNA strand.

A Hairpin loop H is an area where an RNA strand has folded back on itself and nu-
cleotides from the two separate segments have base paired, so that the resulting structure
appears as a hairpin. A visualization for the Hairpin loop is shown in Fig. 2.1 (B).

An Interior/Internal loop I is created when an interruption in the RNA strand occurs
by a series of bases that cannot form standard Watson-Crick pairs, thus resulting in a
structure as the one shown in Fig. 2.1 (C).

A Bulge loop B has a similar structure to the Interior loop except that the interruption
occurs in only one RNA strand; instead of in both RNA strands which is the case with
the Interior loop; thus resulting in a bulge in one of the RNA strands (illustration shown

in Fig. 2.1 (D)).

A Multiple loop M occurs when more than two double-stranded regions converge to form
a closed structure. Fig. 2.1 (E) illustrates the multiple loop in an RNA strand.

Definition 2.1.4 (Nested Structure) A structure is said to be nested, if all the base
pairs are non-crossing, i.e. let there be arcs py = (i,7),pa = (%, j°), then the structure is
nested if 1 < j <i‘ < j'ori<i <j <j.

An example of a nested structure is shown in fig. 2.2 (A).

Definition 2.1.5 (Crossing Structure) A structure is said to be crossing if there ex-
ists two or more base pairs (i,7) and (i‘,j*) with i <i* < j < j'.

Fig. 2.2 (B) shows an example of a crossing structure of an RNA strand.

Definition 2.1.6 (Pseudo-knot) A pseudo-knot occurs in an RNA sequence as a result
of a crossing structure. The base pairing in a pseudo-knot is not well nested; that is, base
pairs occur that “overlap” one another in sequence position [12].

Fig. 2.2 (C) visualizes the appearance of a pseudo-knot.

Definition 2.1.7 (Exact Matching) An exact matching between two RNA sequences
Sy and Sy is the set E C {1,...,|S1|} x {1,...,|S2|} such that for all (i1,i2) € M it
holds that Si[i1] = Sa[ia]. The set of positions in an exact matching must be connected
either on sequence or structural level. A matching on sequential level occurs by matching
unpaired nucleotides in S1 and Sy. A structural matching occurs by matching a base pair
in Sy and Sy. Fig. 2.3 shows structural and sequential matching for an exact matching.
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Figure 2.1: The figure illustrates the types of loops. (A) shows a stem substructure, (B)
shows a hairpin loop, (C) shows the internal loop, (D) shows a bulge loop, and (E) is the
multiple loop
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Figure 2.2: Different structures illustration. (A) Representation of nested structure. It
contains three arcs. Arcs 1 and 2 satisfy the first condition in the theorem, arcs 1 and 3
satisfy the other condition. (B) Representation of crossing structure. It consists of two
crossing stem intervals. (C) Corresponding pseudo-knot structure

2.2 Technical Background

This section will cover the technologies used in this thesis.

2.2.1 Vienna RNA Package

The Vienna RNA Package is a library implemented in C programming language. The
version of the Vienna RNA package used during the implementation of this tool is RC2
(version 2.0.0). It contains a number of algorithms and programs for calculating, predict-
ing and comparing RNA secondary structures. Out of the several algorithms for structure
prediction included in the package, we use mainly two algorithms; the partition function
algorithm and the folding algorithm. The partition function algorithm was developed
by McCaskill in 1990 for computing the energy function and base pairing probabilities
for all possible structures of an RNA sequence [8]. The other algorithm used when cal-
culating the graphical output of the tool, is the folding algorithm developed by Wuchty
et.al. (1999) [14]. Given an RNA sequence, it outputs the most probable structure for
it within a given range of optimal energy. The package contains other algorithms than
the two mentioned above. However, these are the only two of interest to us during the
development of the tool.
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Figure 2.3: The figure above shows to exact matchings. It shows the types of matchings
possible in an exact matching. The positions colored in pink are matched sequentially
in both sequences, while the positions colored in blue are matched structurally. You can
see from the figure that sequential and structural matchings can occur interleaved in the
case of matching unpaired bases underneath an arc in E1.



2.2.2 LocARNA

LocARNA is a tool for RNA alignment. Given two RNA sequences, it performs the folding
and alignment for the input sequences and produces the best alignment and consensus
structure for both sequences [11].

2.2.3 ExpaRNA

EzxpaRNA is a tool for structural-based comparison of RNA molecules. It requires a
given structure for the input sequences. However, if no structure is given at run time, the
RNAfold algorithm predicts the Minimum Free Energy (MFE) structure, which is then
used during the calculations by EzpaRNA. ExpaRNA computes the best arrangement of
common substructures for the input sequences that is non-crossing, non-overlapping and
at the same time has the best score [13].

2.3 Algorithms

This section describes the algorithms that were used in our tool.

2.3.1 McCaskill Algorithm

The McCaskill algorithm is an algorithm to compute the partition function over all sec-
ondary structures as well as the base pairing probabilities. We will briefly explain the
McCaskill algorithm according to the way it is implemented in the Vienna RNA package.
Definition 1: (Partition Function)

The partition function of an RNA molecule with energy function E[P], is given by:

E[S]
/7 = g e RT
S

where

cal

=1.
R 987molK

, P is a structure of an RNA sequence S, and T is the temperature in Kelvin.

The term e~ 77 is referred to as the Boltzmann weight for the structure P of the sequence
S. The partition function is a sum of all Boltzmann factors for all possible structures P
of an RNA sequence S. Once calculated, it can be used to compute the probability of
any given structure for an RNA sequence.

The Vienna RNA library uses the McCaskill Algorithm as an intermediate step in its
calculations.
The McCaskill algorithm implemented in version 2.0.0 of the Vienna RNA package, cre-
ates the following matrices for the set of structures of P[i, j:

e ();;: sum of the Boltzmann weights of all structures of P[i, j].



° ij: sum of the Boltzmann weights of all non-empty structures of P[i, j] that have a
base pair starting at position ¢ and is not a part of any loop (i.e. it is the outermost
base pair).

e Q% sum of the Boltzmann weights of all structures of P[i, j] with a base pair (4, j)
as an outer base pair for a hairpin loop, interior loop or multiple loop.

e Q7;: sum of the Boltzmann weights of all non-empty structures of P[i, j] which have
at least one base pair and is part of a multiple loop.

e Q}": sum of the Boltzmann weights of all non-empty structures of P[i, j] which are
a part of a multiple loop and have at least one base pair starting at position %.

Initially, the matrices are filled with the following values:

¢ Q=
¢ QL =0
¢« Q=0
° Q=0

am _
* 0

The recursion used to compute these matrices is given below:

Qi =Ui(j —i+1) (2.1)
+ ng
+ Z (QikQZHJ’) (2.3)
K
i<k<j
i = Q0 (1) (2.4)
+QYUs (i, 5) (2.5)
i =H(i.j) (2.6)
+ > (@i, 4, k1) (2.7)
i<k<I<j
+ Z (QﬁlkﬂQZTq)aM(iaj) (2.8)
K
i<k<j
5 =05 (2.9)
+ Z "o (2.10)
i<k
+ Z — ) QI (2.11)
z<l<:<]
= Q72 1c(1) (2.12)
+QyM(i, 5) (2.13)



The formulas described above are visualized in Fig. 2.4. Uj(x) represents the score of
having x unpaired bases which are not covered in any loop. Us(i, j) represents the score
for having the base pair (i, j) as the outermost base pair. H(i,7), I(i,7,k,1) and M (i, j)
represent the score of a hairpin loop from ¢ to j, an interior loop with outer base pair
(7,7) and inner base pair (k,l) and a multiple loop under base pair (i,j) respectively.
The variables a and ¢ represent the energy of the outer most base pair and the energy of
unpaired bases in the case of a multiple loop respectively.

In this work, we will extend the matrices used in McCaskill algorithm and add two new
matrices of our own to be able to calculate the probability P(lzojf (k|S) that position k of
the sequence is unpaired within a loop closed by the base pair (i, 7).

2.3.2 Computation of base pairing probabilities

Base pairing probabilities are computed by a function in the Vienna RNA package. It is
mainly predicted from the partition function calculations. The probability that position
1 and position j are paired together is the summation of the probabilities that they are
paired in a Hairpin loop, Interior/Internal loop or are part of a Multiple loop. The
probability of the base pair p = (4,7) in a Hairpin loop is the product of the sum of
the Boltzmann weights for all structures from 1 to ¢ — 1 and the sum of the Boltzmann
weights for all structures from j 4+ 1 to n, where n is the length of the sequence, divided
by the sum of the Boltzmann weights for all possible structures from 1 to n multiplied
by the Hairpin loop energy. For Interior loop, the probability of base pair p = (i, )
is the summation of probabilities of all i* and j‘, where ¢ and j° are a base pair and
lie nested within ¢ and j thus forming an Interior loop, multiplied by the Interior loop
energy. Finally for the Multiple loop energy, it is the summation of the probabilities of
all nested structures that are part of a Multiple loop multiplied by the energy for the
Multiple loop itself.

Another probability calculated by the Vienna RNA package is the stacking probability
sp(i, j); which is the probability that base pairs (i, j) and (i+1, j—1) occur simultaneously.
This probability is equal to @7, ; ;/Q?; where @ is the McCaskill matrix described in
subsection 2.3.1.

Finally, the conditional probability; it is the probability that base pairs (4, j) are stacked
i.e. the probability Pr[(i,j)|(i + 1,j — 1)]. This is calculated as the stacking probability
of base pair (i, j) divided by the base pair probability of (i + 1,5 — 1).

2.3.3 Chaining Algorithm

Given two RNA sequences S; and Sy and a maximal set of non-overlapping Exact Pattern
Matching (EPM)s for these two sequences E) o, we want to find the set Xgpy, which is a
subset of I; o, has maximal size, and contains only non-crossing, non-overlapping EPMs.
This is referred to as the Longest Common Subsequence for Exact Pattern Matching
(LCS-EPM) problem. Fig. 2.5 gives a better illustration to what is meant by crossing
and overlapping EPMs.

The algorithm applies a dynamic programming approach in solving this problem. At the
boundaries of matched subsequences, gaps can occur thus forming what is referred to as
holes within the subsequence. The LCS-EPM is first solved for small holes, by finding the

10
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Figure 2.4: An illustration for the recursion used to compute the McCaskill matrices
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EPMs that will best fit into these holes. This process is repeated recursively from small
holes to bigger ones until the hole with the biggest size is filled. A hole with size equal
to the input sequence size is then considered, and the best fitting EPM combination is
the set Xgpys which will be returned by the algorithm.

12
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Figure 2.5: This figure shows two RNA structures with the corresponding EPMs. E5 is
crossing with E4, so the one which fits best with the other EPMs will be chosen by the
algorithm. Also E3 is overlapping with E2, so again only one of them can be picked.
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Chapter 3

Exparna-P

This chapter discusses how EzpaRNA-P was implemented. It has three main sections,
the Motivation section which gives an introduction to the algorithmic idea, the Theory
section will discuss algorithmic details of the implementation. Finally, the Introduction
to Ezparna-P section will give a brief introduction to the tool; stating the input/output
formats, extra parameters and how to set their values.

3.1 Theory

3.1.1 Motivation

To solve the LCS-EPM problem, the entire ensemble of structures possible to the given
RNA input sequence is considered. Since we need to consider all possible structures,
and at the same time we are bound by the time and space complexity of the algorithm.
We consider only positions and arcs that have a probability above a certain threshold.
Setting such a threshold, reduces the computation time and storage space needed by the
algorithm thus producing a faster output.

To start off, two main values are considered, P{(7,j)|S} denoting the probability that

base pair (i,7) is contained in any structure P of the sequence S. This probability has
to be higher than a certain threshold ¢, for the base pair to be considered during the
calculations. The other value put into consideration is P(llo‘;f(k]S), which denotes the
probability that position k is unpaired within a loop closed by the base pair (i,7) in any
structure P of the sequence S. This probability also has to be higher than a certain
threshold ¢, for that position to be considered during the calculations.
Consider for some (7,j) the list K = {k\P(lfjf(MS) > ¢, }, which is essentially a list
containing all unpaired positions within base pair (7,j) with probability higher than
cu. This list is sorted in increasing order. A mapping function posgz(i’ i (x) maps the
a-th element of the loop closed by the base pair (7,j) in the list K to its position k
in the sequence S. This function aids in minimizing the storage space required by the
algorithm, as only relevant positions will be stored and at the same time, their initial
sequence position can be looked up in constant time.

14
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Figure 3.1: The recursion used for calculation of Q™? matrix

3.1.2 Precomputing likely loops

The P(lfjf(k|5 ) is calculated for all &, for all base pairs with probability higher than c,.

For this, the matrices Q;;, ﬁ?j, 7> and ng’-n computed by McCaskill’s algorithm (see
section 2.3.1) are used.

However, the Q{" matrix is not stored in the implementation of the Vienna RNA package,
so it had to be recalculated. In addition to the McCaskill matrices, the following matrix

is computed; ;-?2 =3 QRO ; representing parts of a multi-loop with at least
i<k<j—1 ’
two outermost base pairs. Fig. 3.1 illustrates the recursion used for ;"f calculation.

Given those matrices, ng;?(kﬂS ) can be computed as

H+1T+M
PEoP(k|S) = <L> - P{(i.4)IS} (3.1)
ij
where H = exp(—0Fi(i,])) (3.2)
I= > (exp(=BF(i,j,,5)) - Qhy) (3.3)
k<ii’/7<j]/"<j
+ Z (exp<_BF2(i7j7 ilaf)) ’ Q?’j’) (34)
i
i<i'<j'<k
M = Q?fljfl exp(—f(a + (k —i)c) (3.5)
+ Q?flk—l exp(—fB(a+ (j — k)c) (3.6)
+ Qi 1k 1Qp 1, exp(—B(a +¢)) (3.7)

H, I, and M represent the cases where k is contained in a hairpin, interior loop, and
multi-loop, respectively. F; and F; are the energy functions for hairpins and interior loops
as specified by McCaskill . The three sums in the computation of M cover the cases where
k is in the leftmost (line 3.5), the rightmost (line 3.6), and any other unpaired region (line
3.7) of the loop, respectively. Note that Q™2 is required to ensure that the multi-loops
considered in M are actually multi-loops, i.e. contain at least two inner base pairs. The
formulas are visualized in Fig. 3.2.

3.1.3 Computing the exact pattern

The algorithm first computes for all arc matches, with a probability higher than c,, the
best exact matching for the arcs and the loops enclosed by them and stores the score of

15
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Figure 3.2: Computation of the probability that a position k£ occurs inside a hairpin loop
(H), interior loop (I), or multi-loop (M) closed by a base pair (i,j).

matching the positions within the loop plus the probabilities for the matched base pairs,
in a table R(pi,ps); where p; and p, are the arcs in sequence S; and Sy respectively.
Three temporary matrices A, G, and B are used to aid in the calculation of the R ma-
trix.The computation starts with the A matrix running from left to right over the two
sequences. Then at some point, a gap/jump is allowed using the matrix GG, and then start
matching the remaining part on the right end of the arc match using the matrix B. Thus
an entry A(z,y) denotes the score of the best exact matching of the loops starting from
their left ends and ending at position x for sequence S; and position y for sequence Ss,
respectively. An entry in G(z,y) is the score from the left end of the loop, up to position
x for sequence S; and position y for sequence S, or any smaller position, thus allowing a
gap in the matching. B(z,y) is basically the same as A(z,y) except that the matching
up to positions x and y may not be connected i.e. can contain a gap somewhere due to
the presence of the gap matrix G.

The matrices are computed as specified in Fig. 3.3, the base cases are A(0,0) = 0,
A(0,z) = A(z,0) = —oo for all x > 0, B(0,z) = B(z,0) = G(0,z) = G(z,0) = 0 for
all x. For the A matrix, the recursion assigns —oo to positions x and y if they do not
match (first case), or assigns the score of the last matching position A(z‘,y‘) plus the
score of matching this one in case they are adjacent (i.e. 2z = x —1 and y* = y — 1),
which represents the second case. Or, the last case which represents a match of the two
base pairs. For the last case, we loop over all arcs with right end = for S; and y for Ss.
Let posgll(x’) = ky, posgg (y) = ko, posgll (x) =1, and posﬁj (y) = lo. If ky — 1 is the right
end of the arc for py, ko — 1 is the right end of the arc for ps, 1 + 1 is the left end of
the arc for p; and Iy 4+ 1 is the left end of the arc for po, then the score for A(z,y) is set
to the score of matching from the left end of the arc A(z‘,y‘) plus the score of matching
underneath the arc R(p‘y,p's) plus the score of matching the right end of the arcs using
the match(x,y) function; which is the score of matching the sequence positions plus the
base pairing probabilities for both arcs plus the stacking probabilities. The recursion of
the B matrix is the same except that it considers the case that a gap has been added
at the end of positions x and y. For the G matrix, we consider the best score of either

16



adding no gaps, or adding a gap in only one sequence or in both.

After the R matrix is filled for all arc matches, two final matrices which are relatively

similar to each other, F' matrix and Trace matrix, are computed. An entry in the F
matrix, F'(i,7), has the best matching score ending at position (7,j) where i is in .S;
and j is in Sy. The Trace matrix is the reverse of the F' matrix; an entry Trace(i, j)
denotes the best matching score from positions (7, j) to the end of both sequences. For
each position in the Trace matrix, there is a pointer to the next matching position which
would maximize the matching score. The pointer is assigned to —oo if there is no possible
matching from the current position. The Trace matrix is computed for tracing back the
calculated EPMs, as it makes the implementation of the Chaining algorithm easier since
an EPM score would be the score from the start position of the EPM, till the end of the
sequence.
The recursion used for the computation of the F' matrix is shown in Fig. 3.4. An entry
F(i,7) is given a score 0 if Si[i] # Sa[j] (first case), or the score of the previous entry
plus 1, if Sy[i] = Sy[j] which represents the case of sequential matching (second case).
The last case represents structural matching, where ¢ and j are the right ends of the arc,
so the score of F(i,7) is set to the score of the arc match plus matching the unpaired
bases underneath the arc match plus the score of matching from the beginning to the
left end of the arc. Relational weights are used to favor certain types of matchings over
others. These are represented by a; for sequential score, ay for structural score and as
for stacking. This is done for all arcs which have a right end (i, j) and the best score is
the one used.

Now that all the matrices are filled, we loop over the Trace matrix and if the current
position has a score higher than or equal to a certain threshold for EPMs that position
is stored in a list L. By the end of this loop, the list L would contain the start positions
of all possible EPMs. The list is sorted according to the score in descending order. For
every position in this list, an EPM is constructed if possible by tracing the next matching
position from it. Each position can have one of three values; —oo means that this position
is the end of the matching, co means that this position was used in a previous EPM i.e.
this EPM overlaps with another EPM. And finally any other integer value which means
that this position is not included in any EPM. For each position in the list L, we check
first if the score of the current element is not —oo. If it is then this position is disregarded
and the next one from the list L is picked. If it is not, then we loop over the T'race matrix,
every time checking if there exists a pointer from the current position to a next one. If
a pointer does not exist then we break from the loop and begin the process for the next
element in the list. However if such a pointer exists, then we check whether there exists
a sequential or a structural matching from this position and update the EPM structure
accordingly. The score of the current position is set to oo and the pointer of the current
element is updated to point to the element next to the current one. If a position with
score oo is encountered during the loop, the entire EPM is disregarded and the scores of
the positions used in it are reset to their initial values. Every EPM computed is then
added to a list which is later on passed to the Chaining algorithm.
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(
—00

if adjacent(z,y) then
A(x — 1,y — 1) + match(z, y)

A(x,y) = max
for all p} = (2/,x) € P1,py = (v, y) € B, 2,y
with pos (x) —1=7p," and posyt(y) — 1 = o
and posy! (2') +1 = p’lL and posy?(y') +1 = ph*
( AELY) + R(py, ph) + match(z, y)

G(fl),y) = maX{A(x,y),G(x - 173/ - 1),G(LE - 173/)? G(.T},y - 1)}

(G(z,y)

if adjacent(z,y) then
B(z — 1,y — 1) + match(zx, y)

Bla,y) = max for all p} = (2/,x) € P1,py = (v, y) € Py, 2’y
1=p," and posSi(y) — 1 =p;"
1=p;" and posi(y) + 1 = py"
(p}, py) + match(x, y)

\

where

2-ap + (P{(2',2)[S1} + P{(y, y)|S2}) - o + (sp(a’, 2) + sp(y', v)) - 3

match(x,y) := ¢ if S; (pOSf;ll (z)) = SQ(posfj (v))
—o00 otherwise

adjacent(z,y) := (posgl1 (x)—1= pos;?ll (x —1) and posgj(y) —1= posﬁz2 (y—1))

Figure 3.3: Recursions for matrices A, G, and B
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(0 if Sy[i] # Salj]

F(i,j) = max Fi—1,j—-1)+1

for each py = (i%,i) € Pi,pa = (5',j) € P
F(i* —1,5°— 1) + amScore(p;, ps)

\

where

amScore(py,pa) := R(p1,p2) + 2+ P{(i*,0)[S1} + P{(5", j)152}) - az + (sp(a’, 2) + sp(y/, y)) - a3
Figure 3.4: Recursions for F' matrix

3.1.4 Chaining algorithm

By the end of the calculations described in the previous subsection, we have a list which
contains a set of non-overlapping, maximally extended EPMs along with their scores
and structures. This list is passed as input to the chaining algorithm and as output we
get a maximum combination of non-crossing, non-overlapping EPMs (section 2.3.3). A
graphical output is also produced by the folding algorithm in the Vienna RNA Package.
The input sequences are folded into their most probable secondary structure, putting
into consideration that the pattern matches produced by the chaining algorithm should
be kept as is i.e. in the structural matches, the base pairs forming the arc match should be
paired by the folding algorithm, and in case of sequential matching, the unpaired positions
should remain unpaired. Fig. 3.5 illustrates a graphical output from the algorithm. As
we can see in the figure, in the case of the EPM colored in red that gaps can exist within
the matching. EPMs must be connected either on a sequential or a structural level, and
since the positions cannot be sequentially matched due to the gap in the middle. This
means that the positions are matched structurally to each other. However the base pair
connecting the two parts has low probability, and hence is not considered by the folding
algorithm resulting in the gap in the middle of the EPM.

3.2 Introduction to Exparna-P

3.2.1 Installation Requirements

To install EzpaRNA-P, the Vienna RNA package should be installed, which can be found
at the following url: http://www.tbi.univie.ac.at/~ronny/RNA/. The Vienna RNA
package requires the G2 library to be installed first. The G2 library can be found under
the following url: http://sourceforge.net/projects/g2/. The Vienna RNA package
should be configured with the following options: —without-forester —without-perl —disable-
openmp. For the installation of ExpaRNA-P, the option —with-vrna needs to be specified
followed by the path of where the Vienna RNA package was installed.
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The tool takes as input two files in Clustal format, each containing the RNA sequence.
The output is two post script files for the two sequences, containing the most likely
structure for the sequence taking into account the EPMs calculated. In each file, matching
patterns are given the same colors for ease of identification, and different EPMs are
assigned different colors. There is a number of options that can be set which control the
output and the run time of the program.

3.2.2 Output file parameters

e There are two parameters for specifying the name of the two post script output
files. The default names are ”SequenceA” and ”SequenceB”. This can be changed
by specifying -a and -b options followed by the name desired for the output files
for sequences S; and S, respectively.

e The output from the tool can be used as anchor constraints to be fed into LocARNA
for better alignment of the two sequences. This can be specified by the command -7,
a file with the name locarna_constraints_input.tzt will be produced which contains
the anchor constraints in fasta format to be fed into LocARNA.

3.2.3 Threshold and probability related parameters

e The minimum probability threshold for a base pair to be considered can be altered
by the parameter -P followed by the new value. Decreasing the probability increases
the run time of the algorithm, as more base pairs will need to be considered during
the calculations to find the longest non-overlapping, non-crossing set of EPMs.

e To set the minimum probability threshold for P(lf;f(k|5), use the option -p fol-

lowed by the minimum probability. Increasing the value assigned to the probabil-
ity, decreases the run time of the algorithm. This is because more positions with
probabilities less than the threshold will be eliminated and thus resulting in less
computation time and less storage space at run time.

e To specify the maximum allowed distance between (1, j1) and (s, jo), i.e. maximum
difference for alignment traces(Fig. 3.6 better illustrates the parameter), set the
option -d followed by the new distance. Restricting the distance between matches
helps in improving the quality of the output. In the case that no restrictions are set
to the allowed distance between the alignment traces, an arc at the beginning of one
sequence could be matched to an arc at the end of the other sequence. The positions
to the right of the right end of the arc in the first sequence and the positions to
the left of the left end of the arc in the second sequence have a limited number of
possible matchings, as they are restricted by the arc match.

e To specify the maximum difference in the sizes of the arc matches, set the option
-D followed by the new value (See Fig. 3.7). The sizes of the arcs in an arc match
are better kept as close as possible. Consider the case where no restrictions are put
for the size difference. Then a big arc in one sequence would be matched to a small
one in another. The bases underneath the big arc match cannot be included in
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Sequence 1

Base pair
I bp]_ 1
Sequence 2 m
matching patterns Base pair
. bp2 I

Figure 3.6: The figure above shows two arc matches, the maximum allowed distance
restricts the difference between the start position of bpl and the start position of bp2,
and the end position of bpl and the end position of bp2.

any EPM because they would be crossing with the EPM where the arc is matched
which would affect the size of the resulting output from the tool.

e To turn the option for calculating and including the stacking probabilities on and
off, use the -5 option (section 2.3.2).

e To set the minimum score for an EPM to be considered, use the option -t followed
by the minimum score.

e To set the minimum size allowed for an EPM, use the option -s followed by the
minimum size.

3.2.4 Scoring related parameters

The tool has three parameters related to the scoring of matchings:
e « for sequential score.
e «y for structural score.
e «; for stacking score.

and according to the values set for them, certain matchings will be favored to others. For
instance if ap was given value 2 while o and a3 have values 1, then structural matching
will be favored over sequential matching and over stacking whenever possible.
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Arc 1

difference in arc

1{ !' sizes

Arc 2

Figure 3.7: The figure above shows two arcs, Arc 1 and Arc 2. The difference in the size
of the arcs is measured as the size of the first arc minus the size of the second arc, or in
the example above: (j —i) — (I — k)
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Chapter 4

Implementation

In this chapter, we will discuss the implementation details of the tool. In the Working
Environment section, a brief introduction to the programming language the tool was
implemented in and the repositories used is provided (section 4.1). Then, the Heuristics
section the default values of parameters are stated and the theory behind setting them
to those values is explained (section 4.2).

4.1 Working Environment

4.1.1 Programming Language Used

The tool was implemented entirely in C++. C++ was developed in 1979 at Bell Labs
by Bjarne Stroustrup as an enhancement to C. It is a general purpose programming
language, it supports data abstraction, object-oriented programming and generic pro-
gramming. It is statically typed, compiled and a multi-paradigm programming language.
It is considered as a hybrid /intermediate-level language; as it combines features of both
high-level and low-level programming languages [10].

4.1.2 Repositories Used

The code was kept on the Mercurial repository for easier update and integration. Mercu-
rial is a fast, platform independent, extensible, open source, distributed revision control
tool for software developers. It is mainly a command line program, where all the opera-
tions are invoked by the keyword hg, a reference to the chemical symbol of the element
mercury. Graphical user interface extensions are also available for use. It is mainly
implemented using Python programming language [9].

4.2 Heuristics

In this section, the default values used for the parameters in the tool are stated, providing
an explanation as to why these values were chosen.
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4.2.1 Threshold and probability related parameters

The minimum probability threshold -P for a base pair to be considered in the
calculations, has a default value 0.0074. It was observed during the evaluation of
the tool that the higher the probability is set, and when combining the output of
the tool with other alignment tools that a more accurate alignment is produced.
This could be explained by the fact that with lower probabilities, base pairs which
are not very probable or stable in nature are considered in the calculation and thus
producing a structure which is not close to the actual one.

The minimum probability threshold for P(lf;f(kﬂs ), -p, has a default value of 0.01.
During the evaluation of the tool, it was observed that when increasing the value for
the threshold, more accurate alignment results are produced. This can be attributed
to the fact that with lower probabilities, more positions are considered as unpaired
in the loop which is not preferred in nature, thus the structure produced is less
accurate than when increasing the probability threshold.

The maximum difference for alignment traces -d, has a default value —1. This
means that there is no maximum difference used, i.e. base pairs can be as far away
from each other as possible.

The maximum difference in the sizes of the arc matches -D also has a default value
—1. This also means that the difference in the sizes can be as big as possible (no
restrictions on the size difference).

The default value for the flag of computing the stacking probabilities -5 is off.
Stacking probabilities are not computed by default and not used.

The default value for the EPM score threshold -t is 5. This is because we only
want to consider structures that consist of at least 5 unpaired nucleotides in case of
sequential matching or with structural matching of non-nested base pairs. Lowering
the value results in more matching, however it slows down the tool and it is not
very accurate since EPMs of mainly unpaired bases of sizes less than 5 would be
produced.

The default minimum size -s for an EPM is 3. If the default size of the EPM is
not changed, then the EPM score threshold is used to eliminate EPMs with lower
score. However, if the minimum size gets a value different from 3, then we consider
only the EPM size when eliminating EPMs.

4.2.2 Scoring related parameters

For the three scoring parameters oy, as and as, the default value is set as 1. Thus no
type of matching is favored over the other types.
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Chapter 5

Evaluation

This chapter describes the evaluation procedure used to analyze the results produced
from the implemented tool. We used the same evaluation procedures to evaluate our
tool, as the ones used for FxpaRNA. The evaluation is divided into two sections. The
first section handles the small scale evaluation where we inspect the output of the tool
for medium/large sized RNA sequences. In the second section, we combine ExpaRNA-P
with LocARNA and compare the results of the alignment produced with the results of
combining FzpaRNA with LocARNA using the compalign score which will be further
explained below.

5.1 Small scale evaluation

The same evaluation technique is used as the one used for EzpaRNA. We have chosen
two pairs of RNAs: (a) two IRES RNAs from hepatitis C virus, which belong both to the
Rfam family HCV_IRES for IRESs [3]. GenBank: AF165050 (bases 1 — 379) and D45172
(bases 1 — 391). (b) Two 16S rRNAs. The first RNA is from FEscherichia coli and is
1541 bases long. The second RNA of length 1551 stems from Dictyostelium discoideum
(GenBank codes: J01859 and D16466). For the comparison, we used the EPM size 2
which is the same as the one used in the FxpaRNA evaluation. The output from the tool
for the two IRES RNA sequences is shown in Fig. 5.1, and for the 16S rRNAs is shown
in Fig. 5.2. As we can see in Fig. 5.1, within an EPM a gap can exist (section 3.1.4).

Table. 5.1 shows a comparison of the output results produced by our tool, EzpaRNA,
RNA _align and RNAforester [13], [5]. The number of matches and percentage coverage
for FxpaRNA, RNA_align and RNAforester were obtained from the paper by Heyne
et.al. [13]. The RNA_align uses the general edit distance algorithm by Jiang et.al. [5]
to compute the sequence-structure alignment for RNA sequences. On the other hand,
the RNAforester program extends the tree editing algorithm of Jiang et.al. to calculate
forest alignments [4], [7]. The comparison is based on the total number of matched
nucleotides by each method, and by the percentage coverage. The coverage rate is twice
the number of EPMs produced divided by the sum of the two sequence lengths. As we
can see from the table, the coverage rate for FxpaRNA-P is better than the other tools
for the IRES RNA sequences. On the other hand, with the 16S rRNA sequence, the
coverage of FxpaRNA-P is worse than all tools. Table. 5.2 shows a comparison between
the run times of EzpaRNA and ExpaRNA-P for both RNA families. The run time of

26



—cG
eeg
AL

U
A

50
&

o

%o
g
qn
o
8,
£38
o
&
®
o
>
£
e
Q}‘%a
05’)%?

00 3090
0% ¢
0 00%0
{D'Cm
9%
oe?
0>
0 c
o)

>
0]

o%o.
00,0250
~
2%
of
s
el
o ¥
3
%
2\ oF
o¢

Posco”F0

Peec33¢°00

oPcernoPo

8, 6522
0 03cC €4906959%

550000,C0. GO0
Po0%% 5
H

o o
cc

o O
£0222%29¢ vozo
OEE e OO

g

©

<
y el
ESoco QE}OO) g 0930

e PR OO

&
&

Figure 5.1: The output produced for the two IRES RNA sequences. On the left we have
the structure of the RNA with GenBank code: AF165050, and on the right: D45172.
Matching EPMs are given the same color in both structures, and each EPM is shown in
a different color. We have a coverage of 86.5% (333 matched bases)

ExpaRNA-P appears to be worse than that of ExpaRNA, but that is expected since it
considers all the possible structures for an RNA sequence, not a single fixed structure
like ExpaRNA.

Nonetheless, this evaluation cannot be considered as accurate, since it is not known if a
bigger coverage is better or not for the sequences. In addition to that, there is no reference
to which the structures produced by the tool can be compared against. The above reasons
provided motivation for performing the large scale evaluation which is described in the

next section.

Method IRES RNA 16S rRNA
No of Matches | Coverage(%) | No of Matches | Coverage(%)
ExpaRNA-P 333 86.5 771 49.87
FxpaRNA 175 45 875 57
RNA _align 192 50 861 o6
RNA(forester 128 33 847 )

Table 5.1: Comparison between the number of matchings and the percentage coverage
found by FxpaRNA-P and other alignment methods
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Figure 5.2: The output produced for the two 16S rRNA sequences. On the left we
have the structure of the RNA with GenBank code: J01859, and on the right: D16466.
Matching EPMs are given the same color in both structures, and each EPM is shown in
a different color. We have a coverage of 49.87% (771 matched bases)

Method IRES RNA 16S rRNA
No of Matches | Time | No of Matches Time
ExpaRNA-P 333 291 s 771 2m07s
ExpaRNA 175 0.67 s 875 4.66 s

Table 5.2: Comparison between the run time of ExpaRNA-P and EzpaRNA
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Figure 5.3: A graph visualizing the comparison between FrpaRNA and ErpaRNA-P for
all sequences of the k2 dataset. The x-axis shows the minimum EPM size. The y-axis
shows the average compalign score.

5.2 Large scale evaluation

The output from the tool can be used as anchor constraints for RNA alignment tools
like LocARNA, thus speeding up the overall performance of such tools. In this section,
we compare the performance of ExpaRNA-P combined with LocARNA in comparison to
ExpaRNA combined with LocARNA. The input set to both tools was the k2 dataset from
the Bralibase 2.1 benchmark [2], [6]. For each input file, ExpaRNA-P is run, and the
resulting EPMs are provided as anchor constraints to LocARNA to produce the resulting
alignment. We compare the resulting test alignment with the reference alignment, which
is available with every sequence in the k2 dataset of the Bralibase 2.1 benchmark, using
the Compalign score. The Compalign score measures how close the test alignment is to
the reference alignment [1], [2], [6].

This procedure was repeated for each input file four times on the following EPM mini-
mum sizes s = (7,8,9,10). Figure 5.3 summarizes the results for the entire dataset.

We observe from Fig. 5.3 that the alignment produced using the EPMs produced by
FExpaRNA-P as anchor constraints to LocARNA is more accurate than the alignment
produced using the EPMs from EzpaRNA as anchor constraints to LocARNA. However
we can also notice that with increasing the minimum EPM size, the compalign score
produced by EzpaRNA increases at a more rapid rate than the compalign score produced
by ErzpaRNA-P. In addition to that, we can see from Fig. 5.4 and Fig. 5.5, the accuracy
of the score produced depends mainly on the RNA family; for the HIV_PBS family, the
compalign score produced by EzpaRNA-P is almost close to 1. On the other hand, for
the Cobalamin family, the compalign score is below 0.5 for both tools.
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Figure 5.4: A graph visualizing the comparison between FrpaRNA and ErpaRNA-P for

the RNA family Cobalamin. The x-axis shows the minimum EPM size. The y-axis shows
the average compalign score.
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Figure 5.5: A graph visualizing the comparison between FrpaRNA and ExpaRNA-P for

the RNA family HIV_PBS. The x-axis shows the minimum EPM size. The y-axis shows
the average compalign score.
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Chapter 6

Conclusion

6.1 Summary

We created a tool that performs sequence-structure comparison for RNA sequences. This
tool, given two RNA sequences outputs the maximal non-crossing, non-overlapping set
of exact pattern matchings. We used a dynamic programming approach to calculate the
exact pattern matches and to produce the set with maximal cardinality. The output from
the tool could be used as constraints for RNA alignment tools, restricting their search
space and thus speeding them up.

To evaluate the outcome produced, we compared the output of the tool with other tools
like EzpaRNA which also perform sequence-structure comparison but use different algo-
rithms in their computation. The comparison was based on the coverage produced by
each tool for the sequences, and throughout this comparison we could see that the results
cannot be considered as conclusive since for one input FxpaRNA-P had higher coverage
than the other tools, while for the other it had lower coverage. This and other factors
triggered the need for performing a more accurate and large scale evaluation. When
combining FxpaRNA-P with LocARNA and comparing it with ExpaRNA combined with
LocARNA against the Bralibase benchmark, the average compalign score produced by
ExpaRNA-P was more accurate than FxpaRNA. In spite of the more accurate alignment
results by FxpaRNA-P, we observed that when increasing the minimum EPM size, the
rate of increase of the compalign score produced by the results of FxpaRNA, is higher
than the rate of increase of accuracy from the results of EzpaRNA-P.

6.2 Future Work

As a result of time insufficiency, comparison based on the run time during the benchmark-
ing phase was not carried out. Work needs to be done to compare the run times of both
ExpaRNA and ExpaRNA-P. We also need to identify the possible speedup produced from
altering the minimum EPM size, and also compare it with the results from EzpaRNA.
More work is to be done to identify whether the current default values to the parameters
are the best compromise between speedup and accuracy, or other values produce better
results. We need to explore reasons why the rate of increase of the compalign score pro-
duced by ExpaRNA is higher than that of the results of EzpaRNA-P, when increasing
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the minimum EPM size.
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Appendix A

Abbreviations
RNA RiboNucleic Acid
A Adenine
Uracil
C Cytosine
G Guanine
EPM Exact Pattern Matching
MFE Minimum Free Energy
LCS-EPM Longest Common Subsequence for Exact Pattern Matching
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