
Development and Implementation of an
Alignment Program for Canonical

Pseudoknots

Bachelorarbeit

Bettina Hübner

Universität Freiburg

Lehrstuhl für Bioinformatik

1. Gutachter: Dr. Ing. Mathias Möhl

2. Gutachter: Prof. Dr. Rolf Backofen

Abgabetermin: 18. Februar 2011

1

ERKLÄRUNG

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen

als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder

sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht

habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht

auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

__________________ ____________________________________
 Ort, Datum Unterschrift

Contents
1 Introduction 5

2 Definitions and fundamentals 7
2.1 Arc-annotated sequences . 7

2.1.1 Crossing arcs / Pseudoknots . 7
2.1.2 Nested / crossing arc-annotated sequences 7

2.2 Alignment of arc-annotated sequences . 7
2.2.1 Alignment costs . 8

2.3 Fragments . 9
2.3.1 Arc-complete fragments . 9
2.3.2 Atomic fragments . 9

2.4 Alignments of fragments . 10
2.4.1 Optimal cost of an alignment A restricted to fragments Fa, Fb . . 10

2.5 Splits . 10
2.5.1 Arc-preserving splits . 10
2.5.2 Basic type of a split . 10
2.5.3 Compatible splits . 11
2.5.4 Size constrained split types . 11

2.6 Parse tree of a sequence . 11

3 The alignment algorithm scheme 12

4 The alignment algorithm for R&G Pseudoknots 15
4.1 The R&G Pseudoknot class . 15
4.2 How the algorithm works . 16

4.2.1 Base case at leaf nodes . 17
4.2.2 Arcmatch . 18
4.2.3 Split type 1’21’ . 18
4.2.4 Split type 2’1 . 19
4.2.5 Split type 12’ . 19
4.2.6 Split type 12 . 19
4.2.7 Pseudoknots . 20
4.2.8 Complexity . 22

4.3 A few details about the implementation 23
4.4 Results . 23

Zusammenfassung. In dieser Arbeit ging es darum, ein Sequenz-Struktur-
Alignmentprogramm für RNA mit kanonischen Pseudoknoten zu entwick-
eln und in der Programmiersprache C++ zu implementieren. Der Aus-
gangspunkt hierfür war der am Lehrstuhl für Bioinformatik der Universität
Freiburg entwickelte Algorithmus für eingeschränkte Pseudoknotenklassen.
Dieses allgemeine Schema sollte für eine effiziente Implementierung für die
Klasse der Reeder&Giegerich Pseudoknoten umgesetzt werden. Die Verwen-
dung einer eingeschränkten Klasse von Pseudoknoten ermöglicht einen ef-
fizienteren Algorithmus, der in gleichem Maße wie der zugrunde liegende
Struktur-Vorhersage-Alogrithmus von den Einschränkungen profitiert. Die
Zerlegungsmethode der Pseudoknotenklasse ist hier die Grundlage für die
verwendete dynamische Programmierung. Reeder&Giegerich Pseudoknoten
bilden die Klasse der einfachen, rekursiven kanonischen Pseudoknoten mit
maximal erweiterten Helices.

1 Introduction

It has recently become clear that RNA molecules do not only act as a messenger, they
play very important roles in a cell [1]. These roles involve regulatory and catalytic
ones [5]. The functions of non-coding RNAs are related to the structure which makes
investigating its structure interesting.
Existing approaches for the computational analysis of non-coding RNA mostly focus

on nested secondary structure and neglect pseudoknots since the prediction of pseudo-
knots is NP-hard [5]. However, pseudoknot motifs are “among the most prevalent RNA
structures” as stated in [6] and [1] and they are “functionally relevant in many RNA
mediated processes” as stated in [3].
The major problems concerning the analysis of pseudoknotted RNAs [1] depend on

each other: There are only few known pseudoknots and their prediction is computation-
ally very expensive. Furthermore, the existing prediction programs are not very reliable.
This is mainly caused by the shortage of known structures where the prediction pro-
grams can be trained on. On the other hand, the high computational cost and the low
prediction quality complicate the research on pseudoknot structures.
The most promising solution is the use of comparative approaches for the prediction

of pseudoknotted secondary structure. This requires an alignment of both sequence and
structure since the structure of RNA is more conserved than the sequence. However, “the
research on this topic is far behind the computational analysis of pseudoknot structure
prediction” as stated in [1]. The existing algorithms for pseudoknot structure prediction
focus on restricted classes of pseudoknots and use their properties to solve the prediction
problem in a dynamic programming approach.
The bioinformatics group at the technical faculty of the university Freiburg has devel-

oped a general scheme for sequence-structure alignment with known pseudoknot struc-
tures [1]. For a restricted class of pseudoknots it generates a pseudoknot alignment algo-
rithm using the decomposition strategy and thus the dynamic programming approach of

5

the structure prediction. This strategy makes the algorithm efficient: It benefits from the
structural restrictions in the same way as the prediction and has only a linear increase
in complexity.
A general version of this algorithm scheme has been implemented (PKalign [2]) but is

rather slow due to its generality. This motivated the topic of this thesis which is the de-
velopment and implementation of one tailored instance for the class of R&G pseudoknots
[3].

6

2 Definitions and fundamentals
This part is based upon [1].
First of all we need some formal definitions: The algorithm takes as input two se-

quences of RNA together with their fixed input structures. For one of them, a parse tree
is constructed and using this tree and methods of dynamic programming, the alignment
is recursively computed.

2.1 Arc-annotated sequences
So-called arc-annotated sequences are used to symbolize a sequence of RNA together
with its structure i.e., its base pairs. Let A = {A,U,C,G} be an alphabet representing
the four bases of an RNA sequences. S is a string over A and P is a set of pairs (l,r)
with left end pL = l and right end pR = r. Then an arc-annotated sequence is a pair
(S, P) where P represents bonds between bases.

• S [i] denotes the i-th symbol of S.

• An arc (l,r) with 1 ≤ l < r ≤ |S| represents a bond between the bases S[l] and S[r].

• Each base can occur in only one arc.

• For two arcs p1 = (l1, r1) and p2 = (l2, r2), l1 = l2 implies r1 = r2 (since each base
cannot be part of multiple arcs).

2.1.1 Crossing arcs / Pseudoknots

Two arcs p1 ∈ P and p2 ∈ P are crossing iff pL
1 < pL

2 < pR
1 < pR

2 or pL
2 < pL

1 < pR
2 < pR

1
i.e., they form a pseudoknot.

2.1.2 Nested / crossing arc-annotated sequences

A nested arc-annotated sequence contains only non-crossing arcs. If a sequence contains
at least two arcs that are crossing, it is called crossing.

2.2 Alignment of arc-annotated sequences
An Alignment of two arc-annotated sequences (S1, P1) and (S2, P2) is represented by a
set M ∪G where M is a set of so-called match edges and G is a set of gap edges.

• M is a set of pairs (i, j) ∈ [1... |S1|] × [1... |S2|]. For (i1, j1), (i2, j2) ∈ M , i1 > i2
implies j1 > j2 and i1 = i2 implies j1 = j2.

• G is a set {(x,−)|x ∈ [1...|S1|]∧@y.(x, y) ∈M}∪{(−, y)|y ∈ [1...|S2|]∧@x.(x, y) ∈
M} that aligns bases x and y to gaps.

(i, j) ∈ M matches bases S1[i] and S2[j]. Two arcs p1 ∈ P1 and p2 ∈ P2 are matched if
M contains match edges (pL

1 , p
R
2) and (pR

1 , p
R
2).

7

2.2.1 Alignment costs

For each alignment a cost based on edit distance can be computed using two kinds of
operations that were first introduced by Jiang et al.[8]

Base operations are used for positions that are not incident to arcs:

• Base mismatch: replace a base with another
– cost: wm

• Base insertion/deletion: align a base to a gap i.e., delete or insert it
– cost: wd

The second type of operation is used if at least one position of the edge is adjacent to
an arc.

• Arc mismatch: replace one or two of the bases incident to an arc
– cost: wam

2 if one base is replaced, wam if both are replaced

• Arc breaking: remove one arc but leave the adjacent bases unchanged
– cost: wb

• Arc removing: remove one arc and delete its bases
– cost: wr

• Arc altering: remove one of the two bases of an arc
– cost: wa = wb

2 + wr
2

For computing the cost of an alignment A of two arc-annotated sequences (S1, P1) and
(S2, P2) we use the following definitions1:

χ(i, j) := if S1[i] 6= S2[j] then 1 else 0

ψk(i) := if ∃p ∈ Pk.p
L = i or pR = j then 1 else 0

The cost for aligning Sk[i] to a gap is given by

gapk(i) := wd + ψk(i)(wr

2 − wd)

The cost for aligning S[i] to S[j] assuming that their possibly adjacent arcs are not
matched can be computed with

basematch(i, j) := χ(i, j)wm + (ψ1(i) + ψ2(j))wb

2

1k ∈ {1, 2}

8

Using this, the cost for an alignment can be computed recursively which enables using
the technique of dynamic programming:

cost({(i,−)}]A′) = gap1(i) + cost(A′)
cost({(−, j)}]A′) = gap2(j) + cost(A′)

cost({(l1, l2), (r1, r2)}]A′) = (χ(l1, l2) + χ(r1, r2))wam
2 + cost(A′)

if (l1, r1) ∈ P1, (l2, r2) ∈ P2
cost({(i, j)}]A′) = basematch(i, j) + cost(A′)

if third case is not applicable
(i.e., adjacent arcs are not matched.)

(1)

2.3 Fragments

An arc-annotated sequence (S, P) can be decomposed into fragments i.e., subsequences
and combinations of subsequences. The dynamic programming alorithm presented in
this thesis computes the optimal alignment step by step from optimal alignments for
fragments of the two sequences.
Formally, a fragment F of degree k is a k-tuple of intervals ([l1, r1], .., [lk, rk]) with

1 ≤ l1 ≤ r1 + 1 ≤ . . . ≤ lk ≤ rk + 1 ≤ |S|, where each [li, ri] denotes a subsequence of S.
l1, r1 are the boundaries of F and the ranges between the intervals are called gaps of F
(e.g. [r1 + 1, l2− 1]). An empty interval is denoted by [i+ 1, i] and is allowed due to the
above given definition.
For a fragment we consider the following concepts:

• F̂ : set of positions covered by F

• boundaries of F : l1, r1, . . . , lk, rk

• gaps of F : the ranges between the intervals, e.g. [r1 + 1, l2 − 1]

• empty intervals [i+ 1, i] are allowed

• F [i] denotes the i-th interval of F with left boundary F [i]L and right boundary
F [i]R

• 〈i〉 is abbreviation for [i, i] (interval of size 1)

2.3.1 Arc-complete fragments

A fragment F is arc-complete iff ∀(l, r) ∈ P.l ∈ F̂ ⇔ r ∈ F̂ .

2.3.2 Atomic fragments

An atomic fragment F covers either a single base position that is not incident to an arc
or it covers exactly the two ends of an arc (l, r) ∈ P .

9

2.4 Alignments of fragments
An alignment can not only be considered for whole sequences, instead it can also be
restricted to certain fragments of sequences. Formally, define the restriction of an align-
ment A to fragments Fa,Fb as

A|Fa×Fb
:= {(i, j) ∈ A|i ∈ F̂a ∪ {−}, j ∈ F̂b ∪ {−}}

For two fragments Fa, Fb, both having the same degree k, their alignment A is denoted
by alignA(Fa, Fb) and fulfills the following condition:

(∀(a1, a2) ∈ A) ∧ (∀i ∈ {1, . . . , k}) (a1 = −) ∨ (a2 = −) ∨ (a1 ∈ Fa[i]⇔ a2 ∈ Fb[i])

In other words, a pair (a1, a2) of alignA(Fa, Fb) either aligns a position from Fa or a
position from Fb to a gap or it aligns a position from the i-th interval of Fa to a position
from the i-th interval of Fb.

2.4.1 Optimal cost of an alignment A restricted to fragments Fa, Fb

The cost of aligning Fa and Fb by alignment A is defined as CA(Fa, Fb) := cost(A|Fa×Fb
)

It can be computed using the equations 1. The optimal cost for an alignment of the two
fragments Fa and Fb can be obtained by choosing the minmal cost among all possible
alignments of Fa and Fb:

C(Fa, Fb) := min
A with alignA(Fa,Fb)

{CA(FA, FB)}

2.5 Splits
A sequence or a fragment of a sequence can be split into smaller fragments.
Formally, a split of F is a pair (F 1, F 2) where F , F 1 and F 2 are fragments of the

same sequence ⇔ F̂ = F̂ 1] F̂ 2

F 1 and F 2 are the children and F the parent of the split. This concept can easily be
extended for n-ary splits which is neccessary for the R&G class of pseudoknot [3].

2.5.1 Arc-preserving splits

A split (F 1, F 2) of F is called arc-preserving if fragments F , F 1 and F 2 each are arc-
complete. Two examples for arc-preserving splits can be found in Figure 1.

2.5.2 Basic type of a split

Every split (F 1, F 2) has exactly one basic type that can be determined in the following
way: The interval [min(F̂),max(F̂)] consists of the intervals of F 1, the intervals of F 2

and the gaps of F . By ordering them from left to right and replacing each interval of F 1

by 1, each interval of F 2 by 2 and the gaps by G, we construct a string T over {1, 2, G}.
This string T is the basic type of the split and (F 1, F 2) is called a T -split.

10

Figure 1: Two examples for arc-preserving splits of a fragment F of an arc-
annotated sequence (S, P). a) (F 1, F 2) has basic split type 12 and con-
strained type 12’, F 2 is an atomic fragment. b) (F 1, F 2) is of basic split type
12G21 and constrained type 12’G2’1, F 2 is an atomic fragment.

Remark: For n-ary splits, this concept is extended such that T is a string over
{1, 2, . . . , n,G} where n is the number of children of the split. Apart from that, T
can be obtained in the same way.

2.5.3 Compatible splits

Two splits with the same split type are compatible.

2.5.4 Size constrained split types

A basic type of a split can be further refined by annotating constraints and is then
called a constrained type. Introducing a size constraint means restricting the size of
an interval that is part of the type. To indicate this, the symbol 1 or 2 belonging to
the size-constrained interval is marked with ’. Size constraints are used to show that an
atomic fragment is split off. A size constraint reduces the number of splits of this type
by reducing the degrees of freedom by one.
Examples for the concept of basic split types and size constrained split types are given

in Figure 1.

2.6 Parse tree of a sequence
A fixed recursive decomposition of a sequence (S, P) can be represented by a parse
tree. Formally, a parse tree is a binary tree where each node stands for an arc-complete
fragment of (S, P). Furthermore, the root covers all positions of the sequence i.e., the
interval [1, |S|]. Each inner node represents a fragment F and has two children F 1 and F 2

forming an arc-preserving split (F 1, F 2) of F . Finally, each leaf is an atomic fragment.

11

3 The alignment algorithm scheme
The alignment algorithm scheme presented in this section has been developed at the
Chair of Bioinformatics at the University of Freiburg and is thus heavily based upon [1]
and [2].
The alignment algorithm is a dynamic programming algorithm that uses a recursive

decomposition of the RNA sequences. The input consists of two arc-annotated sequences
(Sa, Pa) and (Sb, Pb) and a parse tree2 representing a fixed recursive decomposition of
the first sequence. As this already implies, the sequences are handled asymmetrically.
The parse tree and hence the decomposition of (Sa, Pa) determine the algorithm re-

cursion: For all splits given by the tree, all compatible splits of the second sequence are
examined. These compatible splits do not have to be arc-preserving. More precisely, for
all fragments in the parse tree alignments to all fragments of the second sequence are
constructed on condition that they are of the same basic type.
The algorithm computes the optimal alignment for fragments Fa = ([1, |Sa|]) covering

the entire first sequence and Fb = ([1, |Sb|]) and thereby yields the optimal cost C(Fa, Fb).
For the computations the following lemma is used:

Lemma 1 (Split lemma) Let Fa be a fragment of (Sa, Pa), Fb a fragement of (Sb, Pb)
and let (F 1

a , F
2
b) be an arc-preserving split of Fa having basic type T . Then

C(Fa, Fb) = min
T -split(F 1

b
,F 1

b
) of Fb

{C(F 1
a , F

1
b) + C(F 2

a , F
2
b)}

This means considering all possible alignments to a T -split of the second sequence and
choosing the one with minimal cost.
Since the splits of Fb in contrast to the ones of Fa do not need to be arc-preserving, they

may contain arcs that cannot be matched to arcs of Fa i.e., they are broken or removed.
Fortunately, the costs for these operations are correctly computed in C(F 1

a , F
1
b) and

C(F 2
a , F

2
b) since all costs are local to one single base except for matching an arc.

In order to do the evaluation of the recursion efficiently all intermediate values are
tabulated which is typical for dynamic programming. In this case, the resulting values
C(Fa, Fb) are stored to avoid recomputations.
At the leafs of the tree that represent atomic fragments the base cases of the recursion

are applied:

• The first base case is used for leaf nodes that cover one single position of the
sequence:

C(〈i〉 , [l, r]) = min


C(〈i〉 , [l + 1, r]) + gap2(l) if l ≤ r
C(〈i〉 , [l, r − 1]) + gap2(r) if l ≤ r
basematch(i, l) if l = r
gap1(i) if l > r

(2)

2in my implementation, the first step is parsing Sequence (Sa, Pa) and constructing the parse tree.

12

• The second base case is used for leaf nodes that represent the two end points of
an arc p = (pL, pR):

C(Fa = (
〈
pL

〉
,
〈
pR

〉
), ([l1, r1], [l2, r2])) =

min



C(
〈
pL

〉
, [l1, r1]) + C(

〈
pR

〉
, [l2, r2])

C(Fa, ([l1 + 1, r1], [l2, r2])) + gap2(l1) if l1 ≤ r1
C(Fa, ([l1, r1 − 1], [l2, r2])) + gap2(r1) if l1 ≤ r1
C(Fa, ([l1, r1], [l2 + 1, r2])) + gap2(l2) if l2 ≤ r2
C(Fa, ([l1, r1], [l2, r2 − 1])) + gap2(r2) if l2 ≤ r2
(χ(pL, l1) + χ(pR, l2))wam

2 if (l1, l2) = (r1, r2) ∈ Pb

(3)

For each split (F 1
a , F

2
a) with basic type T in the parse tree the following recursion is

applied:

C(Fa, Fb) = min
T -split(F 1

b
,F 2

b
) of Fb

{C(F 1
a , F

1
b) + C(F 2

a , F
2
b)}

After computing C(Fa, Fb) for all nodes of the parse tree, the actual alignment is con-
structed by doing a back-trace that starts at the root node of the tree.

To analyze the complexity of the algorithm I first need to mention some further con-
siderations concerning the number of children and parents of a split type. The num-
ber of parents influences the complexity since for each fragment in the first sequence,
all fragments in the second sequence having the same split type are considered. The
number of children determines in how many ways an aligned fragment can be split in
sub-alignments.
Let m be the length of the second sequence. Then the number of children is defined

as

#m
C (T) = |{(F 1, F 2) | (F 1, F 2) is a T -split of some F and F̂ ⊆ [1,m]}|

and the number of parents is defined as

#m
P (T) = |{F | ∃(F 1, F 2) that is a T -split of F and F̂ ⊆ [1,m]}|

These numbers are restricted by the following lemma:

Lemma 2 Let T be a split type of some sequence with length m and let kp, k1 and
k2 be the degrees of the parents and the two children of the split. Additionally, let the
constraints of T reduce the degrees of freedom by a factor c and denote the correspond-
ing reduction for the parent instances by c′ ≤ c. Then #m

C (T) ∈ O(mkp+k1+k2−c) and
#m

P (T) ∈ O(m2kp−c′).

As mentioned above, let m be the length of the second sequence and let n be the one
of the first sequence. Then, the number of nodes in the parse tree is bounded by O(n)

13

since with each split at least one new boundary is introduced and in total there exist
only O(n) many.
Let Tp and Tc be types of splits in the parse tree and let the according #m

P (Tp) and
#m

C (Tc) be maximal among the occurring split types. The algorithm computes the cost
C(Fa, Fb) for each node Fa having split type Tp for #m

P (Tp) fragments. If one assumes
the worst case for each node, this leads to a space complexity of O(n ·#m

P (Tp)).
The computation of Tc-splits dominates the time complexity : According to the split

lemma, the algorithm chooses the minimum among #m
C (Tc) terms where each term is

computed in O(1). This leads to a worst case time complexity of O(n ·#m
C (Tc)) ·#m

P (Tp)
and #m

C (Tc) is asymptotically bounded by Lemma 2. Assuming non-constrained basic
split types we get a O(nm2k) space and O(nm3k) time complexity, with k being the
maximal degree among the splits in the parse tree.
A possibilty to reduce the complexity is given by the fact that it directly depends on

#m
P (T) and #m

C (T) for the basic types and also by Lemma 2 showing that these numbers
can be reduced by constraints of the types. Hence, this potential can be used to improve
the complexity. For this purpose, the split lemma and also the recursive cases need to
be modified. The reason for this is that an atomic fragment of the first sequence is not
neccessarily aligned to an atomic fragment of the second sequence: Let (F 1

a , F
1
b) be a split

having constraint type T where F 1
a is atomic and let the corresponding unconstrained

type be Tu. The algorithm aligns F 1
a to F 1

b of a Tu-split (F 1
B, F

2
B). For a non-atomic

F 1
b the split lemma implies that at most one of its bases per interval is matched to F 1

a

and the others are aligned to gaps. By introducing so-called ’shrink-cases’ and thereby
’eating away’ the gaped bases a fragment F 1

b of Fb can be split off that satisfies the
constraint type T .
The following lemma is an extension of the split lemma allowing size constraints in

the split type T .

Lemma 3 (Split lemma for constrained types) Let Fa be a fragment of (Sa, Pa) and
let Fb be a fragment of (Sb, Pb). Furthermore, let (F 1

a , F
2
a) be an arc-preserving T -split

of Fa with size constraints for at most one of the fragments. In addition, at least one
boundary of each interval of the constrained fragment must coincide with a boundary
of Fa, then these constrained boundaries can be removed by additional shrink cases.
Finally, let A be an optimal alignment of Fa and Fb. Then there are two possibilities
how A aligns Fa to a T -split (F 1

b , F
2
B) of Fb. Either the constrained fragment of the split

is matched to one or two gaps by A and the remaining fragment is aligned to Fa, or A
aligns F 1

a to F 1
b and F 2

a to F 2
b .

The remaining step now is to modify the recursive case. Here, C(−, F i
b) denotes the

cost of deleting F i
b . The base cases as given in equations 2 and 3 stay the same.

C(Fa, Fb)) = min
T -split(F 1

b
,F 2

b
) of Fb

min


C(F 1

a , F
1
b) + C(F 2

a , F
2
b)

C(Fa, F
2
b) + C(−, F 1

b) if T contains some 1′
C(Fa, F

1
b) + C(−, F 2

b) if T contains some 2′

14

Figure 2: Structure of a canonical pseudoknot

4 The alignment algorithm for R&G Pseudoknots
This section deals with the variant of the alignment algorithm for the restricted class
of R&G pseudoknots. As a first step I will describe the pseudoknot class which has
been developed by Jens Reeder and Robert Giegerich from the university of Bielefeld
[3]. Afterwards, I am going to show the modified recursions for the different split types
and mention a few details about my implementation. The final part gives a runtime
comparison to the general implementation of the alignment algorithm scheme done by
Mathias Möhl [2].

4.1 The R&G Pseudoknot class
In general, RNA secondary structure prediction is NP-complete for arbitrary pseudo-
knots if the thermodynamic model is used. A solution for this problem is to restrict
the classes of pseudoknots which enables polynomial time algorithms. Analogously, the
alignment can also benefit from structural restriction.
One example for a restricted class of pseudoknots is the one developed by Jens Reeder

and Robert Giegerich [3], the so-called class of canonical simple recursive pseudoknots,
which means simple recursive pseudoknots that are further restricted by three rules of
canonization.

• Two helices that interact crosswise form a simple pseudoknot.

• Simple recursive pseudoknots are an extension of simple pseudoknots: Here, the
unpaired strands u,v,w (see Figure 2) can internally fold in an arbitrary way. This
also includes that they can form further recursive pseudoknots.

The class of simple recursive pseudoknots is reduced to the class of canonical simple
recursive pseudoknots by three canonization rules. These rules also influence the number
of independent moving boundaries between the different parts of a pseudoknot and
thereby improve the runtime of the prediction algorithm.

15

• Rule I:

– The two strands of a helix must be of the same size: |a1| = |a2| and |b1| = |b2|.
This decreases the number of moving boundaries from 8 to 6 since it implies
f = l − (e− i) and h = j − (g − k).

– Furthermore, both helices are not allowed to contain bulges.

• Rule II:

– The helices a1, a2, b1 and b2 must be maximally extended which also means
that v must be as short as possible. The maximum possible extension de-
pends on the bases of the input sequence and means that the helices must be
extended as long as valid Watson-Crick base pairs can be formed.

– This rule also reduces the number of boundaries since the values of i and l
already fix the maximal helix length of a1 and a2. Analogously, the choice of
k and j influences the length of b1 and b2.

– e = i+ maximalLength(i, l)

– g = k + maximalLength(k, j)

– Consequently, only four independently moving boundaries remain (i,k,l,j).

• Rule III:

– If two maximal helices overlap i.e, they compete for the same bases of v, an
arbitrary point between them is chosen as boundary.

Using the split types for fragments introduced in section 2.5.2 on page 10 and section
2.5.4 on page 11 R&G structures can be decomposed in the following way3:
2′1 12′ 12 1′21′ E1 : 1c23c41c53c E2 : 12′G2′1
These are the possible split types that can occur in a parse tree for a RNA sequence

with a canonical pseudoknot. Split type E1 is used for canonical pseudoknots where
fragments 1 and 3 form the two helices that are further decomposed by E2.

4.2 How the algorithm works

We have seen that parse trees with a certain restricted set of split types exist for the
class of R&G Pseudoknots. Now we are going to consider an optimized variant of the
general alignment algorithm scheme that uses an optimized version for each kind of split
type.
This variant of the algorithm fitted for RG-PKs uses the results of lemma 3 and

the modified recursive case. All kinds of split types used here contain either a length
constraint for one or two of the fragments or they contain the constraint for canonical
pseudoknot stems. This gives the possibility to use shrink cases and modify the general

3E1 uses a new kind of type constraint (.c) meaning fragments 1 and 3 must each form a canonical
stem.

16

recursive equation for each kind of split node. A special approach is used for Pseuoknots
and will be discussed later in this section.
In this section another way of notation as in the previous section is used. All split

types except E2 cover contiguous fragments i.e., they cover a complete range of the
sequence. At each node of the parse tree, we want to compute the optimal alignment
for the fragment it represents to a fragment of the second sequence. These alignments
are stored in a matrix M [i,] for each node with the following meaning:

• A node represents a fragment Fa that covers the positions {i1, . . . , j1 − 1}, which
is denoted by a range (i1, j1).

• A matrix entry M [i, j] represents an optimal alignment of Fa to a fragment Fb

with F̂b = {i, . . . , j − 1}.

• M [i, i+ 1] thus corresponds to an alignment to a single base at position i in S2.

• M [i, j] with i ≥ j denotes an alignment to an empty fragment.

• For example, M [2, 5] corresponds to an alignment to a fragment Fb with F̂b =
{2, 3, 4} and M [1, 2] denotes an alignment to an atomic fragment that spans the
single position 1. M [1, 1] and M [5, 3] are examples for alignments to empty frag-
ments.

The sequence positions are numbered starting with 0. Consequently, the last position
is the sequence length minus one4. As a result, the cost for the final alignment for
(S1, P1) and (S2, P2) can be found in the matrix entry [0,m] of the root node with range
(0, n).
In the following, we consider the computation of the matrix M for each kind of node

separatly under the assumption that each node covers a range (i1, j1) of the sequence.

4.2.1 Base case at leaf nodes

The base case corresponds to the one given on page 12. It is used at the leaf nodes of
the tree that cover a single position i1 which means a single unpaired base to ensure
arc-completeness. It is denoted by the range (i1, i1 + 1).

M [i, j] = min


M [i+ 1, j] + gap2(i) if (j − i) > 2
M [i, j − 1] + gap2(j − 1) if (j − i) > 2
basematch(i, j − 1) if (j − i) = 1
gap1(i1) if i >= j

The matrix is filled in decreasing order for index i and increasing order for j. Each
entry can be computed in constant time. This leads to a runtime complexity of O(n2)
since there are n2 entries in the matrix.

4In the following, the two sequence lengths are denoted by n for the first and m for the second one.

17

So far, the second base case was the one for leaf nodes representing atomic fragments
that consist of exactly the two end points pL and pR of an arc p which ensures arc-
completeness. To compute an alignment for the two bases we need to find an alignment
for the left endpoint pL to a fragment [i’,j’] of the second sequence and an alignment for
pR to a fragment [i”,j”]. This means four indices and would lead to a space complexity
of O(m4) which is not desirable. As a solution to this the corresponding alignment
computation for the arc p is done at nodes with split type 1′21′ and the leaf nodes for
arcs are no longer used.
Before I continue I first want to introduce a new operator for computing the cost of

an alignment to shorten the notation.

4.2.2 Arcmatch

• arcmatch(l1, r1, l2, r2) = 0 + (χ(l1, r1 +χ(l2, r2)) · wam
2) denotes the cost of an arc

match or mismatch of two arcs (l1, r1) and (l2, r2) under the assumption that the
alignment A aligns S1[l1] to S2[l2], S1[r1] to S2[r2] and there is a pair (l1, r1) ∈ P1
and a pair (l2, r2) ∈ P2.

4.2.3 Split type 1’21’

A node with split type 1′21′ represents a part of the sequence that is closed by an arc.
The range (i1, j1) sets pL to i1 and pR to j1 − 1. This leaves a range (i1 + 1, j1 − 1) or
alternatively a fragment [i1 + 1, j1 − 2] for the inner part, which is the second fragment
of the split. Here, we also need the result for the child node that represents the second
fragment. Its matrix is denoted by M2. The matrix is filled as follows:

• for empty fragments [i, j] with i ≥ j there is only one possibility i.e, aligning pL

and pR to gaps:

M [i, j] = wr

• for non-empty fragments [i, j] with i < j:5

M [i, j] = min



M [i+ 1, j] + gap2(i) (I)
M [i, j − 1] + gap2(j − 1) (II)
M2[i, j] + wr (III)
M2[i+ 1, j] + gap2(j − 1)basematch(i1, i) (IV)
M2[i, j − 1] + gap1(i) + basematch(j1 − 1, j − 1) (V)
M2[i+ 1, j − 1] + arcmatch(i1, j1 − 1, i, j − 1) if (i, j − 1) ∈ P2 (V I)
M2[i+ 1, j − 1] + bm(i1, i) + bm(j1 − 1, j − 1) if (i, j − 1) /∈ P2 (V II)

Each entry can be computed in constant time. The space complexity for the matrix is
O(m2). Again the matrix is filled in decreasing order for index i and in increasing order
for j.

5bm is used as abbreviation for basematch

18

4.2.4 Split type 2’1

Another possible split type is 2′1 for a range (i1, j1). The size constraint implies that
S1[i1] is an unpaired base. In the parse tree, we do not need a node for the left child,
the fragment 2′, instead the possibilities for this alignment are considered in the node
2′1. M2 denotes the matrix of the child node for the fragment without size-constraint.
• for empty fragments [i, j] with i ≥ j it is only possible to align S[i1] to a gap which

means deleting it:

M [i, j] = wd

• for non-empty fragments [i, j] with i < j:

M [i, j] = min


M2[i, j] + gap1(i1) (I)
M2[i+ 1, j] + basematch(i1, i) (II)
M [i+ 1, j] + gap2(i) (III)

4.2.5 Split type 12’

The computation is quite similar for nodes (i1, j1) with split type 12′. Here we also need
only one child node for the unconstrained fragment and its matrix M1. The fragment
〈j − 1〉 denotes the unpaired base j − 1.
• for empty fragments [i, j] with i ≥ j it is only possible to align S[j1 − 1] to a gap

which means deleting it:

M [i, j] = wd

• for non-empty fragments [i, j] with i < j:

M [i, j] = min


M1[i, j] + gap1(j1 − 1) (I)
M1[i, j − 1] + basematch(j1 − 1, j − 1) (II)
M [i, j − 1] + gap2(j − 1) (III)

4.2.6 Split type 12

A node with range (i1, j1) and split type 12 has two child nodes for fragments 1 and
2. Their matrices are denoted by M1 and M2. This split type is unconstrained. All
12-splits from the second sequence have to be considered: This is done by iterating over
all possible split points k with i ≤ k ≤ j and using the according entries from M1 and
M2, respectively. The boundaries for k are chosen to allow empty fragments 1 or 2 which
corresponds to aligning one of the fragments completely to gaps.

M [i, j] = min
k
{M1[i, k] +M2[k, j]} for i ≤ k ≤ j

For each entry M [i, j] and each k we look up one value of M1 and one value of M2,
which takes constant time. In total, we do this k-times for each M[i, j]. If we assume
the worst case with i = 0 and j = m k can have m different values which leads to a
linear runtime complexity for each entry.

19

Figure 3: Schematic overview of a pseudoknot in S2

4.2.7 Pseudoknots

The remaining two split types are E1 and E2 that deal with the decomposition of pseu-
doknots. In order to obtain a faster algorithm, we use a further restriction here: We limit
the possible alignments to canonical ones that principally align pseudoknots in the first
sequence only to other pseudoknots in the second sequence. If there is no pseudoknot
available in S2, then the pseudoknot from S1 should completely be aligned to gaps.
The further decomposition of the two stems of a pseudoknot using E2 takes place

during the actual computation of the alignment to a pseudoknot fragment of the second
sequence. Consequently, there are no nodes of type E2 in the parse tree. A node
representing a pseudoknot thereby has only three child nodes instead of five as implied
by the split type E1 : 1c23c41c53c.
The resulting alignment for a pseudoknot with range (i1, j1) is also stored in a matrix

M [i, j], and the matrices M1, M2 and M3 of the three children are used. Additionally,
two stem-matrices STEMii′ and STEMjj′ are filled. They represent alignments of the
first respectively the second stem to canonical stems in the second sequence and, during
their filling procedure, the stems are decomposed in the way type E2 proposes.

• For entries M [i, j] with i ≥ j that represent empty fragments:

M [i, j] = cost for aligning fragment [i1, j1 − 1] completely to gaps

• EntriesM [i, j] where (i, j) does not consist of a canonical pseudoknot in the second
sequence should not be part of the final optimal alignment. They are therefore set
to infinity since the algorithm chooses minimal values:

M [i, j] =∞

For entries M [i, j] with existing pseudoknot (i, j) in the second sequence the compu-
tation is more involved. Here the additonal matrices STEMii′ and STEMjj′ are used.
STEMii′ is used to compute the cost for the alignment of the first stem starting at po-
sition i1 in S1 to the first stem with outermoset base pair (i, i′) in the second sequence.
Likewise, STEMjj′ denotes the cost to align the second stem with right endpoint j − 1
to the second stem (j′ − 1, j − 1).

20

Figure 4: Meaning of l, lenL and lenR

Figure 5: Positions of x1, y1, x2 and y2

More precisely, an entry STEMii′ [lenL][lenR][l] denotes the cost to align the outermost
l base pairs from the first stem of S1 to lenL positions from the left part and lenR many
position from the right part. This is illustrated in Figure 4. The variables x1 and y1
denote the positions of the current innermost base pair of the stem in S1, x2 and y2
denote the ones from S2 as shown in Figure 5.
For STEMjj′ this is done analogously. Since we want to align the complete stems

of S1, we are interested in the entries [len1][len1][l1] of STEMii′ and [len2][len2][l2] of
STEMjj′ where l1 denotes the consumed length of the first stem in the pseudoknot of
S1 and l2 the length of the second stem.
In the following recursion I use bm twice instead of basematch to reduce the length

of the second line, the meaning is the same. For STEMii′ it holds that 0 ≤ l ≤ l1,
0 ≤ lenL ≤ len1 and 0 ≤ lenR ≤ len1. The first entry [0][0][0] = 0 is only used for
completition to avoid many exceptions for the marginal values and does not represent
an actual part of the alignment, since this would mean aligning zero bases from the stem
in S1 and zero bases from S2. During the traceback this is taken into consideration.

STEMii′ [lenL][lenR][l] =

min



STEMii′ [lenL− 1][lenR− 1][l − 1] + arcmatch(x1, y1, x2, y2) if (x2, y2) ∈ P2
STEMii′ [lenL− 1][lenR− 1][l − 1] + bm(x1, x2) + bm(y1, y2) if (x2, y2) /∈ P2
STEMii′ [lenL][lenR][l − 1] + wr

STEMii′ [lenL− 1][lenR][l − 1] + basematch(x1, x2) + wr
2

STEMii′ [lenL][lenR− 1][l − 1] + basematch(y1, y2) + wr
2

STEMii′ [lenL− 1][lenR][l] + gap2(x2)
STEMii′ [lenL][lenR− 1][l] + gap2(y2)

21

The entries are filled in increasing order for l. In each step, only entries for l and l− 1
are needed. It is thus possible to use l mod 2 for the third index instead of l. This
reduces the needed space to quadratic size.
Unfortunately, this trick cannot be used for the traceback. Here we start at a certain

entry of a stem matrix and follow the recursion backwards. This is the reason why we
need the entries for all possible values of l here. On the other hand, the maximal value
of l is bounded by the maximal stem length among all pseudoknots that occur in the
first sequence. Since there has to be the same number of bases to form the base pairs
we can conclude that l < n/2. Consequently, the space complexity for this node is
O(m ·m · n) = O(m2 · n)
The entry M [i, j] is then combined using the three children matrices. The minimal

value among all possible len1 and len2 is chosen:

M [i, j] = STEMii′ [len1][len1][l1] +
STEMjj′ [len2][len2][l2] +
M1[i+ len1, j′] +
M2[j′ + len2, i′ − len1 + 1] +
M3[i′ + 1, j − len2]

The matrix M is filled for m2 entries. The most complex computation is done for
entries that represent an alignment to a pseudoknot in S2. All possible values for len1
and len2 have to be considered which means O(m2) for each entry. This is O(m4) for
all entries of M . The computation of each STEMii′ matrix costs O(l3) with l being the
maximal length of a pseudoknot stem in the input. Consequently, the computation of
all STEMii′ costs O(m2l3). For both matrices together, this leads to O(m2 + l3) for each
entry and O(m2 · (m2 + l3)) for all of them.

4.2.8 Complexity

For all split types the computation can be done in O(m2) time. The only exception is
the computation at pseudoknots. In total, the parse tree can consist of O(n) nodes. If
we assume the worst case, which means that each node is a pseudoknot, this leads to
an over-all complexity of O(n · m2(m2 + l3)). For a constant length l of a canonical
pseudoknot stem it results in O(n ·m4). This is a linear increase compared to the O(n4)
time complexity of the prediction algorithm by Reeder&Giegerich for this restricted class
of pseudoknots and a sequence length n [3].
The space complexity is O(m2) for all nodes except for pseudoknots, which require

additional O(l3) for precomputing the stems. Assuming again that l is constant, in the
worst case, this leads to a space complexity of O(n ·m2). This is only a linear increase
compared to the space complexity of the prediction algorithm by Reeder&Giegerich [3]
which is O(n2).

22

4.3 A few details about the implementation
The algorithm has been implemented in C++. The structure comprises classes for
sequences, the parse tree, alignments, a general node class and derived classes for the
different split types. Methods for filling the matrices and doing the traceback are part
of the node classes. This final class structure is the result of a number of modifications
and improvements. Especially the recursions and the marginal values for matrix entries
were the reason for many changes.
It takes as input two dotbracket files representing the two sequences. In a first step,

it creates sequence objects for them and the second step is building the parse tree for
the first sequence. Next the matrices denoting the alignment costs for all nodes are
filled. Finally, the resulting alignment is reconstructed by the traceback that step by
step composes the final alignment out of smaller parts for the fragments.

4.4 Results
In order to gain an insight if this tailored algorithm, denoted with PKalignRG in the
following, really runs faster than the general implementation, denoted with PKalign
[2], a few test runs have been made on a Intel Core Duo T5800 processor with 2.0GHz.
Three example sequences were chosen from the Antizyme FSE family which were slightly
modified to make them canonical. The following table shows the measured time : In all
cases, PKalignRG was clearly faster than PKalign.

First input sequence Second input sequence Time PKalignRG Time PKalign
AF291576.1/215-270 BC056833.1/241-299 0.016s 0.640s
BC056833.1/241-299 AF291576.1/215-270 0.012s 0.620s
AF291576.1/215-270 AC004152.1/16641-16699 0.008s 0.672s

AC004152.1/16641-16699 AF291576.1/215-270 0.008s 0.636s
BC056833.1/241-299 AC004152.1/16641-16699 0.004s 0.640s

AC004152.1/16641-16699 BC056833.1/241-299 0.012s 0.704s

23

Danksagung. Abschließend möchte ich mich noch bei Mathias Möhl bedanken, der
mir bei allen Fragen schnell und zuverlässig weitergeholfen hat.

References
[1] Möhl, M., Will, S., Backofen, R.: Lifting Prediction to Alignment of RNA Pseudo-

knots. 2009

[2] Möhl, M.: Dynamic Programming Based RNA Pseudoknot Alignment. Disserta-
tion, University of Saarland. 2009

[3] Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical
pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5
(2004) 104

[4] Möhl, M.: Script for the lecture RNA Bioinformatics. University of Freiburg. Winter
semester 2010/2011.

[5] Couzin, J.: Breakthrough of the year. Small RNAs make big splash. Science
298(5602) (2002) 2296–7

[6] Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse func-
tions.PLoS Biol 3(6) (2005) e213

[7] Lyngso, R.B., Pedersen, C.N.S.: Pseudoknots in RNA secondary structures. In:
Proc. of the Fourth Annual International Conferences on Compututational Molec-
ular Biology (RECOMB00), ACM Press (2000) BRICS Report Series RS-00-1.

[8] Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA
structures. Journal of Computational Biology 9(2) (2002) 371–88

24

