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Abstract. Predicting the folding of an RNA sequence, while allow-
ing general pseudoknots (PK), consists in finding a minimal free-energy
matching of its n positions. Assuming independently contributing base-
pairs, the problem can be solved in Θ(n3)-time using a variant of the
maximal weighted matching. By contrast, the problem was previously
proven NP-Hard in the more realistic nearest-neighbor energy model.
In this work, we consider an intermediate model, called the stacking-
pairs energy model. We extend a result by Lyngsø, showing that RNA
folding with PK is NP-Hard within a large class of parametrization for
the model. We also show the approximability of the problem, by giving
a practical Θ(n3) algorithm that achieves at least a 5-approximation for
any parametrization of the stacking model. This contrasts nicely with
the nearest-neighbor version of the problem, which we prove cannot be
approximated within any positive ratio, unless P = NP .

Keywords: RNA folding; General pseudoknots; Hardness; Inapprox-
imability

1 Introduction

Ribonucleic Acid (RNA) is one of the key pieces to the puzzle of molecular
biology. It plays a very large number of roles, not only by coding for pro-
teins, but also through catalytic and regulatory functions. To play such
roles, RNA folds into an intricate structure which is stabilized by the pair-
ing, mediated by hydrogen bonds, of some of its positions. The conforma-
tions that arise from this folding process are instrumental to the function
of an RNA. Consequently, the process of RNA folding has been exten-
sively studied by molecular biology and biochemistry, and its in silico
prediction has given rise to a wealth of computational approaches. Early
work on the subject have focused on the secondary structure, a restric-
tion of all admissible base-pairs that forbids crossing-interactions. Under

⋆ To whom correspondance should be addressed.
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Fig. 1. Canonical base-pairs of the Oceanobacillus iheyensis group II intron, derived
from a 3D model (PDB id: 3IGI) using RNAView [19].

the assumption of reasonable, additive, energy models, such a restriction
implies an optimal-substructure property for computing the most stable
conformation, i.e. the one having minimal free-energy. Polynomial-time al-
gorithms, based on dynamic-programming (DP), have consequently been
proposed for predicting the minimal free-energy secondary structure con-
formation of an RNA from its sequence. Unfortunately, the assumption
of a non-crossing conformation may impede the quality of the prediction,
since functionally essential crossing-interactions are found in many fam-
ilies of non-protein-coding RNAs (ncRNAs), as illustrated by Figure 1.
For instance, pseudoknots (PK), can be found within the RFAM con-
sensus [8] of at least 70 functional families of ncRNAs and are conserved
throughout the evolution.

Taking general pseudoknots into account is known to turns RNA
minimal-free energy prediction into a rather challenging problem. A pi-
oneering work by Cary, Tabaska et al [6, 17] considered a simple addi-
tive model, associating independent energy contributions to each putative
base-pair, and used a O(n3) maximal-weighted matching algorithm to ex-
tract a minimal free-energy folding. Unfortunately, this energy model is
regarded as unrealistic because of its incapacity to capture the interac-
tion of consecutive – stacking – base-pairs, which constitute a primary
stabilizing force in RNA folding. Such energy contributions are captured
by the nearest neighbor energy model, in which the contribution
of each base-pair depends on the base-pairing status and partners of its
consecutive positions. The hardness of RNA folding assuming a nearest-
neighbor energy model was independently established by Lyngsø and
Pedersen [12], and Akutsu [1]. Subsequent efforts have therefore focused
on providing either parameterized complexity algorithms [11, 20], heuris-
tics [4, 18] or exact DP schemes for tractable subsets of pseudoknots [16,
15].



It is frequent that the complexity of solving any problem in compu-
tational biology optimally is tied to the chosen model (e.g. [3]). However,
despite a significant amount of research focusing on predicting pseudo-
knots, the impact of a specific instantiation of the energy model on the
computational complexity of RNA folding with pseudoknots has only been
partly unexplored. In this extended abstract, we further study the influ-
ence of the energy model on the complexity and approximability of RNA
folding with unconstrained pseudoknots. In addition to the base-pair and
nearest-neighbor models, we consider the stacking base-pairs energy
model, which captures the dependency between consecutive base-pairs.
The computational complexity of RNA folding under this energy model
was first studied by Ieong et al [9]. They were able to show the NP-
hardness of maximizing the number of stacking-pair among the set of
planar secondary structures, a restriction of general pseudoknots. This
restriction was lifted by Lyngsø [13], who established the hardness of
maximizing the number of base-pairs, allowing general types of pseudo-
knots. Approximation algorithms we also sought, leading to the current
best 8/3-approximation O(n10)-time algorithm reported by Jiang [10].
However all of these works consider a purely combinatorial model, max-
imizing the number of base-stacking, while the contribution of stacking
pairs to the free-energy may vary significantly. It is therefore a natural
question to ask to what extent the hardness of folding with pseudoknots
is affected by perturbations of the energy model. More generally, under-
standing what makes the problem hard, and just how hard, could be
instrumental to the development of future algorithms, achieving better
tradeoffs between sensibility and complexity.

This extended abstract is organized as follows. First we formally de-
fine in Section 2 our main problem, along with the different energy mod-
els considered. We discuss the NP-hardness of the stacking base-pairs in
Section 3, and present an approximation in Section 4. In Section 5, we
show the inapproximability of RNA folding with pseudoknots under the
nearest-neighbor energy model. Finally Section 6 summarizes the contri-
butions and describes futures lines of research.

2 Problem statement and free-energy models

Let ω ∈ {A,C,G,U}∗ be an RNA sequence, and m be a partial matching
of the positions in ω, i.e. a set of non overlapping pairs of positions in ω.
An energy model is a real-valued function Ew that associates a free-
energy to ω by summing over the contributions of local motifs in the
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Fig. 2. Typical picture of a standard pseudoknot/matching (Left) and individual con-
tributions of local motifs to the three energy models considered (Right). Dark nodes
indicate the supporting base pair for each motif (i.e. (i, j) pairs in our definition below).

matching. The precise definition of local motifs will depend on the exact
energy model.

A low free-energy indicates a stable folding. Furthermore, any free-
energy contribution is usually determined up to an additive constant.
Therefore one can assume that the contribution to the free-energy of
any local motif is negative, with the exception of extremely unfrequent
motifs which will be forbidden and assigned +∞ contributions. Let us
then rephrase the problem of as an optimization (minimization) problem.

RNA-PK-Fold(E) problem
Input: An RNA sequence w.
Ouput: A partial matching m over w, i.e. a set of pairwise disjoint
pairs of positions in [1, |w|], which minimizes Ew(m).

The three reference energy models are usually considered:

– Base-pairs model B [14, 6, 17]: Here, local motifs are simply indi-
vidual base pairs, independently contributing to the free-energy:

Bw(m) =
∑

(i,j)∈m

∆B(wi, wj)

where ∆B : {A,C,G,U}2 → R
− ∪ {+∞}.

– Stacking pairs model S [13, 5]: This model only considers consec-
utively nested pairs as motifs, and disregards isolated pairs:

Sw(m) =
∑

(i,j),(i+1,j−1)∈m

∆S(wi, wj , wi+1, wj−1)

where ∆S : {A,C,G,U}4 → R
− ∪ {+∞}.



– Nearest-neighbors model N [12, 16]: This motif definition is even
more expressive, allowing different contributions for each base-pair,
depending on its bases, the base-pairing status of its consecutive
neighbors and own their own partners:

Nw(m) =
∑

(i,j)∈m
i<j

∆N (wi, wj , wi+1, wj−1, wmi+1 , wmj−1)

where ∆N is any function {A,C,G,U}4 × {A,C,G,U,∅}2 → R
− ∪

{+∞}, mi denotes the partner of a position i in m (or ∅ if i is
unpaired, while w∅ ≡ ∅ by convention).

These three models induce different decompositions into motifs for
any given structure, as illustrated by Figure 2.

3 NP-hardness of RNA-PK-Fold(S) in any
non-degenerate stacking energy model

Consider the set of canonical base-pairs (A,U), (G,C) and (G,U).
A combinatorial stacking model S∗ specializes the stacking pairs
model by assigning a −1.0 kcal.mol−1 contribution to any canonical stack-
ing pair, and +∞ to others. It was showed by Lyngsø [13] that the
RNA-PK-Fold(S∗) problem is NP-complete, using a reduction from the
BIN-PACKING problem.

Here we complement this result by showing its robustness, i.e. the
NP-hardness of the problem under a wide class of stacking energy model.

Theorem 1 Let S be a stacking energy model that allows (G,C) pairs,
and forbids (A,C) and (A,G) pairs. Then RNA-PK-Fold(S) is NP-hard.

Proof. In order to prove the hardness of RNA-PK-Fold(S), let us remind
the statement of the 3-PARTITION problem:

3-PARTITION problem
Input: A multiset of integral values X = {xi}

n
i=1 of cardinality

n = 3m, such that
∑n

i=1 xi = m · K for some K ∈ N, and ⌊K/4⌋ <
x < ⌊K/2⌋,∀x ∈ X.
Ouput: True if there exists a partition of X into m triplets
((xaj , xbj , xcj ))

m
j=1 such that

xaj + xbj + xcj = K,∀j ∈ [1,m],

and False otherwise.
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Fig. 3. Illustrating the reduction: Finding a 3-partition of a set of numbers X (A) is
equivalent to finding a matching for wX that produces a maximal number of stacking
pairs (C), from which one easily deduces a set of equally summing triplets (D). Such a
matching can be represented as a pseudoknotted secondary structure (B).

From Garey and Johnson [7], it is known that 3-PARTITION is strongly
NP-complete, i.e. not only is the problem NP-hard, but it remains hard
even when the elements of X are upper-bounded by some polynomial
function P (n).

Lemma 2 Let X be a 3-PARTITION instance whose values are bounded
by P (n), and wX be an RNA sequence such that:

wX = C
x1AC

x2AC
x3A · · ·ACxn AG

K
AG

K
A · · ·AGK

︸ ︷︷ ︸

m times

.

There exists a 3-partition of X into equally summing triplets if and only
if there exists a solution to RNA-PK-Fold(S) over wX having energy k =
δ · (K − 3) ·m kcal.mol−1 with δ := ∆S(C,G,C,G).

Let us summarize the argument:

– A matching has minimal free-energy iff any block Cx is entirely paired
to some contiguous substring of a single GK block.

– A matching has minimal free-energy iff every position in every GK

block is connected.

– Any optimal matching thus gives us a mapping between the Cx and GK

blocks, which can be transformed in polynomial-time into a solution
to the 3-Partition problem.

Proof. X is 3-partitionable ⇒ ∃m∗ such that SwX
(m∗) = δ·(K−3)·m:



IfX is 3-partitionable, then there existsm disjoint triplets ((xaj , xbj , xcj ))
m
j=1

whose sum is identically K. If follows that the Cx blocks in wX can be
partitioned into triplets (Cxaj ,C

xbj ,Cxcj ) that can form a three-tier per-
fect helix with the j-th block GK ≡ G

xaj .G
xbj .Gxcj . By creating xaj (resp.

xbj and xcj ) nested base-pairs between the block C
xaj (C

xbj and C
xcj )

and the beginning (resp. middle and ending) of the j-th block GK , one
obtains exactly (xaj )−1+(xbj )−1+(xcj −1) = K−3 stacking pairs. Re-
peating the operation for each triplet j yields a valid conformation with
(K − 3) ·m stacking (G,C)/(G,C) pairs, and the implication follows.

∃m∗ such that SwX
(m∗) = δ · (K − 3) ·m ⇒ X is 3-partitionable:

Let us remark that the absence of U implies that the only admissible
base-pairs are C/G or G/C, arising from interactions between Cx and GK

blocks respectively.

First, let us show that each GK block contributes to at most K − 3
stacking pairs, and that this upper-bound cannot be reached unless GK

creates K base-pairs with exactly 3 distinct Cx blocks. Indeed, it is easily
seen that any GK block, connected to b blocks (Cxd1 , . . . ,Cxdb ) by at least
one base-pair, for a total number P of base-pairs, creates at most P − b
stacking pairs. This bound is reached when GK is split into b portions, each
forming a perfect helix with the corresponding C

xdi block. Noting that
xi < ⌊K/2⌋ is equivalent to xi ≤ ⌊K/2⌋ − 1, one has that any connection
of GK with b blocks can therefore create at most min(K, b · (⌊K/2⌋ − 1))
base-pairs. It follows that, for b = 1 and b = 2, the maximum number of
stackings involving GK is bounded by ⌊K/2⌋−2 and 2⌊K/2⌋−4 ≤ K−4
respectively. For b ≥ 3, the number of base-pairs is potentially no longer
limited by the lack of occurrences of C, but by the K occurrences of G in
GK . It follows that, when b ≥ 3, the maximum number of stacking pairs
is K − 3, and is reached for b = 3 when every position in GK is paired.

Then let us assume the existence of a matching with (K − 3) · m
stacking pairs. Since K−3 is the upper-bound on the number of stacking
pairs supported by a given GK block, then each of the m GK blocks must
achieve this upper-bound. It follows that each GK block must create a
total of exactly K base-pairs with a triplet of blocks (Cx

a,C
x
b ,C

x
c ). A direct

corollary is that every G and C in wX must be paired.

We have now established that, within any matching having m · (K −
3) stacking pairs, each GK block creates exactly K base-pairs with a
triplet of blocks (Cx

ai ,C
x
bi
,Cx

ci). To conclude on the implication, we need

to show that each Cx block interacts with a single GK block, i.e. that the
(Cx

ai ,C
x
bi
,Cx

ci) triplets are mutually disjoint. Indeed, if a block Cxi is found



in two distinct triplets, then there exists a block Cxj that is not within
any triplet (remember that there are 3K blocks Cx and K triplets). It
follows that at mostm·K−xj base-pairs exist within this matching, which
contradicts K base-pairs for every GK block. Consequently, no Cxi can
be present in two distinct triplets, and the triplets are therefore disjoint.

Therefore, the interacting blocks found in a matching having energy
δ · (K − 3) ·m induce a partition of the {Cxi}3mi=1 blocks into m triplets.
Furthermore, each (Cx

a,C
x
b ,C

x
c ) triplet must give rise to K base-pairs, and

therefore xa + xb + xc ≥ K. Since the triplets are disjoint and partition
a set of a total m · K occurrences of C, then any excess of C within a
triplet implies a lack of C within another, so one has xa + xb + xc = K.
We conclude that any matching of wX having energy δ · (K − 3) · m
induces the existence of a partition {Cxi}3mi=1 blocks into disjoint triplets
(Cxa ,Cxb ,Cxc) such that xa + xb + xc = K which, in turn, implies the
existence of a 3-partition for X. ⊓⊔

It follows from Lemma 2 that any algorithm for RNA-PK-Fold(S) gives
an algorithm for the 3-PARTITION problem. Furthermore the length of
wX exactly equals

∑n
i=1 xi+K ·m+2m−1 = 2K ·m+2m−1 ∈ O(n2·P (n))

where P (n) is the polynomial upper bound on the value of each xi. There-
fore any polynomial algorithm for RNA-PK-Fold(S) gives a polynomial
algorithm for the 3-PARTITION problem. Since 3-PARTITION is NP-
hard, then so is RNA-PK-Fold(S) and Theorem ?? follows. ⊓⊔

4 Approximability of RNA-PK-Fold(S) in the stacking
model

Since objective functions are usually derived experimentally or statisti-
cally, it is a natural question to ask whether hard problems can be effi-
ciently approximated. Previous works on the subjetc only considered a
combinatorial version of the problem, and the current best algorithm [10]
produces a matching whose number of stacking pairs is guaranteed to be
at least 3/8 ·OPT , where OPT is the maximal number of stacking pairs
in any matching. Unfortunately, this result does not hold for arbitrary-
valued stacking energy models, as the free-energy of valid stacking pairs
may greatly vary. For instance, the latest version of the Turner model re-
ports a factor ∼ 3.6 discrepancy between stacking canonical pairs, bring-
ing the guaranteed approximation ratio down to 1/10. By contrast, we
show that RNA-PK-Fold(S) can be approximated in polynomial time up
to a factor at least 1/5, for any stacking model S.



Input : An RNA sequence w

Output: A matching m of non-overlapping pairs of positions
G = (V,E)← ([1, |w| − 1],∅);
M ← ∅;
foreach u, v ∈ V do

if wu base pairs with wv+1 and wu+1 base pairs with wv then

// Label each edge with its weight/energy

E ← E ∪ (u, v,−∆S(wu, wv+1, wu+1, wv));

end

end

m′ ← MaxWeightedMatching(G);
foreach (u, v) ∈ m′ sorted by increasing value ∆S(wu, wv+1, wu+1, wv) do

if ∀(u′, v′) ∈ m, {u′, v′} ∩ {u, v + 1, u+ 1, v} = ∅ or

(u′, v′) ∈ {(u, v + 1), (u+ 1, v)} then
m← m ∪ {(u, v + 1), (u+ 1, v)};

end

end

return m

Algorithm 1: A 5-approximation for any stacking energy model.

Theorem 3 In any stacking energy model, RNA-PK-Fold(S) ∈ APX,
and can be approximated in polynomial time within a factor at least 1/5.

Proof. To prove the approximability of RNA-PK-Fold(S), let us consider
Algorithm 1. This algorithm contracts consecutive positions in the RNA
sequence as vertices, and adds an edge, weighted according to the energy
function, between any pair of compatible positions. Computing a maximal
weighted matching on this graph gives a set of stacking-pair which is
not necessarily a valid matching, since distinct pairs of stacking pairs
may induce more than a single partners for a given position. Therefore
the algorithm considers the returned stacking pairs in decreasing order,
and only retains the stacking pairs that do not conflict with the current
selection of stacking-pairs.

Now let m∗ be the optimal matching for the given RNA string w, m′

be the maximal matching over G, and m be the matching finally returned
by the algorithm. Let us remark that m′ induces a set of matched pairs
over w that does not strictly constitutes a matching, as some position
may be matched twice. Nevertheless let us write Sw(m

′) as a shorthand
for the total energy of m′, obtained by summing over the stacking pairs
induced by m′. Any matching can be decomposed as a set of stacking
pairs (leaving a set of isolated, non-contributive, base-pairs), hence one
has Sw(m

′) ≤ Sw(m
∗) ≤ 0. Any edge (i, j) in m′ may conflict with at

most 4 other, adjacent, stacking-pairs. Furthermore, the algorithm con-



siders the edges in m′ by decreasing contribution, so the stacking pairs
induced by any edge (i, j) in m′ may only conflict with four stacking
pairs having (negative) contribution of smaller absolute value. Discard-
ing these competitors guarantees that at least 1

5 of the total energy of m′

is retained in m, i.e. Sw(m) ≤ 1
5Sw(m

′) ≤ 0, and one therefore concludes

that Sw(m)
Sw(m∗) ≥

1
5 . ⊓⊔

Remark that the actual approximation ratio achieved by Algorithm 1
might be better than 1/5, even in the worst-case scenario. However, this
crude upper-bound already establishes the approximability of the prob-
lem, nicely contrasting with our upcoming inaproximability result for the
nearest-neighbor version of the problem.

5 Inapproximability of RNA-PK-Fold(N ) in the
nearest-neighbor energy model

The stacking model, considered in the above sections, makes the predic-
tion of RNA structure NP-Hard, yet remains approximable in general. By
contrast, let us show that RNA-PK-Fold(N ), the nearest-neighbor ver-
sion of the problem, is non-approximable. More precisely, let us show the
stronger property that, unless P = NP , there is no polynomial-time algo-
rithm that guarantees to find a matching whose free-energy approximates
that of the optimal matching up to a strictly positive factor r(n).

Theorem 4 There exists instances of the nearest-neighbor model such
that RNA-PK-Fold(N ) /∈ APX.

Proof. Let us briefly outline our proof strategy. We encode any set of
numbers X as a string w, having length polynomial on the sum of values
in X, and whose matchings are either forbidden (+∞ free-energy), empty
(0 free-energy), or have negative energy. Focusing on the latter category,
we show that any negative energy matching can be turned, in polynomial-
time, into a solution to the 3-PARTITION problem. It follows that any
polynomial-time algorithm that guarantees a positive-ratio approxima-
tion, thereby producing a matching having negative free-energy anytime
such a matching exists, immediately yields a polynomial-time algorithm
for the 3-PARTITION problem. The NP-hardness of this problem allows
us to conclude on the hardness of approximating RNA-PK-Fold(N ∗),
within any positive ratio, in the nearest-neighbor energy problem.

Let us consider the 3-PARTITION problem, fully defined in Section 3.
For any instance X = {xi}

3m
i=1 of the problem, let us consider the following



RNA sequence:

w = C
x1AC

x2A · · ·ACx3mAG
K
UG

K
U · · ·GK

U
︸ ︷︷ ︸

m times

U
2m

Moreover let us consider a nearest-neighbor energy model N ∗, defined
by a function ∆∗

N such that:

∆∗
N : (A) C C G G −→ −1, ∀i < j,

(B) C X Y G −→ −1, ∀i < j,∀X 6= C,∀Y,
(i+1 and j−1 must both base-pair

somewhere, possibly together)

(C) A X Y U −→ −1, ∀i < j,∀(X,Y ),
(i+1 and j−1 must both base-pair

somewhere, possibly together)

(D) −→ +∞, ∀i < j.

i i+1 j-1 j

i i+1 j-1 j

i i+1 j-1 j

Any other motif

Lemma 5 Let X be a 3-PARTITION instance whose values are bounded
by P (n). Then the following statements are equivalent:

– There exists a 3-partition of X into m triplets of equal sum.
– There exists a matching of strictly negative energy over w under N ∗.

Proof. X is 3-PARTITIONABLE ⇒ ∃m∗ such that N ∗
w(m

∗) < 0:
Since X is 3-PARTITIONABLE, then there exists a partition of X into
m disjoint triplets ((xaj , xbj , xcj ))

m
j=1 whose sum are identically K. Con-

sider the matching that pairs each GK block with one of the triplet of
blocks C

xaj , C
xbj and C

xcj , creating nested sequences of base-pairs, and
completed with 3 ·m (A,U) unconstrained base-pairs over the remaining
positions. Clearly, all the positions are involved in a base-pair, and con-
secutive CC · · ·GG are nested as required by energy rule (A). Therefore,
any base-pair falls within the scope of energy rules (A), (B) or (C), and
the final energy of the matching is N ∗

w(m
∗) = −m · (K + 3) < 0.

∃m∗ such that N ∗
w(m

∗) < 0 ⇒ X is 3-PARTITIONABLE: Let us
start by proving that, within an energy model N ∗, any matching of w
having negative energy is a perfect matching, i.e. every position in the
matching is paired. Since N ∗ only allows (C,G) and (A,U) pairs, therefore
any valid (finite, negative contribution) base-pair (i, j) must involve a



position in the left half of w (C or A) and a position in its right half (G
or U), i.e. such that i ≤ m · (K + 3) < j. In order to be valid, (i, j) must
also be in a context where i+1 (resp. j − 1) is paired to j′ ≥ m · (K +3)
(resp. i′ < m · (K + 3)). The same argument applies to (i + 1, j′) and
(i′, j− 1), and one easily shows by induction that any matching featuring
a base-pair (i, j) has infinite energy unless every position in [i, j] is paired.
It follows that any matching having negative energy is perfect on some
interval [a, b], a ≤ m · (K + 3) < b, and leaves the remaining positions
unpaired.

Now let us consider which bounds for the interval [a, b] are compat-
ible with a negative energy. Let us denote by w[a,b] the [a, b] factor in a
sequence w, and by |w|t the number of occurrences of some letter t in w,
then one has |w[a,b]|A = |w[a,b]|U and |w[a,b]|C = |w[a,b]|G. Observe that,

since xi < K/2, one has
|w[a,b]|A
|w[a,b]|C

≤ 1
1+K/2 . Furthermore, if b falls before

the final run U2m, then b < m · (2K + 4) and one has 1
1+K ≤

|w[a,b]|U
|w[a,b]|G

. It

follows that
|w[a,b]|A
|w[a,b]|C

<
|w[a,b]|U
|w[a,b]|G

, i.e. the matching cannot be perfect on [a, b],

and its energy cannot be negative. We are then left to consider the case
where m · (2K + 4) ≤ b ≤ |wX |. In such a case, one has |w[a,b]|G = m ·K
and one has a = 1. Indeed any greater value a would lead to less than
∑

xi = m ·K copies of C, and some G would be left alone. Remark that
|w[1,b]|A = 3m, so one must have b = |w|, from which we conclude that any
matching having negative energy is perfect, i.e. base-pairs every position.

Let us finally show that a 3-PARTITION of X can be retrieved from
a matching having negative energy. Remind that energy rule (A) forces
two consecutive occurrences of C to pair with consecutive occurrences
of G. This property extends transitively, and any Cxi block in w must
therefore be entirely connected to a single GK block. Since a matching
of negative energy is perfect, then all the positions in a GK block must
be base-paired. Two Cxi blocks are not sufficient (xi < K/2) to saturate
a GK block, and four blocks would be too large (xi > K/4), violating
the constraint that each block must be entirely paired to a single GK

block. Therefore a triplet (Cxai ,Cxbi ,Cxci ) blocks is in total interaction
with each GK block, and the corresponding values (ai, bi, ci) constitute a
3-PARTITION of X. ⊓⊔

From Lemma 5, one knows that the existence of a 3-PARTITION for
X can be derived from the existence of a matching of w having nega-
tive energy under N ∗. Now assume there exists a polynomial-time al-
gorithm A that guarantees an r(n) > 0 approximation ratio. Then A



would produce a matching m such that N ∗
w(m) = N ∗

w(m
∗)/r(n), for m∗

the optimal matching. In particular, A would produce a matching having
negative energy anytime such a matching exists. One could then decide,
in polynomial time, the 3-partitionability of any set X. Since the decision
version of 3-PARTITION is NP-Hard, then there is no such algorithm
unless P = NP . ⊓⊔

6 Conclusion/perspectives

We considered the influence of the energy model on the computational
complexity of RNA folding with general pseudoknots. In the simplest
base-pair model, the problem is exactly equivalent to finding a maxi-
mal weighted matching in the graph of compatible positions, and can be
solved in Θ(n3) [17]. By contrast, it was previously established that the
more expressive nearest-neighbor model made the problem NP-Hard [1,
12]. We completed this result by showing that this problem is actually
inapproximable within any ratio. Turning to a less expressive – yet real-
istic – stacking energy model, we have showed that, although NP-hard,
the problem could be approximated in polynomial time, at least up to a
1
5 approximation ratio.

Quite nicely, a similar approach could be used to refine the compu-
tational complexity of RNA-RNA interaction prediction. Already proven
NP-complete by Alkan et al [2], it can be verified that our approximation
algorithm achieves the same ratio for RNA-RNA interactions. Further-
more, our NP-hardness and inapproximability results consider bi-partite
strings, for which an algorithm for the RNA-RNA interaction problem,
suitably parameterized, would yield the same matching as an algorithm
for RNA folding with general pseudoknots.

These results show a difference in essence between the nearest-neighbor
and the stacking models, which could serve as a starting point for a de-
sign of practical (approximation) algorithms for the stacking version of
the problem. To that purpose, we plan to complement this study by inves-
tigating the existence of a polynomial-time approximation scheme for the
problem. Another direction for complementing this study would consider
the impact of the energy model on the parameterized-complexity of the
problem.
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