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Abstract

Motivation: Single-cell Hi-C research currently lacks an efficient, easy to use and shareable data storage
format. Recent studies have used a variety of sub-optimal solutions: publishing raw data only, text based
interaction matrices, or reusing established Hi-C storage formats for single interaction matrices. These
approaches are storage and pre-processing intensive, require long labour time and are often error-prone.
Results: The single-cell cooler file format (scool ) provides an efficient, user-friendly and storage-saving
approach for single-cell Hi-C data. It is a flavour of the established cooler format and guarantees stable
API support.
Availability: The single-cell cooler format is part of the cooler file format as of API version 0.8.9. It is
available via pip, conda and github: https://github.com/mirnylab/cooler.
Contact: wolffj@informatik.uni-freiburg.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The storage, processing and analysis of single-cell Hi-C data face
several challenges. First, the pre-processing overhead for single-cell
Hi-C is both storage-intensive and time-consuming. For example,
reproducing the results of the Nagano et al. (2017) single-cell Hi-C study
requires downloading, demultiplexing and mapping more than 1.1 TB
of compressed raw FASTQ data and creating thousands of interaction
matrices. Second, manually handling so many files is unwieldy and prone
to error. For example, some studies (Nagano et al. (2013); Stevens et al.
(2017); Ramani et al. (2017)) have published their pre-processed data as
text-based files. Depending on the resolution, these files potentially store
millions to billions of features in an uncompressed text file without fast
random or partial access. By contrast, studies like Gassler et al. (2017)
published pre-processed cool files (Abdennur and Mirny (2019)) for each
cell and at multiple resolutions. However, due to redundancy in data storage
and the complexitiy of handling a proliferation of files, this one-matrix-
per-file approach has limited scalability and makes reproducible analysis
challenging.

Here, we present the single-cell cooler format, a “flavour” of the cooler
file format (Abdennur and Mirny (2019)), that stores multiple single-cell
sparse Hi-C interaction matrices at a common resolution in a single HDF5
(Koziol and Robinson (2018)) file, allowing portable, space-efficient
and fast access to single-cell interaction data. It uses the recommended
extension .scool.

2 Methods
We adopt the basic structure of the cooler format to create a collection of
single-cell interaction matrices having common dimensions (see Figure 1
A and B). Internally, all single-cell interaction matrices are stored under a
group /cells and each matrix is identified by a unique cell ID and has
the structure of a standard cooler data collection (Figure 1 A), allowing
it to be read independently and transparently with the regular cooler API
(see Listing 2). However, to eliminate redundancy, data structures that are
shared between all cells are implemented as HDF5 hard-links pointing to
the data that is shared between the cells, which is stored in the root group
(Figure 1 B). These include the index-associated genomic coordinates
of the Hi-C contacts: /bins/chrom, /bins/start, /bins/end,
and the general information about the stored chromosomes: /chroms.
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Fig. 1. (A) The structure of the cooler file format from Abdennur and Mirny (2019). (B)
The structure of the single-cell cooler file format as a flavour of the cooler format. Hard
linked groups and arrays are denoted with the curved arrow icon.

These shared data structures provide significant space reduction when
consolidating contact maps from a multitude of cells into a single file
as opposed to using a large collection of separate cooler files. As a
matrix format, an scool file stores binned contact data conforming to a
specific genomic segmentation. While binning naturally leads to a loss of
information and comparing data sets can be difficult when bin sizes are
not compatible, single-cell cooler files can be binned at any resolution
and even lossless contact maps can be produced using 1-bp resolution, if
desired.

2.1 Metadata

The single-cell cooler format stores specific metadata HDF5 attributes
at the root level of the file: the format string HDF5::SCOOL, the
format-version, whether the bin-type is fixed or variable, the
bin-size, the genome assembly, the number of stored cells ncells
and the optional field metadata for quality information or other user
metadata.

2.2 Creation

To create a single-cell cooler file, the API can be used by calling the
function cooler.create_scool and providing a file name, a dictionary of
bins with the unique cell name as key (or a global common bin table, see
Supplementary Material 1) and a dictionary mapping unique cell names
to pixel information (Listing 1).

import cooler

bins_dict = {’cell1’ : bins1, ’cell2’ : bins2}

pixel_dict = {’cell1’ : pixels1, ’cell2’ : pixels2}

cooler.create_scool(cool_uri=file_name, bins=bins_dict,

cell_name_pixels_dict=pixel_dict)

Listing 1. Python API example to create a scool file

2.3 Access

The interaction matrices in a single-cell cooler file can be listed with
cooler.fileops.list_coolers. The interaction matrix of one cell can be
retrieved using the resource syntax:

if cooler.fileops.is_scool_file(file_path):

matrices_list = cooler.fileops.list_scool_cells(

file_path)

for cell in matrices_list:

clr = cooler.Cooler(file_path + "::" + cell)

Listing 2. Python API example to read cells of a scool file

3 Results
The single-cell Hi-C data provided by Nagano et al. (2017) as raw FASTQ
files has a compressed size of more than 1 TB. After demultiplexing,
mapping and matrix creation several terabytes are consumed. At 10 kb
resolution, 3882 individual cool files have a size of 3 GB, which is reduced
to 1.9 GB using scool. At 1 MB, the cool files require 350 MB and the
scool 267 MB. Gassler et al. (2017) provides 144 individual cool files at
different resolutions. The storage reduction provided by scool are 2300 to
116 MB at 1 kb; 348 to 65 MB at 10 kb; 120 to 28 MB at 40 kb; and
63 to 26 MB at 100 kb. Compression ratios (see Supplementary Material
Table 2) depend on the density and the resolution of the data. Generally,
there is a greater overhead of storing a full bin table for each cell the fewer
reads relative to the number of possible interactions and the higher the
resolution. For example, the density for the 10 kb single-cell Hi-C data
from Gassler et al. (2017) is up to 0.0004, while for Nagano et al. (2017) it
is up to 0.0012. Accordingly, the scool / cool compression ratio for Gassler
et al. (2017) (0.193), is better than that for Nagano et al. (2017) (0.633).
See the Supplementary Material for more read coverages, densities and
compression rates with respect to text and cooler files.

4 Conclusion
The single-cell cooler format makes it possible to store thousands of
state-of-the-art single-cell Hi-C matrices in a single file with minimal
redundancy. By storing all matrices in a space-efficient way, the
reproducibility of single-cell Hi-C analyses is better achievable and the data
is more accessible to a broader range of researchers. A portable container
format prevents the complexity of managing thousands of files or needing
to download and process large amounts of raw data from scratch. The
embedding into the cooler API guarantees a fast and reliable access to the
individual single-cell matrices and facilitates the use of parallel computing
to improve analysis performance. The scool format is ideal for single-cell
Hi-C data analysis software and is supported by scHiCExplorer (Wolff
et al. (2020)).
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