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Abstract. Regulatory antisense RNAs are a class of ncRNAs that reggkate
expression by prohibiting the translation of an mRNA by klshing stable in-
teractions with a target sequence. There is great demaneffioient compu-
tational methods to predict the specific interaction betwae ncRNA and its
target mMRNA(S). There are a number of algorithms in theditee which can
predict a variety of such interactions - unfortunately aeanhigh computational
cost. Although some existing target prediction approaettesnuch faster, they
are specialized for interactions with a single binding.site

In this paper we present a novel algorithm to accuratelyipréte minimum free
energy structure of RNA-RNA interaction under the most geltgpe of interac-
tions studied in the literature. Moreover, we introducest feeuristic method to
predict the specific (multiple) binding sites of two inteiag RNAs. We verify
the performance of our algorithms for joint structure anading site prediction
on a set of known interacting RNA pairs. Experimental resahliow our algo-
rithms are highly accurate and outperform all competitppraaches.

1 Introduction

Regulatory non-coding RNAs (ncRNASs) play an important rimlegene regulation.
Studies on both prokaryotic and eukaryotic cells show thahs:cRNAs usually bind
to their target mRNA to regulate the translation of corresfing genes. Many regu-
latory RNAs such as microRNAs and small interfering RNAsSRINAS/SIRNAS) are
very short and have full sequence complementarity to tlgetar However some of the
regulatory antisense RNAs are relatively long and are rigt G@mplementary to their
target sequences. They exhibit their regulatory functiop®stablishing stable joint
structures with target mRNA initiated by one or more loopdanteractions.

In this paper we present an efficient method for RNA-RNA iatgion prediction
(RIP) problem with multiple binding domains. Alkan et al] droved that RIP, in its
general form, is an NP-complete problem and provided algms for predicting spe-
cific types of interactions and two relatively simple enemgydels - under which RIP is
polynomial time solvable. We focus on the same type of imt@was, which to the best
of our knowledge, are the most general type of interactionsiclered in the literature;
however the energy model we use is the joint structure ermmaagiel recently presented
by Chitsaz et al. [5] which is more general than the one usedlkgn et al.

In what follows below, we first describe a combinatorial altfon to compute the
minimum free energy joint structure formed by two interagtRNAs. This algorithm
has a running time aP(n°) and use®)(n*) space - which makes it impractical for long
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RNA molecules. Then we present a fast heuristic algorithpréalict the joint strcuture
formed by interacting RNA pairs. This method provides a gigant speedup over our
combinatorial method, which it achieves by exploiting thservation that the indepen-
dent secondary structure of an RNA molecule is mostly pueskeven after it forms a
joint structure with another RNA. In fact there is strongderice [7, 11] suggesting that
the probability of an ncRNA binding to an mRNA target is prajmmal to the proba-
bility of the binding site having an unpaired conformatidhe above observation has
been used by different methods for target prediction in itieedture (see below for an
overview). However, most of these methods focus on predjdtiteractions involving
only a single binding site, and are not able to predict irggoas involving multiple
binding sites. In contrast, our heuristic approach caniptéteractions involving mul-
tiple binding sites by: (1) identifying the collection of@ssible regions for both input
RNA sequences, (2) using a matching algorithm, computingt afs’non-conflicting”
interactions between the accessible regions which havhigfiest overall probability
of occurrence.

Note that an accessible region is a subsequence in an RNA&segwhich, with
"high” probability, remain unpaired in its secondary sttwre. Our method considers
the possibility of interactions being formed between onghsaccessible region from
an RNA sequence with more than one such region from the otRérdequence. Thus,
in step (1), it extends the algorithm by Mickstein et al.domputing the probability
of a specific region being unpaired [12] to compute the joibability of two (or
more) regions remaining unpaired. Because an accessgitaeom an RNA typically
interacts with no more than two accessible regions from therdRNA, we focus on
calculating the probability of at most two regions remagnimpaired: within a given
an RNA sequence of length our method can calculate the probability of any pair of
regions of length< w each, inO(n*.w) time andO(n?) space. In step (2), on two
input RNA sequences of length andm (n < m), our method computes the most
probable nonconflicting matching of accessible regior@(n?.w* + n?/w?) time and
O(w* + n? /w?) space.

Related Work. Early attempts to compute the joint structure of interagRINAS started
by concatenating the two interacting RNA sequences antettedbhem as a single se-
quencePai r Fol d [2] andRNAcof ol d [3]. As these methods typically use secondary
structure prediction methods that do not allow pseudokribey fail to predict joint
structures formed by non-trivial interactions between i pARNAs. Another set of
methods ignore internal base-pairing in both RNAs, and agmfine minimum free en-
ergy secondary structure for their hybridizatiddN@hybr i d [15], UNAFol d [6, 9],
and RNAdupl ex from Vienna package [3]). These approaches work only fopsm
cases involving typically very short strands. A further eéstudies aim to compute
the minimum free energy joint structure between two inténgcRNAs. For example
Pervouchine [14] devised a dynamic programming algorithrméaximize the number
of base pairs among interacting strands. A follow up work [agdet al. [8] proposed
a grammar based approach to RNA-RNA interaction predichtore generally Alkan
et al. [1] studied the joint secondary structure predicpooblem under three different
models: 1) base pair counting, 2) stacked pair energy madd|3) loop energy model.
The resulting algorithms compute the optimum structureragredl possible joint sec-
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ondary structures that do not contain pseudoknots, crgsstaeractions, andigzags
(please see [1] for the exact definition). In fact the lasto$etigorithms above are the
only methods that have the capability to predict joint se@y structures with multi-
ple loop-loop interactions. However, these algorithmsegluires significant computa-
tional resourcesQ(n°) time andO(n*) spaces) and thus are impractical for sequences
of even modest length. A final group of methods are based oalikervation that in-
teraction is a multi step process that involves: 1) unfajdifithe two RNA structures
to expose the bases needed for hybridization, 2) the hytation at the binding site,
and 3) restructuring of the complex to a new minimum free gneonformation. The
main aim of these methods is to identify the potential bigdéites which are going
to be unfolded in order to form interactions. One such methedented by Alkan et
al. [1], extends existing loop regions in independent stnes to find potential bind-
ing sites.RNAup [13] presents an extension of the standard partition foncpproach
to compute the probabilities that a sequence interval nesnanpairedl nt aRNA [4]
considers not only accessibility of a binding sites but dls® existence of a seed to
predict potential binding sites. All of these methods aehireasonably high accuracy
in predicting interactions involving single binding sité®wever, their accuracy levels
are not very high when dealing with interactions involvingltiple binding sites.

2 Methods

We address the RNA-RNA Interaction Problem (RIP) based eretirergy model of
Chitsaz et al. [5] over the interactions considered by Alkaml. [1]. Our algorithm
computes the minimum free energy secondary structure amlbpgssible joint sec-
ondary structures that do not contain pseudoknots, crp#sieractions, and zigzags.

2.1 RNA-RNA Structure Prediction

Recently Chitsaz et al. [5] present an energy model for jsinicture of two nucleic
acids over the type of interactions introduced by Alkan efHl Based on the pre-
sented energy model they propose an algorithm that corslideossible cases of joint
structures to compute the partition function. The spec#ilg@rithm with some minor
changes can be used to compute the minimum free energy jaictige of two inter-
acting nucleic acids. Following we shortly describe theoathm.

We are given two RNA sequenc® andS of lengthsn andm. We refer to the
i*" nucleotide inR and$S by iy andig respectively. The subsequence from ite
nucleotide to thej*" nucleotide in one strand is denoted lay;j]. We denote a base
pair between the nucleotidésand j by i - j. M FE(i,j) denotes the minimum free
energy structure off, j], and M FE(ig, jr,is, js) denotes the minimum free energy
joint structure ofli g, jr] and[ig, js]-

Fig. 1 shows the recursion diagram &f F'E for the joint structure ofir, jr] and
[is,js]- In this figure a horizontal line indicates the phosphatekbane, a dashed
curved line encloses a subsequence and denotes its twaéimaises which may be
paired or unpaired. A solid vertical line indicates an iat#ion base pair, a dashed
vertical line denotes two terminal bases which may be basedar unpaired, and a
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dotted vertical line denotes two terminal bases which asaragd to be unpaired. Grey

regions indicate a reference to the substructure of sirgglaences.

(@ (b) (c)

Fig. 1. Recursion forM F' E joint structure of subsequencgs, jr] and[is, js]. Casea consti-
tutes no interaction. In casethe leftmost interaction bond is not closed by any base padase
¢, the leftmost interaction bond is covered by base pair ira&dtl one subsequence.

The joint structure of two subsequences derived from oné@fallowing cases.
The first case is when there is no interaction between the ilwsexjuences. If there are
some interaction bonds, the structure has two cases: ditbéeftmost bond is closed
by base pair in at least one of the subsequences or not. lbititesfructure starts with
a bond which is not closed by any base pair we denote the casg, loyherwise the
structure starts with a bond which is closed by base pair Ieadt one subsequence
and the case is denoted Wby. Therefore M FE(ig, jr,is,js) IS calculated by the
following dynamic programming:

MFE(ir,jr) + MFE(ig, js) (a),

MFE(ip, ki — 1)+
min.,<s, <in § MFE(ks +1,js)+ (b),
MFE(igr,jr,is,js) = min wke=is | MEE™(ky, jr.is, ka)

MFE(ig, ki — 1)+
minip<m <in § MFE(ks + 1, js)+ (),
ts<te=is | MEE"™(ky, jr,ig, k)

1)
in which MFE“’(kl,jR, is, k2) is the minimum free energy for the joint structure of
[k1,ir] and[is, ko] assumings; - ko is an interaction bond, and F E1¢(k1, jgr,is, k)
is the minimum free energy for the joint structure[®f, jz] and[is, k2] assuming the
leftmost interaction bond is covered by a base pair in attleas subsequence. The
corresponding dynamic programing for computing fié" E® and M FE'® can be
derived from the cases explained in [5] in a similar fashion.

Similar to the partition function algorithm, the minimuneé& energy joint structure
prediction algorithm ha®)(n®) running time andO(n*) space requirements. How-
ever the algorithm performs highly accurate (see secti®)) But it requires substantial
computational resources. This could be prohibitive fordpréng the joint secondary
structure of sufficiently long RNA molecules. Thereforethie next section we present
a fast heuristic algorithm to predict RNA-RNA interaction.
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2.2 RNA-RNA Biding Sites Prediction

Our heuristic algorithm for RNA-RNA interaction predictigproblem is based on the
idea that the external interactions mostly occur betweérs @ unpaired regions of
single structures. We aim to predict interactions of migtipinding sites as long as
they have no crossing. The heuristic algorithm containgdtewing steps:

— Predict the highly accessible regions in each strands €lifeggons include the loop
regions in native structure of RNA strand. In order to predacessible regions we
chose all the regions which remain unpaired with high prdtigb

— Predict the optimal non-conflicting interactions betwdendccessible regions. For
every pair of accessible regions of two interacting RNAsst obinteraction is cal-
culated. Then a matching algorithm runs to find the minimust cen-conflicting
subset of interactions.

Accessible Regionsfor a single RNA sequence an accessible region is a subssgjuen
that remains unpaired in equilibrium with high probabilitshe probability of an un-
paired region can be calculated based on the algorithm miextén [12]. Here, we
are interested in multiple unpaired regions. For this psepone should compute the
joint probabilities for any subset of possible intervaliscg the computation of all joint
probabilities needs substantial time and space, in thismpap only consider the joint
probability of two unpaired subsequences.

Denoting the set of secondary structures in which the sexgugrtervallk, ] re-
mains unpaired b/l the corresponding partition function is

Qu[k,l] (T) _ Z e—Gs/RT7 (2)
seSulk,l]

whereR is the universal gas constant afids the temperature. In order to compute the
Qu*1 the standard recursion for the partition function foldaigorithm [10] can be
extended as:

(ki)
o 1ox Qf x Qe
1 o T e
_ r N y m X
. o T T ——— rF
k] [ k | j i k-lk ke ktlk |
b
1ox k! x Qe 1 x Qi X Qg
i klk ok | ke kel | ik ko T klk ke ketl

wherei < k <1 < j andk; - ko is the leftmost base pair. Partition functi@%’;"[k’”

(wherei - 5) and Q%“[k’l] (where[i, j] is inside a multiloop and constitutes at least
one base pair) while the intervg, ] remains unpaired are derived from the standard
algorithm in a similar way. Furthermore, probability of askapairp - ¢ while [k, ]
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remains unpaire®(p-q|u[k, I]), can be calculated by applying the McCaskill algorithm
[10] for computing the base pair probability 611!l It is easy to see that the desired
partition functionQ“*-!l and base pair probabili§(p - ¢|u[k, I]) are computed in same
time and space complexity as the standard algorithm by MdCa& (n) andO(n?)
respectively).

Muckstein et al. [12] introduce an algorithm to computephebability of unpaired
regionP(u[s, j]) for a given sequence intervgl j]. Here, we extend the specified al-
gorithm to computé”(uls, j]|u[k, 1]) which is the probability of unpaired regidn j|
while [k, ] remains unpaired. Clearly if some par{afj] is within the intervalk, [], the
corresponding probability for that part is equal to one. ¢&erior computing the prob-
ability only the parts ofi, j] which are exterior tdk, !] should be considered. Here,
without loss of generality we assume< [ < i < j.

/———Q— A
p k | i i aq P k [ ik kg
(@ (b)

Fig. 2.Cases of unpaired interv@l ;] within a loop enclosed by-q while [k, [] remains unpaired.

For unpaired intervdl, j] there are two general cases: either it is not closed by any
base pair, or it is part of a loop. Fig. 2 summarizes the cabespaired intervali, j]
as a part of the loop enclosed by base paif while interval[k, [] remains unpaired. In
caser interval[p, ¢] does not contain intervét, [], and in the other caseg- ¢) interval
[k,1] lies in interval[p, q]. ProbabilityP(u[s, j]|u[k,(]) can be calculated as follows:

k1l
A X1 xQiam

P(uli, j]lulk,1]) = S
Qre
+ > PBlp-qlulk, 1) x (@) -
I<p<i<j<q o
pq,ulk,l)[;
+ > P(P'q|u[k,l])xQTw5’=7] (a—o)
p<k<I<i<j<g Qp,q



Fast prediction of RNA-RNA Interaction 7

Q"1[i, 7] which is introduced by Muckstein et al., counts all strueton[p, q] that[i, ;]

is part of the loop closed by base pair g. The quantity@re«*:1[; ;] is a variant of
QP4[i, 5] while [k, [] lies in[p, ¢]. Recursion ofP®-u%:1[; ] on casesd — e) displayed
in Fig. 2, is based on different types of loop and positiofkof]. Therefore, we have

o _ ~hairpin
quM[kJ][Z’]] —e~Gpa /RT (a)

Glntken(k)r ./RT ~b /g
i S e~ Gl /BTQh (b, b/, b")
j<ki<kz<gq|
I<ky<kg<i|p<ky<kz<k

interior boulk,l
4 ) Gk o/ RT Qb Ik ®" (@
i<k <k<l<ka<i
+ Qg_31“7kl 67(a+b+c(q7i))/RT (C)
m,ulk,l a c(j—i—
+Qp+1qu ]1Q]+1q L e —(a+b+c(y 1))/RT (d)

+ ;‘n+21,q71 e~ (atb+c(ij—p))/RT (e)
whereQ™? is the partition function of a subsequence inside a mulgilthat constitutes
at least two base pair§)™? which is introduced in Miickstein et al. algorithm can
be extended to calculat@™? !, Therefore, the joint probability of two unpaired
regions is obtained using

Puli, 7, ulk, 1]) = P(uli, ] | ulk,1]) x P(ulk, 1]). (5)

Miickstein et al. algorithm require8(n?3) running time and)(n?) space complexity
to compute the probability of unpaired regiB(w|i, j]) for every possible intervali, j]
assuming the interval length is limited to size Using the the extended algorithm,
given sequence intervék, ] computingP(u[i, j], u[k,l]) for every possible interval
[i, 7] requires the same time and space complexity. Note that fdr #aerval (&, [],
Q**! should be computed separately. Since theredrew) different intervals for a
limited interval lengthw, with O(n*.w) running time and)(n?) space complexity we
are able to compute the joint probabilities for all pairs opaired regions. The same
idea can be used to compute the joint probability of multipipaired regions. However,
considering each extra interval increases the running iyree factor ofO (n.w).

Interaction Matching Algorithm: We are given two lists of non-overlapping acces-
sible regionsTr = {r1, 72, ..., } @ndTs = {s1, S, ..., S, } SOrted according to
their orders in interacting sequend@sandS. We aim to calculate the optimal set of
interaction bonds between the accessible regions unddolibe/iing constraints: (1)
Each accessible region can interact with at most two addessgions from the other
sequence. (2) There is no crossing interaction.

Let Q., s, be the partition function of all possible joint structurefstwo inter-
acting sequence; ands;, which can be calculated hyi RNA [5]. Define Qﬁhsj =
Qr,s; — Qr,Qs,; as the partition function for the set of joint structuresttbantain
some interactions. We denote the interaction between teesaible regions; ands;
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I
by r; o s; which is considered if and only iP(7; 0s;) = % > 1/2. The cost
of interaction between two accessible regiensinds;, C(r;, s;), is the sum of the
following terms:

- E,(r;) andE,(s;): the energy difference between the complete ensemble and th
ensemble in which the interacting subsequences are leftitgtpbfor both accessi-
ble regions. We havi,, (r;) = (—RT)(In(Q4")~In(Qr)) = (—RT) In(P(ulr])).
Similar equation can be used to calculatg(s;).

— E;(r, s;): the ensemble energy of interacting joint structure forteaccessible
regions where&e; (r;, s;) = (—RT) In(P(r; 0 s;)).

Cost of interaction between an accessible regjcemd two other accessible regions
ands; is defined a€’(r;, sgs;) = Eu(r;) + Eu(sk, sj) + Er(r;, sksj), wheresys; is
the concatenation of two subsequences, Bntby, s;) = (—RT) In(P(ulsk], u[s;])).
Similarly the cost of interaction between two accessibgars fromR and one acces-
sible region fronS is defined.

As an option, one can use minimum free energiy{ ) instead of ensemble en-
ergy (Er) to define the cost of interaction. Accessible regionsnds; are consid-
ered to be able to interact if and only©M FE(r;,s;) < MFE(r;) + MFE(s;), i.e.
there are some interaction bonds in the minimum free eneigy $tructure. There-
fore, we haveC(r;, s;) = Eyu(ri) + Eu(s;) + MFE(r;, s;). The cost of interaction
of an accessible regiory with two other accessible regions ands; is defined as
C(ri,sgs;) = Eu(ri) + Ey(sk, s;) + MFE(r;, sgs;).

With H (i, j), we denote the minimum cost non-conflicting set of interaxdibe-
tween the accessible regiofs, ..., ; } and{s;, ..., s,»/ }. The following dynamic pro-
gramming computef (, j):

H(Gi—1,5+1)+C(r,s5) (7)
m%nj<k§m/{H(i — ].,.k + ].) + C(?"i, Sij)} (ZZ)

H(i, j) = min El(r;l_gklf;{)H(k —1L,j+ 1)+ C(rgri,s;)} ((2223 (©)
H(i,j+1) ( Ug

wherel < i < n’ and1 < j < m/. The algorithm starts by calculating (1, m’)
and explores alH (i, j) by increasing and decreasing until i = n’ andj = 1. The
DP algorithm ha®)(n/2.m’ +n’.m'?) time andO(n’.m’) space requirements. Also we
needO(n’.m’.w®) time andO(w*) space to compute the cost of interaction for every
pair of accessible regions. Assuming> m’ andn’ < n/w, we can conclude that this
step of the algorithm requirg3(n?.w* + n®/w?) time andO(w* + n? /w?) space.

CopA-CopT is a well known antisense RNA-target complex ole=gtin E.coli [16].
The joint structure of CopA-CopT contains two disjoint bimgisites. Fig. 3 shows the
identified accessible regions in CopA and CopT. Two regi@mhected by an edge are
able to interact. Fig. 4 shows the known and predicted ioteEnabonds between CopA
and CopT. Note that internal bonds of both RNAs are not dysaan this figure.
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CopA  5'...{CGGUUUAAGU UUCGUACUC - - - - { GCCAAAGUUGAAG 3

CopT  3'... [GCCAAAUUCACCC} - - - {AAGCAUGAG CGGUUUCAACUU }---- 5'

Fig. 3. Interaction between accessible regions of CopA-CopT: @leirmxample for interaction
matching algorithm.

CopA 5'--CGGUUUAAGUGGGCCCCGGUAAUCUUUUCGUACUCGCCAAAGUUGAAGAAGAUUAUCGGGGUUUUUGCUU--3'

3'--GCCAAAUUCACCCGGGGCCAUUAGAAAAGCAUGAGCGGUUUCAACUUUUCUAAUAGCCCCAAAAACGAA--5'
(a) Known Interactions

CopA 5'--CGGUUUAAGUGGGCCCCGGUAAUCUUUUCGUACUCGCCAAAGUUGAAGAAGAUUAUCGGGGUUUUUGCUU--3'

3'--GCCAAAUUCACCCGGGGCCAUUAGAAAAGCAUGAGCGGUUUCAACUUUUCUAAUAGCCCCAAAAACGAA--5"

(b) Predicted Interactions

Fig. 4. Interaction between CopA and CopT. (a) Natural interasti¢b) Predicted interactions.

3 Results

3.1 Dataset

In our experiments we used a dataset of 23 known RNA-RNA attésns which in-
cludes two recently used test sets. Table 2 contains thefligtese RNA pairs. The
first 18 sRNA-target pairs are compiled and used as test sehb@RNA [4]. Next 5
pairs of RNAs which are known to have loop-loop interactibage been used by Kato
et al. [8] to evaluate the proposed grammatical parsingagmbr for RNA-RNA joint
structure prediction.

3.2 Structure Prediction

In our first experiment, we assessed the performance of @aligiion algorithm for
minimum free energy joint structure. For this purpose welitbe 5 RNA-RNA com-
plexes from Kato et al. [8] test set. We compared our resulis two state-of-the-art
methods for joint structure prediction: (1) the grammatagproach by Kato et al. [8]
(denoted by EBM as energy-based model), and (2) the DP metloodwo models
presented by Alkan et al. [1] (denoted by SPM as stackedrpadtel and LM as loop
model).

In order to estimate the accuracy of prediction, we meadheesensitivity and PPV
defined as follows:

number of correctly predicted base pairs
number of true base pairs

; ()

sensitivity =

number of correctly predicted base pairs (8)
number of predicted base pairs '

As another measure of accuracy we calculated F-measuré wbitsiders both sensi-
tivity and PPV. F-measure is the harmonic mean of sensitand PPV, and its formula

PPV =
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is as follows:

F

_ 2 x sensitivity x PPV

sensitivity + PPV

Table 1. Prediction accuracy of competitive RNA-RNA joint struauprediction methods.
Dataset is compiled by Kato et al. [8].

RNA-RNA Sensitivity PPV F-measure
interaction pair§i NnRNAs EBM SPM LM [i nRNAs EBM SPM LM [i nRNAs EBM SPM LM
CopA-CopT | 1.000 0.909 0.955 0.8640.846 0.800 0.778 0.7600.917 0.851 0.857 0.8(9
DIS-DIS 1.000 0.786 0.786 0.7861.000 0.786 0.786 0.7361.000 0.786 0.786 0.786
INcRNAs4-RepZ 0.875 0.917 0.875 0.8750.792 0.830 0.778 0.7780.831 0.871 0.824 0.824
R1linv-R2inv | 0.900 0.900 1.000 1.0000.900 0.947 1.000 1.0000.900 0.923 1.000 1.000
Tar-Tar* 1.000 1.000 1.000 1.0000.875 0.933 0.875 0.8750.933 0.965 0.933 0.933
Average 0.955 0.902 0.923 0.9050.883 0.859 0.843 0.8400.916 0.879 0.880 0.870

Table 1 shows comparison between the accuracy of our methdter com-
petitors. We referred to our method byyRNAs as an algorithm for prediction the
interactions between RNAs. As it can be seen, our methoddbasehe three accu-
racy measures outperformed the competitors. For Tar-Ta*Rilinv-R2inv pairs that
both RNAs are relatively short~ 20nt), all methods were accurate enough. How-
ever, for DIS-DIS which is not still long (35nt), only our nhetd was able to pre-
dict the interaction while the other approaches returnednteraction. CopA-CopT
and IncRNA4-RepZ are a bit longer~ 60nt); CopA-CopT has two disjoint binding
sites and IncRNA,-RepZ has a continuous binding site. Our method outperfdrme
the others in predicting the joint structure of CopA-CopTile INcRNAs,-RepZ was
predicted more accurately by EBM. We did not compare the inghtime between
these methods due to the fact that each one uses differafurpleand hardware. Our
method on one Sun Fire processor X4600 2.6 GHz with 64 GB RA%blezn running
~ 4000(sec) to predict the joint structures of CopA-CopT and IncRYARepZ.

3.3 Binding Sites Prediction

In another experiment, we focused on testing the performafour heuristic algo-
rithm for interaction prediction. For assessing the priagécpower of our algorithm,
we compared our algorithm withnt aRNA [4] andRNAup [13]. Based on the experi-
mental results presented byt aRNA, bothl nt aRNA andRNAup which incorporate
accessibility of target regions, performed better tharother competitive programs.

The results of these two programs for the first 18 RNA pairsaangresented in [4].
For the next 5 RNA pairs, we ruinnt aRNA with its default settings anBNAup with
the same setting that has been used by the experimentinlfprder to estimate the
accuracy of programs, we measured the sensitivity, PPV amé&sure such that only
interacting base pairs are considered.

Table 2 shows the results of our programs as wellrasaRNA andRNAup. In this
dataset OxyS-fhlA and CopA-CopT are the only ones that haweedisjoint binding

3 RNAup has been run using parameter -b which considers the pritgaifiunpaired regions
in both RNAs and the maximal length of interaction to 80.
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Table 2. Prediction accuracy of competitive RNA-RNA interactioregiction methods. Dataset
is compiled by Busch et al. [4] and Kato et al. [8].

RNA-RNA Sensitivity PPV F-measure
interaction pairgi NRNAs | nt aRNA RNAup|i nRNAs T nt aRNA RNAup|i nRNAs | nt aRNA RNAup
DsrA-RpoS | 0.808 0.808 0.80§ 0.778 0.778 0.778 0.793 0.793  0.793
GcevB-argT 0.950 0.950 0.900 0.864 0.950  0.947 0.905 0.950  0.923
GevB-dppA | 1.000 1.000 1.000 0.850 0.586  0.459 0.919 0.739  0.629
GcevB-gltl 0.750 0.000 0.000 0.500 0.000  0.000 0.600 0.000  0.00¢
GcevB-livy 0.634 0.955 0.95% 0.824 0.955  0.95% 0.717 0.955  0.95§
GcevB-livk 0.540 0.542  0.542 0.570 0.565  0.565 0.555 0.553  0.553
GcevB-oppA | 1.000 1.000 1.000 0.733 0.957  0.957 0.846 0.978  0.97§
GcevB-STM4351 0.760 0.760  0.880 1.000 0.905 0.957 0.864 0.826  0.917
IstR-tisAB 0.722 0.879  0.667 1.000 0.960  1.000 0.839 0.918  0.80¢
MicA-ompA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.00(
MicA-lamB 1.000 1.000 0.82¢ 1.000 0.821  0.704 1.000 0.902  0.76(
MicC-ompC | 1.000 1.000 0.727 1.000 0.537  0.410 1.000 0.699  0.524
MicF-ompF 0.960 0.960  0.800 0.960 0.960 0.952 0.960 0.960  0.869
OxyS-fhIA 0.813 0.500  0.37% 1.000 1.000 1.000 0.897 0.667  0.54%
RyhB-sdhD | 0.618 0.588  0.794 0.955 1.000 0.794 0.750 0.741  0.794
RyhB-sodB | 1.000 1.000 1.000 1.000 0.818  0.900 1.000 0.900  0.947
SgrS-ptsG 0.566 0.739  0.739 0.765 1.000 1.000 0.651 0.850  0.85(
Spot42-galk | 0.432 0.409  0.523 0.760 0.643  0.523 0.551 0.500  0.523
CopA-CopT | 0.889 1.000 0.55¢ 0.828 0.391  0.652 0.857 0.562  0.60(
DIS-DIS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.00(
INcRNA54-RepZ 1.000 0.738  0.750 0.889 0.850 0.857 0.941 0.790  0.80¢
R1linv-R2inv | 1.000 1.000 1.000 0.778 1.000 0.778 0.875 1.000 0.871
Tar-Tar* 1.000 1.000 1.000 0.833 0.833  0.833 0.909 0.909  0.909
Average 0.845 0.819 0.77¢ 0.865 0.805 0.784 0.845 0.791  0.763

sites, and our methods outperformledt aRNA and RNAup by up to30% improve-
ment in F-measure. BotRNAup andl nt aRNA could not predict any correct bond for
GcevB-gltl, since they missed the binding site. Howevert aRNA could get80% ac-
curacy by considering the suboptimal prediction which @selto the accuracy that we
have achieved. In overall, the results demonstrate thanetiod predicted RNA-RNA
interactions more accurately in compare to competitivehoes.

4 Conclusion

In this work, we introduced a fast algorithm for RNA-RNA indetion prediction. Our
heuristic algorithm for RNA-RNA interaction predictiongislem incorporates the ac-
cessibility of multiple unpaired regions, and a matchirgpathm to compute the op-
timal set of interactions between the target regions. Therdhm requiresO(n*.w)
running time and)(n?) space complexity. The main advantage of our method is its
ability to predict multiple binding sites which has beendicgable only by expensive
algorithms [1, 8] so far. On a set of several known RNA-RNA gbemes, our proposed
algorithm showed a reliable accuracy. Especially, for clexgs with multiple binding
sites our approach was able to outperform the competitivboais.

It would be interesting to design a method to efficiently comepthe joint proba-
bility of multiple unpaired regions. Furthermore, the immpement offl nt aRNA which
got some benefit by considering seed features in compa@gdRNAuUp, encourages us
to take into account the existence of seed in the follow ugkwor
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