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Abstract

Background: Current peak callers for identifying RNA-binding protein (RBP) binding sites from CLIP-seq data take
into account genomic read profiles, but they ignore the underlying transcript information, that is information
regarding splicing events. So far, there are no studies available that closer observe this issue.

Results: Here we show that current peak callers are susceptible to false peak calling near exon borders. We quantify
its extent in publicly available datasets, which turns out to be substantial. By providing a tool called CLIPcontext for
automatic transcript and genomic context sequence extraction, we further demonstrate that context choice affects
the performances of RBP binding site prediction tools. Moreover, we show that known motifs of exon-binding RBPs
are often enriched in transcript context sites, which should enable the recovery of more authentic binding sites.
Finally, we discuss possible strategies on how to integrate transcript information into future workflows.

Conclusions: Our results demonstrate the importance of incorporating transcript information in CLIP-seq data
analysis. Taking advantage of the underlying transcript information should therefore become an integral part of future
peak calling and downstream analysis tools.
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Background
Over the last decade, CLIP-seq (cross-linking and immu-
noprecipitation followed by next generation sequencing)
[1] has become the state-of-the-art procedure to experi-
mentally determine the precise transcriptome-wide bind-
ing locations of RNA-binding proteins (RBPs). Many vari-
ants have been introduced, out of which PAR-CLIP [2],
iCLIP [3], and eCLIP [4] are currently the most widely
used. Regardless of the variant, CLIP-seq is usually applied
in vivo to a specific RBP, producing a library of reads
bound by the RBP. Identification of binding sites is sub-
sequently achieved by mapping the reads back to the
corresponding reference genome and running a so called
peak caller tool on the read profiles. A number of popular
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peak callers have emerged over the years, such as Piranha
[5], CLIPper [6], PEAKachu [7], and PureCLIP [8].
While there exist various protocol-specific as well as

more generic peak callers [9], none of the current tools
takes into account the transcript information underlying
the mapped reads. Instead, they extract binding regions
directly from the genomic read profiles. This can be
acceptable if the studied RBP binds intronic sequences or
in general unspliced RNAs. However, if the RBP is actually
predominantly binding to spliced RNAs, which should be
true for most cytoplasmically active RBPs, ignoring tran-
script information potentially leads to false peak calling
and the inclusion of non-authentic sequence context. This
in turn can compromise the results of downstream analy-
sis tools likemotif finders or binding site predictors, which
usually take the genomic sequence context for extending
the binding sites as well.
Here we show that current peak callers indeed have

problems with correctly defining binding sites for RBPs
binding predominantly to exonic regions. We further
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look at publicly available eCLIP datasets with binding
sites identified by CLIPper and present comprehensive
statistics regarding exonic binding frequencies. Focus-
ing specifically on sites near exon borders, we report
the extent of sites mostly affected by context sequence
selection and false peak calling. To compare different
sequence contexts, we implemented a tool called CLIP-
context. CLIPcontext automatically extracts the transcript
and genomic context for a given set of transcript or
genomic sites, and also offers other useful functions
such as identifying sites at exon borders or motif search.
We then trained three different binding site prediction
tools on sites near exon borders, and demonstrate that
sequence context choice can have a large impact on pre-
dictive performance. Moreover, we show for a selection
of predominantly exon-binding RBPs that known motifs
are enriched in transcript context sequences, enabling the
identification of more authentic binding sites. In the end,
we discuss possible ways on how to integrate transcript
information in order to improve CLIP-seq data analysis
workflows.

Results and discussion
Ignoring transcript information compromises peak calling
To illustrate the issues current peak callers have with pre-
dominantly exon-binding RBPs, we chose one out of many
eCLIP RBP cell type combinations (YBX3 K562) with
large amounts of exonic binding regions (see Table S1 for
eCLIP overlap statistics). In this paper, we call or count
peak regions as overlapping or exon binding if they have

an overlap of ≥90% with exonic regions. 84.6% of YBX3
K562 merged peak sites overlap with exonic regions, out
of which 51.0% are ≤50 nt away from exon borders.
Figure 1 shows the YBX3 K562 genomic reads profile
visualized via IGV (Integrative Genomics Viewer) [10]
over two genomic regions, with added peak regions from
CLIPper, CLIPper IDR, PEAKachu, and PureCLIP (see
Methods section “Peak caller setup”). Figure 1a depicts
a genomic region of 11 kb, containing the PRDX6 gene.
We can see that the read alignments clearly follow the
exon annotations: most reads map to exons, including
many intron-spanning ones (blue-gray lines), while only
few reads map to introns. Not surprisingly, all three peak
callers only report exonic peaks, often close or directly at
exon borders. Given the alignment information, extend-
ing these peak regions with genomic context, as usually
done prior to further analysis, is not correct. Instead, the
transcript context of the spliced RNA should be used,
which is where the actual RBP binding occurs. Zooming
in on the matter, Fig. 1b shows a genomic region of 563
bp, comprising exon 6 and 7 of the DDOST gene. Again
the mapped reads strongly suggest a spliced RNA con-
text, given the many intron-spanning reads and almost no
intron coverage. Keeping the intron therefore leads to an
artificial split-up of peak regions spanning the exon bor-
der. Unaware of the split, peak callers might consequently
call two peaks, whereas they should have treated the split
peaks as one contiguous region.
In the Fig. 1b example, both CLIPper and PureCLIP

call peaks at adjacent exon borders, while PEAKachu

Fig. 1 IGV snapshot of two genomic regions with mapped YBX3 K562 eCLIP data. 1: read profile (coverage), 2: read alignments, 3: crosslink positions
profile, 4: input control profile, 5: gene annotations (thick blue regions are exons, thin blue regions introns), CLIPper / CLIPper IDR: CLIPper replicate 1
and IDR peaks, PEAKachu: PEAKachu peaks, PureCLIP: PureCLIP peaks (nearby crosslink positions merged). For clarity only gene strand reads from
replicate 1 are displayed. a PRDX6 whole gene region (length 11 kb, maximum read coverage 1141). b DDOST gene exons 6 and 7 region (length
563 bp, maximum read coverage 167)
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even calls a single peak over the entire intron. In general,
PEAKachu and CLIPper define peak regions by fitting
functions (Gaussian density versus splines) on themapped
reads. More precisely, CLIPper fits splines on the genomic
read coverage profile counting each base of a read once,
while PEAKachu replaces each readwith aGaussian, using
the genomic mean of read start and end as the center of
the Gaussian. Both methods thus have problems with split
reads, leading to PEAKachu calling peaks over introns
in the presence of intron-spanning reads, and CLIPper
calling peaks at exon ends with shared read coverage.
Using more robust peaks (like CLIPper IDR) is the recom-
mended way to obtain high-confidence binding sites, but
it does not solve the underlying issue (see also Fig. 3). In
contrast, PureCLIP uses read starts to identify crosslink
sites, which later can be merged into peak regions. This
circumvents the described problems, as each read is con-
sidered only once at one genomic position. For example,
Fig. 1b shows a peak called by CLIPper and CLIPper
IDR at the start of exon 6 (downstream exon). But since
there are no read starts (i.e., crosslink sites) present, Pure-
CLIP does not call a peak here. On the other hand, it
still can be fooled since intron-spanning reads are treated
no different to contiguously aligned reads. For the YBX3
dataset and with default settings, PEAKachu tends to call
broader peaks than CLIPper, while PureCLIP peaks are
much shorter (see Table S2 for peak statistics).

Exon binding is substantial in public CLIP-seq data
To quantify the extent of exon and near exon border
binding in eCLIP data, CLIPper peak regions from 223
eCLIP datasets were overlapped with exon regions fea-
turing strong experimental evidence (seeMethods section
“Data preparation and exon overlap statistics”). As shown
in Fig. 2a, 61 datasets (27.4%) feature ≥50% exonic sites,
with 14 datasets (6.3%) even reaching ≥75% (see Table S1
for full statistics on each dataset). Table S1 also lists the
ratios of sites near exon borders and pair sites, i.e., two
sites located at adjacent exon borders. Looking closer at
the 61 datasets, 63.3% of exonic sites lie within ≤50 nt to
exon borders, and 20.7% form pairs (<10 nt distance of
site ends to exon borders required for both sites of the
pair). We thus have a substantial amount of sites suscepti-
ble to split peak calling and false sequence context choice.
Since the selection procedure for splice isoforms (i.e.,
their exon regions) was quite strict, the actual percentages
should be even higher. As the data features experiments
from K562 and HepG2 cell lines, we also looked at the
correlation of percentages for RBPs with experiments in
both lines. Figure 2b shows the correlation plot of exon
site ratios, resulting in an R2 score of 0.76. This suggests
a general agreement in the amount of exon binding across
cell lines. On the other hand, it also shows that classify-
ing RBPs into spliced or unspliced binding oversimplifies

actual binding patterns. Instead, the correct site context
needs to be determined directly from the mapped data.
One might wonder whether potentially problematic pair
sites could easily be filtered out based on their assigned
scores (i.e., log2 fold changes) prior to data analysis. As
shown in Fig. 2c, this is not the case, with an average score
of 2.47 for pair sites and 2.17 for all exonic sites.

Sequence context influences binding site prediction
performances
Based on the considerable amount of sites near exon bor-
ders, we further investigated whether different sequence
contexts could also influence the performances of bind-
ing site prediction tools. For this we constructed different
context datasets for 6 RBPs, by focusing on RBPs with high
amounts of exonic sites (≥80%) and choosing 5 RBPs ran-
domly within this range (see “Methods” sections). Briefly,
we kept only sites ≤10 nt from exon borders and extended
the centered sites 80 nt up- and downstream with both
genomic and transcript context (total length 161 nt, see
Table S3 for dataset details). Note that this also includes
sites at transcript ends, where full extension is only pos-
sible in the genomic context case. To assess any effects,
three different prediction tools (DeepBind [11], Graph-
Prot [12], and GraphProt2 [13]) were run on both context
sets, using 10-fold cross validation and no additional fea-
tures (i.e., only sequence information). Figure 2d shows
the performance results as average accuracies over the 6
datasets, for both genomic and transcript context sets (see
Table S4 for detailed results). As we can see, using the
more authentic transcript context considerably improves
accuracies for all three tools, showcasing that context
sequence choice can have a large influence on predic-
tive performance and thus on what is learned. One could
argue that including large amounts of context sequence
bears the risk of learning binding site-unspecific patterns.
We acknowledge that this can influence predictions. Some
bias from the negative set is also possible, although we
tried tominimize this by random sampling from the whole
gene sequence and no overlap with positive sites. On the
other hand, intronic context near exon borders also har-
bors various recognizable regions, like the polypyrimidine
tract, or splice donor and acceptor sites, which can lead to
wrong conclusions for spliced RNA binding RBPs. More-
over, learning the transcript context for RBPs binding to
spliced RNA can also be advantageous, especially when
predicting on gene sequences that contain introns.
To check whether the trained models learned any RBP

specific binding information or rather generic context fea-
tures, we generated GraphProt sequence logos for each
RBP-context combination (see Figure S1). Sequence logos
are generated from the top 200 scoring sites (taking the
highest scoring 8-mer sequence for each site) of each
positive training set, therefore providing a visualization



Uhl et al. BMC Genomics          (2020) 21:894 Page 4 of 8

Fig. 2 Exon binding statistics of eCLIP datasets and prediction results for different sequence contexts. a Distribution of exonic site ratios for 223
eCLIP datasets over four percentage ranges. For each range, the percentage (number) of sets with ratios falling into this range is given. b Correlation
plot of exonic site ratios for RBPs present in two cell lines (HepG2 and K562). c Site score distributions for all exonic sites and exonic sites that form
pairs by being located at adjacent exon borders. log2 fold change values of the sites determined by CLIPper were taken as site scores. Only pair sites
with a distance of <10 nt to exon borders were considered. d Average classification accuracies over 6 eCLIP datasets for 3 RBP binding site
prediction methods, comparing genome and transcript context

aid of what sequence information the model regards as
most important. Comparing the generated sequence logos
with known RBP binding preferences obtained from the
ATtRACT database [14], we can see a general agreement
(more or less pronounced depending on the RBP). For
example, the Pumilio Response Element (PRE) of PUM2
(UGUANAUA) clearly shows up for both context sets, as
well as the preference for CA-rich elements for IGF2BP1
and YBX3 or GA-rich elements for SRSF1. FMR1 and
FXR2 are less distinguishable, although both RBPs are
closely related and thus also might have common tar-
gets. This indicates that the models do not primarily pick
up generic context information, but instead are capable
of prioritizing RBP specific binding sites, independent
of the context. Nevertheless, since we included a large
amount of context (sequence lengths 161 nt), the context
is expected to contribute to the increased performances
for the transcript context sets. As discussed, this can be,
depending on the prediction task, beneficial, as it can offer
new insights into what other elements tend to be associ-

ated with core binding elements. In addition, choosing a
more authentic context could also help to improve RNA
secondary structure predictions, which often include hun-
dreds of nucleotides of context.

Knownmotifs are enriched in transcript context
To check whether known binding motifs are more fre-
quent in eCLIP sites with added transcript context com-
pared to the respective sites with genomic context, we
collected 28 motifs from 9 RBPs known to bind predom-
inantly to spliced or exonic RNA (FMR1, FXR1, FXR2,
IGF2BP1-3, PUM2, SRSF1, and YBX3) [15–20]. Since we
could not find reported human motifs for YBX3, we used
the correspondingmouse motif [21], as well as two human
motifs from YBX1 and YBX2. We then took the CLIPper
IDR peak regions (high-confidence reproducible peaks
between replicates) of the respective eCLIP datasets, and
used CLIPcontext to select sites near exon borders and
to look for motifs in both genomic and transcript con-
text sites. As shown in Table S5, there are 23 motifs that
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have >10 hits in both genomic and transcript context
sites (counting hits at same genomic or transcript posi-
tions only once). Out of these 23, 20 are 10 - 57% more
frequent in transcript context sites, while the remaining
three change by 2.8%, -2.3%, and -2.4%. The other five
motifs with less than 10 hits are all enriched by 35% up
to 709% (ratios calculated with counts normalized by total
context set length).
On the one hand, when taking the transcript con-

text, we expect higher frequencies for motifs that are
commonly found in exonic regions. On the other hand,
well-defined motifs like the PUM2 PRE (107 vs. 89 hits,
27.5%) or the extended compound motif for IGF2BP3 (7
vs. 1 hit, 709%) also show increased frequencies, indi-
cating that more authentic binding sites are recovered
by using the transcript context. To illustrate this (Fig. 3),
we chose two example regions that contain IDR peaks
as well as known binding motifs mapped by CLIPcon-
text of IGF2BP3 (the mentioned recently published com-
pound motif GGC-N15−25-CA-N7−20-CA-N15−25-GGC-
N2−8-[CA]4) and PUM2 (the mentioned PRE UGUA-
NAUA). As shown, the motifs are even split in these
examples by the exon border, and the read profile accord-
ingly suggests one split peak, although multiple CLIPper
IDR peaks are reported, either in one of the two exons
(IGF2BP3), or one at each adjacent exon end (PUM2).
Naturally, we would expect the influence of context choice

on recovering complete binding sites to be higher for
multi-domain RBPs like IGF2BP1-3, which prefer to bind
to several disconnected elements with long stretches of
variable length in between. Since most RBPs in fact con-
tain multiple RNA-binding domains and systematic stud-
ies on their combinatorial RNA recognition are still scarce
[20], identifying the correct context in CLIP-seq studies
could further help to uncover their combinatorial binding
modes.

Strategies to improve CLIP-seq data analysis workflows
In this study we used CLIPcontext to extract the tran-
script context of genomic sites from a set of well annotated
splice isoforms, completely ignoring the context informa-
tion given in the eCLIP data. This is of course far from
optimal, and future workflows should implement a more
sophisticated, data-driven way to incorporate transcript
information, in order to identify the most likely con-
text and therefore increase the accuracy of peak calling
and downstream processes. In this regard, one major fac-
tor will be the ability to correctly identify exon regions
and their corresponding isoforms in a given sample, or
at least the correct site neighborhood for accurate con-
text extraction. The presence and quantity of split reads
at exon borders therefore marks an important feature to
decide which context is appropriate. Unfortunately, ref-
erence annotations often lag behind and do not cover

Fig. 3 IGV snapshot of two genomic regions with mapped IGF2BP3 K562 and PUM2 K562 eCLIP data. 1: read profile (coverage), 2: read alignments, 3:
crosslink positions profile, 4: input control profile, 5: gene annotations (thick blue regions are exons, thin blue regions introns), IGF2BP3 / PUM2
motif: RBP motifs mapped with CLIPcontext, CLIPper IDR: CLIPper IDR peaks, PEAKachu: PEAKachu peaks, PureCLIP: PureCLIP peaks (nearby crosslink
positions merged). For clarity only gene strand reads from replicate 1 are displayed. a RACK1 gene exons 7 and 8 region (length 911 bp, maximum
read coverage 150) with split IGF2BP3 motif hit. b RTRAF gene exons 4 and 5 region (length 1.599 bp, maximum read coverage 58) with split PUM2
motif hit
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the present transcript diversity [22], which is why de
novo transcriptome assemblies from RNA-seq data, e.g.
by tools like Ryūtō [23], might be an interesting alterna-
tive to isoform detection or mapping approaches that rely
on reference annotations. Since all these tools were devel-
oped for RNA-seq data, it will also be interesting to see
whether it is possible to adapt them to work directly with
CLIP-seq data, omitting the need to conduct additional
RNA-seq experiments.
In any case, context selection should ideally be done

on site level, as RBPs often have several biological roles
and can bind to both contexts, depending on subcellular
location and the time point in the RNA life cycle. In this
regard, applying CLIP-seq to different subcellular frac-
tions might be a way to further dissect binding events,
as already done for some multi-function SR proteins [24].
In the presence of several likely contexts (i.e., for alter-
native splice isoforms), it is possible to keep all events if
the goal is to learn general binding characteristics. This is
because binding site prediction tools are typically robust
when it comes to noisy data, as long as the principal bind-
ing preferences are still present in sufficient quantities.
However, if the focus lies on specifically studying these
events, it would be most convenient to label and output
them separately.
An alternative approach could be to adapt or fine-tune

peak calling based on specific features of the dataset at
hand. These features could be learned from publically
available CLIP-seq datasets, ideally produced with the
same protocol (including read mapping), and possibly also
the same cell type or condition. For example, dataset
properties could be extracted and used as features, like
exon-intron read distributions for typical exon-, intron-,
or mixed context binding RBPs, either at defined genomic
locations or over the whole genome. Additional labeled
test data (either derived from CLIP-seq data or artificially
constructed) could then be used to evaluate what features
or strategies work best.

Conclusions
In this paper we raised the issue of ignoring transcript
information in the process of peak calling and beyond.
We showed that current peak callers by design are prone
to false peak calling near exon borders, and that peak
regions near exon borders are frequent in publicly avail-
able datasets. We also saw that sequence context choice
has a profound effect on predicting sites near exon bor-
ders. Moreover, motif analysis confirmed that choosing
the transcript context enriches for known RBP binding
motifs, leading to the recovery of more authentic binding
sites. Finally, we discussed ways on how to improve CLIP-
seq analysis workflows in order to identify the correct site
context.
Taken together, incorporating transcript information

leads to more authentic results and thus should become
an integral feature of future peak calling and downstream
analysis methods.

Methods
Data preparation and exon overlap statistics
eCLIP datasets out of two cell lines (HepG2, K562)
were downloaded from the ENCODE project web-
site [25] (https://www.encodeproject.org, November 2018
release). Altogether the data covers 150 RBPs, divided into
103 HepG2 and 120 K562 sets, resulting in 223 datasets.
We directly used the genomic binding regions (genome
assembly GRCh38) determined by CLIPper, available in
BED format for each replicate (2 replicates per dataset).
For each RBP cell type combination, replicate binding sites
were merged by keeping only the sites with the high-
est log2 fold change (LFC) in case of overlapping sites.
After filtering sites by LFC ≥1, sites were overlapped
with exon regions of the most prominent transcripts using
intersectBed (bedtools 2.29.0 [26]) and a required exon
overlap ≥90% for a region to be counted as exon overlap-
ping. We defined the most prominent isoform of a gene
based on the information Ensembl (Ensembl Genes 97,
GRCh38.p12) provides for each transcript through hierar-
chical filtering: APPRIS annotation [27] (highest priority,
labels principal1-5), and transcript support level (TSL,
labels 1-5). We considered only genes with isoforms fea-
turing these labels and transcripts that belong to the
GENCODE basic gene set, resulting in 29,798 isoforms
and 238,271 exon regions. Exon overlap statistics for the
223 datasets are stored in Table S1.

Peak caller setup
To illustrate potential peak caller problems (Fig. 1), we
chose an RBP cell type combination with a high amount
of exonic peak regions (YBX3 K562, 84.6%), out of which
51.0% are close to exon borders (region ends ≤50 nt from
exon borders, see Table S1 for statistics). To illustrate
false peak calling at sites containing knownmotifs (Fig. 3),
we chose the IGF2BP3 (HepG2) and PUM2 (K562)
eCLIP sets. Mapped eCLIP reads in BAM format (repli-
cate 1, size-matched input) and CLIPper peak regions
(BED) for the three sets (ENCODE IDs ENCSR529FKI,
ENCSR993OLA, ENCSR661ICQ) were obtained from the
ENCODE website.
We collected peak regions identified by three peak

callers: CLIPper, PEAKachu, and PureCLIP. For CLIPper,
we took the peak regions called on replicate 1, filtered
by a minimum LFC of 1. In addition, we also display the
CLIPper IDR peaks (high-confidence peaks reproducible
between replicates, Figs. 1 and 3). For PEAKachu and
PureCLIP, we took the mapped reads (replicate 1, size-
matched input), and used the R2 reads (second pair reads)
as experiment and control libraries. PEAKachu was run

https://www.encodeproject.org
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on Galaxy [28] (https://usegalaxy.eu, Galaxy tool version
0.1.0.2) with default settings and a fold threshold of 2.
PureCLIP (version 1.3.1) was installed locally and run
with default parameters, setting −dm 8 for merging called
crosslink sites into peak regions.

Construction of sequence context sets
For comparing the effects of different sequence contexts
on predictive performance, we chose 6 eCLIP sets from
RBPs with documented binding preferences (IGF2BP1,
FMR1, FXR2, PUM2, SRSF1, YBX3), which also feature
relatively high percentages of exonic peak regions (from
40.23 to 84.06%, see Table S1). CLIPper replicate 1 peaks
were obtained and filtered (maximum length of 80, min-
imum LFC of 3, maximum p-value of 0.01). We further
selected all exonic sites within ≤10 nt of exon borders
(clipcontext exb), and extracted their transcript and
genomic context (clipcontext g2t), merging nearby
sites (distance ≥10 nt) by selecting the site with the
highest LFC, and extending sites to 161 nt length. To gen-
erate one negative set for both genome and transcript
context sets, we used GraphProt2 (https://github.com/
BackofenLab/GraphProt2) to randomly select genomic
sites based on two criteria: 1) their location on genes
covered by eCLIP peak regions and 2) no overlap with
any eCLIP peak regions from the experiment. Sequence
context set statistics are stored in Table S3.

Tool setup for context predictions
ThreeRBPbinding site prediction tools (DeepBind, Graph-
Prot, and GraphProt2) were trained on the described
context sets (see previous Methods section). DeepBind
models were trained using the DeepRAM [29] framework,
which includes hyperparameter optimization. GraphProt
andGraphProt2models were trained using default param-
eters (no hyperparameter optimization). All three meth-
ods used only sequence features for classification. The
accuracy measure, i.e., the proportion of correctly clas-
sified instances, was used in combination with 10-fold
cross validation to measure model performances over 6
datasets. Accuracies are reported in Table S4, together
with standard deviations from cross validation (except for
GraphProt, since it does not output single accuracies dur-
ing cross validation). GraphProt sequence logos for the
top 100 scoring sites of each dataset-context combina-
tion are shown in Table S5, together with a description of
known binding preferences.

Motif search
For the motif search, CLIPper IDR peaks for 9 RBPs
were downloaded from ENCODE and filtered by a maxi-
mum length of 80. Sites near exon borders were selected
and their transcript and genomic context was extracted
as described in section “Construction of sequence con-

text sets”. CLIPcontext (clipcontext mtf) was then
used to obtain motif frequencies in the transcript and
genomic context sets, as well as to map the PUM2 and
IGF2BP3 motifs to the genome, to generate the split motif
annotations seen in Fig. 3.

CLIPcontext availability and documentation
CLIPcontext is available together with a comprehensive doc-
umentation onGitHub (https://github.com/BackofenLab/
CLIPcontext), as well as on Bioconda (https://anaconda.
org/bioconda/clipcontext). Besides mapping sites of inter-
est in BED format (transcript or genomic coordinates) to a
user-definable transcriptome or the genome, CLIPcontext
also offers modes for the extraction of: sites near exon bor-
ders, a list of most prominent transcripts, intronic sites,
or exon and intron regions for a given set of transcripts.
Moreover, a motif search can be conducted on genomic
and transcript regions (including split motif discovery) for
comparative analysis.
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