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Motivation: Biological research produces a wealth of measured data. Neither it
is easy for biologists to postulate hypotheses about the behaviour or structure of
the observed entity because the relevant properties measured are not seen in the
ocean of measurements. Nor it is easy to design machine learning algorithms to
classify or cluster the data items for the same reason. Algorithms for automatically
selecting a highly predictive subset of the measured features can help to overcome
these difficulties.

Results: We present an efficient feature selection strategy which can be applied
to arbitrary feature selection problems. The core technique is a new method for
estimating the quality of subsets from previously calculated qualities for smaller
subsets by minimising the mean standard error of estimated values with an ap-
proach common to support vector machines. This method can be integrated in
many feature subset search algorithms. We have applied it with sequential search
algorithms and have been able to reduce the number of quality calculations for
finding accurate feature subsets by about 70%. We show these improvements by
applying our approach to the problem of finding highly predictive feature subsets
for transcription factor binding sites.

Keywords: computational biology; transcription factor binding sites; feature selection;
combinatorial optimisation; linear predictors; combinatorial regression; kernel methods.

1. Introduction

The investigation of many biological processes and structures produces a wealth
of data. In Microarray experiments, expression levels of thousands of genes are
measured in parallel at different time points. Similar, high-dimensional data is pro-
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Fig. 1. Typical structure of a gene. The coding sequence is transcribed by the protein complex
RNA polymerase Il which binds at the transcription start site. The region upstream of this site
is known as promoter which contains binding sites for several transcription factors. These factors
interact with the polymerase complex in order to regulate gene expression.

duced by mass spectrometry in proteomic experiments. There is a vast number
of proteins, substances and other metabolites that take part in a metabolic net-
work. Not to mention the huge databases of biological sequences which are growing
enormously.

Often, it is not apparent which features (data elements) contribute to an ob-
served behaviour: Which genes are differentially expressed and therefore responsible
for some disease? Which set of genes is characteristic for liver cells?” What are the
functional properties of a particular protein domain? Which features make the dif-
ference between a transcription factor binding site and an arbitrary DNA sequence?

Many of these questions are approached by using a classification system. The
input of such a classification system is a vector of features (i.e. the measured values
for these features). For each vector the system outputs a decision to which class the
underlying biological object belongs. Beside time efficiency problems which most
classification approaches have, when confronted with thousands of different fea-
tures, the classification performance often increases when irrelevant and redundant
features are eliminated from the input. Furthermore, the researcher who is inter-
ested in few but highly discriminating features will have it easier to identify simple
rules about his researched biological structures or processes if the feature space is
reduced to this relevant data. This preprocessing step of selecting a small subset of
highly predictive features from a huge set of available features is known as feature
subset selection (FSS).

In this paper we focus on a popular sequence analysis problem: the prediction of
transcription factor binding sites (TFBS). Transcription factors (TF) regulate the
gene transcription process by binding at regulatory DNA sequences (i.e. promoter
and enhancers) upstream of transcription start site and interacting with subunits
of RNA polymerase II and coacting transcription factors (see Figure 1). Each TF
prefers to bind at its characteristic binding sequence but tolerates variations from
this perfect site. The traditional way of modelling TFBS are position specific score
matrices (PSSM) 2%, We have shown previously that PSSM do not cover all dis-
tinguishing features of these TFBS and that considering additional features in the
modelling approach can improve the prediction performance.'® Among these fea-
tures are for instance sequence dependent structural parameters or base profiles for



April 18,2008 13:10 WSPC/INSTRUCTION FILE main

Fast Feature Subset Selection in Biological Sequence Analysis 3

a site’s flanking regions. There, the most predicative features of TFBS and inter-
dependencies among these features were modeled in Bayesian network classifiers.
We were confronted with the problem of identifying a feature subset which is most
accurate for predicting TFBS in promoter sequences from a huge set of possible
features. For this purpose we apply feature subset selection algorithms.

It is common to distinguish two main strategies for performing feature subset
selection: 1.) filters and 2.) wrappers 19. Whereas filters work independent of any

0. wrappers evaluate

classification approach by applying a certain scoring function 3
a feature subset by learning a particular classifier in a cross validation scheme and
measuring the classification error rate or a related statistic . Filters can be further
devided in ranker methods which calculate a ranking among all single features from
which a promising feature subset can be chosen, and non-rankers which simply
output a high-scoring feature subset without ranking the features. Furthermore,
there are also rankers which rank with respect to a classifier. This last group is
named embedded methods 0.

Naturally, filters usually run much faster than wrappers, since they do not have
to perform cross validation including learning the underlying classifiers for each
feature subset to be investigated. This is essentially true for datasets with a large
number of samples. However wrappers outperform filters in their predictive perfor-
mance since their feature subset evaluation is closer to the approached classifica-
tion task (see result section for a comparison). The predictive performance of filters
largely depends on the the applied scoring metric 26.

In this paper we present a third way: an approach which combines the advan-
tages of both strategies. The main idea behind this approach is a new method for
estimating objective function values of wrapper methods. The estimation relies on
previously calculated objective function values for smaller feature subsets which
have been calculated so far during the search process. Whenever the true value of
the objective function is calculated, the estimator is updated for this new value,
which improves further estimations. The technique relies on the formulation of es-
timated values as linear combination of previously calculated quality values. This
weighted sum can be written as an inner product. Following the kernel trick of sup-
port vector machines,? the minimisation of the mean standard error of the estimate
is reformulated in dual space.

We employ our estimation approach to a prominent representative among wrap-
pers, the sequential floating forward selection (SFFS) 7. Since the estimation is by
far faster than the calculation of real objective function values, we are able to re-
trieve good feature subsets in a comfortable time, compared to the search algorithm
without estimator. We demonstrate the performance of this estimation based search
algorithms on two datasets of transcription factor binding sites, namely for the TF
Spl and for AP1 boxes. Our approach finds optimal feature subsets in about a third
of the time of the baseline search algorithms.

The organisation of the paper is as follows: Section 2 extends this introduction
by showing the importance of FSS in biological sequence analysis on examples of
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various fields. In section 3 we introduce the classification system for TFBS which
includes a description of the feature space, the employed model for classification as
well as the class of used feature selection algorithms. In section 4 we present our
new technique for estimating feature subset qualities. Section 5 shows results of this
approach, section 6 summarizes this article and gives further conclusions.

2. Importance of F'SS in Biological Data Analysis

Due to its central role in improving classifier performance, FSS has recently been
in focus of biological and medical research in various fields. Beside sequence re-
lated analysis, especially in the case of microarray or proteomic data analysis FSS
techniques are of great importance. This kind of data suffers from the curse of di-
mensionality (thousands of features, few samples). A comparative study'® for FSS
algorithms investigated various feature selection strategies in order to reduce the
dimensionality in drug discovery problems. There are several possible tasks for mi-
croarray data. One task is the classification of samples with respect to a particular
phenotype (e.g. healthy vs. cancer). FSS is used here to rank the features (gene
expression levels) with respect to their discriminative power 14:22:6:25:12 The most
discriminative genes are called marker genes. For proteins the term biomarker is
common. Marker genes and biomarkers are crucial for the development of short-
time-tests for certain diseases. Another kind of data analysis which is often per-
formed on microarray and proteomic data is clustering. There, one is looking for
subsets of features (again expression levels) which behave in a similar way over
different time points. Results of such an analysis helps to eluciate regulatory net-
works. For clustering, F'SS is used to reduce the influence of noisy genes and avoiding
the obscuring evidential genes which are relevant only in conjunction with other
features.?7-16

At the end of this literature survey we like to mention further sequence analysis
related FSS. Saeys et al. have employed FSS algorithms to select relevant feature
subsets for predicting splice sites in RNA sequences of Arabidopsis thaliana.2:3
In Ref. 32 similar problems are tackled with different techniques. Another study?!
employed F'SS to model and predict translation start sites. More recently, Zhao et al.
published a feature selection technique for the classification of protein sequences 33.
Even as an alternative to sequence alignment algorithms concerning gene sequence
classification, FSS has been shown to be useful.!

3. Feature Subset Search

The classification task here is to predict proper TFBS in long DNA sequences,
thus classifying each sequence position into either TFBS or non-TFBS. An optimal
feature subset {Fi, Fs,...,Fy} for modelling TFBS consist of features F; which
all the TFBS’s of a factor have in common and which, at the same time, they
do not have in common with non-TFBS sequences. For the standard modelling
approach, PSSM, these features are simply the nucleotides at the different positions.
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In Ref. 18, we have introduced an approach that allows additional features and
which outperforms PSSM in sense of prediction performance. The additional feature
have been chosen to be from one of the following types:

e Nucleotide at a certain position: corresponds to the type of features
used by PSSM. Clearly, it is possible to emulate usual PSSM with these
features.

e Structural property feature: there are structural and chemical proper-
ties of DNA, which vary slightly with respect to the nucleotides occurring
at a certain position. The mean value for these properties in a given sub-
sequence are used as candidate features. Among the 38 different properties
provided there are conformational parameters like helical twist, helical slide
or minor groove width* and physico-chemical parameters like free energy
change or melting temperature.

e PSSM predictions for co-acting factor’s site TF often require the
presence of a co-acting TF for fullfilling its biological function. A predicted
TEBS for this co-acting TF in a closer neighborhood is evidence for a
position to be a proper TFBS.

e start positions of flexible matches of small words measuring the
left- or rightmost match of a small word can help to identify single point
deletions in a subgroup of known TFBS.

e Subsequence nucleotide profiles: measure the coarse base composition
of a given subsequence (e.g. a lower or higher A+T content of the flanking
region).

The features found to be characteristic for TFBS are integrated as random vari-
ables in a Bayesian network (BN). A BN is a probabilistic graphical model which
is an efficient choice of modelling the joint distribution of a set of random vari-
ables of diverse domains. Its efficiency its due to the decomposable nature of a
BN which means, that it calculates and stores the joint probabilities by only using
(conditional) probabilities of single random variables. Each variable is thought to
be independent of all its non-parents with respect to the graph structure of the
BN. Graph structure and probabilities of a BN for TFBS are learned from a set of
aligned TFBS. The learning process comprises the selection of a feature subset, the
calculation of the feature values from the training samples, a BN structure learn-
ing algorithm® and maximum likelihood estimation of the probability distributions
for all features given the structure. For the first task, the selection of a predictive
feature subset, we have applied sequential search algorithms, which are common in
the field of feature subset selection (FSS).17

3.1. Sequential search algorithms

Traditionally, a feature selection problem is stated as follows: select d features from a
set X of D (with d < D) measured features with the performance of the recognition
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system as high as possible.!” Given an objective function .J())) for evaluating the
quality of feature subsets ) C X, this task is reduced to the search problem of
detecting an optimal feature subset )* based on the objective function:

YV* = argmax J()). (1)
y

Since one can expect strong dependencies and redundancies among all candidare
features, which make it difficult to judge single features by some filter scoring metric,
we have decided to apply a wrapper method. Thus, in our application the quality
value J(Y) of feature subset ) is calculated through a cross validation of a BN
model containing the features of ). Learning in each case a positive (TFBS) model
and a negative (background) model on 90% of the data and then counting the false
positive rate (FP) for a fixed sensitivity of 90% on the remaining data, we finally

use these statistics to calculate the well-known Fj 5-measure:
o 2 . r . p

J(V)=Fys = T+ p (2)

TP
TP+FN

as matches (which is fixed to 0.9) and the precision p = TPTifFP being the fraction
of true positives (TP) among all matches (TP+FP). Notice that due to the cross
validation, one run of the objective function comprises the learning and application
of 10 BN models.

Many search algorithms when applied to feature subset selection (e.g. Branch
and Bound) require the objective function J()) to be monotonically increasing in
the sense that it holds:?°

with the recall r = being the part of of real TFBS that were considered

VW CYs = J(yt) < J(ys)« (3)

It is important to mention that our objective function is not monotonically increas-
ing which is partly a result of modelling dependencies of (potentially) redundant
features in our BN models. Thus we discuss search strategies which do not have this
requirement. Examples can be found in the class of sequential search algorithms.

3.2. Sequential forward selection

The simplest sequential algorithms are the sequential forward selection (SFS).%®
SFS starts with an initially empty feature subset and successively adds that sin-
gle feature to the current which best improves the quality of the extended subset
compared to the quality of the current subset. A schematically illustration of its
way to traverse the search space is shown in Figure 3a.) The performance of SFS
suffers from nesting problems, especially in our setting (BNs modelling dependen-
cies among features and lots of redundant features) the search process will often
follow dead end paths into local optima.?* This is also true for the generalised ver-
sion (GSFS) which successively adds small subsets of a given size g. In order to
overcome the nesting problems, several algorithms were proposed which allow the
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deletion of previously added features. The Plus | — Take Away r (PTA, see Ref. 23)
alternates between adding [ single features to the current set and deleting r features
from it. The possibility of cancelling previously added suboptimal features helps to
lower the risk of nesting problems. However, the fixed parameters [ and r are too
rigid to omit it completely.

3.3. Sequential forward floating selection

The sequential forward floating selection which is used in this work dynamically
adds and deletes features from the current feature set.'” To get more concrete,
at each search step, exactly one feature is added and afterward as many features
are deleted as it improves the quality measure. The time complexity of SFFS is
O(2P) 1. The pseudocode of SFFS is given in Figure 2. The running time of SFFS

SFFS
Input: X feature set
Output: Y. selected feature subset
Pseudocode:

(1) Vp=0,k=0

(2) Step 1: (inclusion)

(a) IF k = d THEN GOTO Stop
(b) 2t = argmax,c x\y, J(Vk U{z})
(€) Vi1 =VeU{aT} k=k+1

(3) Step 2 (conditional exclusion)

(a) 2~ = argmax,cy, JVk \ {z})
(b) IF J(V\ {e~}) > J(Vy—,) THEN

i V1 =V \{z7}
. k=k-1
iii. GOTO Step 2
ELSE GOTO Step 1

(4) RETURN argmaxy .ic(1,....qy J (Vi)

Fig. 2. Pseudocode of the SFFS algorithm.

(and any sequential algorithm) is largely determined by the number of performed
evaluations J()) which itself is a quite time-consuming procedure. To improve
the performance of such algorithms we have developed a method for finding good
estimations .J () of real objective function values. This approach is introduced in
the following section.



April 18,2008 13:10 WSPC/INSTRUCTION FILE main

8 R. Pudimat, R. Backofen € E.G. Schukat-Talamazzini

L\ L2V

s i s

§ P &
= &2 =

! < P
= = —Y
3 P S
- s ==
S € S

2 2 =

Al Rl Al

a.) b.) c.)

Fig. 3. Illustration of the diverse strategies for traversing the search space. The ith layer of each
diamond represents the set of all feature subsets with 4 features. The upper peak (first layer)
represents the single empty subset, whereas the lower peak (last layer) the single subset ) = X.
a.) SFS: can only add features to the current subset, b.) SFFS only deletes features in cases when
this improves the current feature subset c.) PTA (Plus | = 3, Take Away r = 1)

3.4. Lazy-SFFS

Lazy-SFFS is a variant of SFFS in which the majority of huge number the J(-)-
calls in the inclusion step are substituted by our quality estimation function .J(-).
Before the first round of the SFFS search, the estimator is initialised with the real
objective function values for single features x € X. After that, the selection of a
new feature to add is divided into three substeps:

(1) for each candidate feature z ¢ Y the estimated quality J(YU {z}) is calculated.
(2) Only a small fraction (20% in our study) of candidates scoring best w.r.t. the

estimate J(-) will be evaluated using the exact objective function .J(-).

(3) The J(-) values calculated in step (2) are now used to update the estimator

J(-).

Figure 4 shows the pseudocode of the inclusion step. The exclusion step is not
changed since it usually requires few target function calls compared to the inclusion
step. Next, we describe the mathematical foundation of the estimator J(-).

The described way of substituting real quality function values by quality es-
timations works analogously for other sequential feature selection algorithms. At
any stage of a sequential search, candidate features are first evaluated using the
estimation. For a given percentage (20% in our example) of candidates with best
estimation values the real quality value is calculated after that. The search proceeds
with the best candidate with respect to the real quality value.

4. Predicting Values of the Objective Function J(-)

The challenge is to build a good approximation J {0, 1}X — [0,1] of the true
(exact) quality function J(:). The parametrised function J(-) will be estimated
based on a training sequence X7, ..., Xr C X of feature subsets, along with their
true target values z; = J(AX;), 1 < t < T. The respective adaptation pairs are
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Lazy-SFFS
Input: X feature set
Output: YV, selected feature subset
Pseudocode:

(1) Vp=0,k=0

(2) Step 1: (inclusion)

) IF k =d THEN GOTO Stop

) Vo € X\ Vg : Ju 1:Aj(yk U{z})

) C:={x € X\ Vg : joisamong the t% best}
; Ve € C: jg := J(Yp U{x})
)
)

Q0 T

e
f

g

Va € C : update ;(jz)
zt = argmax,cc jx

Vig1 =V U{zt} k=k+1
(3) Step 2 (conditional exclusion)

—~ N~ T

—~

(4) RETURN argmaxy,.ic(1,....qy J (Vi)

Fig. 4. Pseudocode of the part of Lazy-SFFS algorithm which differs from the original SFFS. ¢ is
the percentage of estimations for which the real objective function values are calculated. update(-)
means that the estimator is updated for a new real objective function value.

resulting from all the exact evaluations of the objective function J(-) during the
search process so far.

Prediction of a value J()’) should access information about which features f;,
which feature pairs {f;, f;}, and which triples {f;, f;, fx} and so on are included in
Y, respectively. Thus, we assume a certain system B C {0, l}X of feature tuples,
or subsets, relevant for prediction. We model the impact of the properties S C )
on target value J())) by a linear combination

J) = JYlw) = Y ws-dscy, (4)

SeB

where dscy is the characteristic function.

A particularly simple example of an expansion base 9B is the set of all feature
singletons {f;},7 =1,..., D. The resulting predictor assumes all individual features
of a subset ) contributing linearly and independently to the overall success rate
J(Y). When adding pairs, triples, or even larger feature subsets to the ansatz, pair-
wise dependences and higher order interactions will be accounted for in the model,
too. In practice, combinatorially complete bases B_ = {S C X' | card (S) = k} of
moderate order (k = 3,4,5) and their cumulative counterparts B<, = {S C X |
card (§) < k} are employed. A similar representation, termed ANOVA decompo-
sition kernels, has been introduced before for a continuous-variable support vector
regression task. 2!



April 18,2008 13:10 WSPC/INSTRUCTION FILE main

10 R. Pudimat, R. Backofen € E.G. Schukat-Talamazzini

The predictor model can obviously be written in inner product form
. scCy
) sey @

where ¢()) denotes the array of dimension b = card (98) with components ¢s()),
S eB.
The mean squared error (MSE) estimate , minimising the average distortion

JOhw) = wT ). ¢s<y>—{

T
1 2
e(w) = = Z (2 —w' P(Xy)) (6)
t=1
of the predictor w.r.t. the data is easily obtained as the solution

W = (XTX)_1 Xz (7)

of the Gaussian normal equations X' Xw= X"z Target vector z € IR’ and
data matrix X € RT*® are understood to attain the value z; or the binary vector
¢(X) in its tth row, respectively. See Ref. 9 for details about MSE estimates, in
particular, about regularisation in case the moment matrix X T X has less than full
rank.

4.1. Dualisation of the problem

Since for typical expansions J (+) the cardinality of the system B is extraordinarily
large — the maximum cardinality b = 2P occurs if the power set {0, l}X itself
is chosen for B in (4) — the computations in (5), (7) are far beyond practical
feasibility. As a consequence, the MSE minimisation problem has to be reformulated
in dual space, a procedure that has been coined ’kernel trick’ in the SVM literature.?

First we observe, using elementary transformations along with the singular value
decomposition VDU of training data matrix X, that any weight vector with
minimum MSE can be represented as a linear combination

T
w=X"B=>p ¢X), BeR" (8)
t=1

in a T-dimensional subspace of IR® spanned by the training data. After substitution,
the MSE solution becomes
) . -1
W= X8, B=Glz-= (XXT) 2 9)

and the prediction translates into

JYIB) = B'Xp(Y) = > B (d(X) p(V) . (10)
t=1

The (T x T)-matrix G is called the Gram matrix of the data, and its entries
Gst = (o(X) " o(X) (11)

are inner products in feature subset indicator space.
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4.2. Computation of the kernel function

The dual equations for minimisation (9) and prediction (10) are of polynomial
complexity (O(T3) or O(T"), resp.) w.r.t. the adaptation set size T. Then again,
note that the number of samples which form the empirical basis of the actual
feature selection task does obviously not exert any influence on the predictor’s
computational cost.

However, to obtain an efficient computation, the underlying kernel operator

K(A,B) = (¢p(A)Td(B) = Y dscadscs (12)

SeB
dscCAnB

must be evaluable with reasonable effort. Counting the number of base sets S € B
which are a subset of ANB is an easy task as long as regularly structured expansion
bases are considered like the combinatorial k-order systems B_; or B<y, resp.
Solely depending on the size

v = card (ANB)

of the intersection, the requested inner product is obtained by the following formulae
which are easily verified using elementary combinatorics:

14 % = %:1
YYif v >k else 0 B =B_,
K(Av B) = (k)min V,lc_ v (13)
SR (1) B =D
2v B =B<p

If the counts in Eq. (13) are tabulated, the computation of K(A, B) involves costs
essentially proportional to the smaller of the cardinalities of subsets A and B.

4.3. Incremental adaptation of predictor j()

On top level of the FSS search procedure, a dynamically evolving sequence (X;)rew
of (locally) most promising candidate feature subsets is successively evaluated. Let
G, G7! denote the Gram matrix at time 7' and its inverse, respectively; then,
at time (T' 4 1), as soon as target score zpy1 = J(X741) is made available, the
predictor has to be provided with the (7' + 1)-dimensional updates

> G g) -1 <H h>
G = and G = 14
(QTV h' g 14)

where v = K(Xp41,Xry1) and g € R7” has components g; = K(X¢, Xr41). The
well-known rules
H'=G- ! g9’
0
' =7-9g'G™'g
h=-n-G'g
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of block matrix algebra relate the desired components n, h, H to the updated table
G of inner products. In particular, we can solve for the northwest block in O(7?)
time by making use of a (rank one) special case

1

v-gTG™'g

(GT'g)(GTg)" (15)
of the Sherman-Morrison-Woodbury formula.”

Taking advantage of this incremental algorithm and using our efficient kernel
formula (13), the costs for a prediction step and the costs for an adaptation step
scale linearly and quadratically, resp., with the size T of the predictor’s training set.
It is worth mentioning, however, that the application we have in mind is to speed
up a FSS wrapper procedure, and so calculating values of the black-box function
J(+) is usually a very time-consuming process. In other words, the scenario at hand
will never allow us to produce exact J-values at a scale that renders training or
running the predictor a dominant factor in the total expenditure.

5. Results

We validated our new search algorithm, Lazy-SFFS, on two datasets. The first one
contains 108 Spl binding sites taken from TRANSFAC!® (the positive samples)
and 4577 randomly chosen sequences (the negative samples). The second dataset
contains 77 AP1 boxes (the positives) and again 4577 negatives. AP1 box is the
name for a binding site for dimerised transcription factors of the JUN/FOS family,
either for homodimers of two JUN factors or for heterodimers of a JUN and a FOS
protein. The sequences of AP1 boxes are less conserved than the Spl boxes.

Since the sequence context of a TFBS could be extended theoretically to thou-
sands of basepairs and some feature types have continuous parameters (e.g. the
threshold of a structural parameter feature), one could produce an infinite set of
feature candidates. Since SFFS does not work on infinite dataset, we had to pres-
elect features from the infinite set X' of all possible features. The preselection was
done by more-or-less iterating over the free parameters of each feature type. In the
end, we kept 802 features for the Sp1 dataset and 495 features for the AP1 dataset.

Table 1. How many evaluations (#.J())) had to be calculated to find the feature subset
with a given quality (max J()))?

algorithm  #J(Y) |Y| algorithm  #J(Y) |Y|
a.) SFFS 14,535 10 b.) SFFS 9,983 10
Lazy-SFF'S 3,996 16 Lazy-SFF'S 2,345 11

Note: a.) Spl data set: the size of the feature subset found by Lazy-SFFS is higher
than that found by SFFS. (see text for discussion). However, Lazy-SFFS reduced the
number of evaluations more 70% compared to baseline SFFS. b.) AP1 data set: Our
lazy approach therefore calculates more than 75% less evaluations than the standard
SFFS.
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We were interested in the number of evaluations J()) which are required to
find a feature subset of a given quality measured by J()’) which is the Fj 5s-measure
of a cross validation with BNs modelling a certain feature subset )). To validate
our quality estimation method we compared the common SFFS algorithm with our
Lazy-SFFS.

The latter algorithm includes a predictor J(-) equipped with the kernel function
(Eq. 13) according to the expansion base B<4. The choice of kernel type (cumu-
lative) and kernel order (k = 4) was based on the results of preceding Lazy-SFFS
runs using non-TFBS data sets. On both datasets the common SFFS needs approx-
imately three times the evaluations of the lazy variant (see Figure 6). The number
of evaluations J())) which were performed by both search algorithms at the time
when they first reached a meaningful quality value ( 0.93 for Spl, 0.82 for AP1,)
are shown in Tables 5a.) and b.). Furthermore, it shows the sizes of the result-
ing feature subsets. In the case of Spl the feature subset found by SFFS is rather
smaller than that returned by Lazy-SFFS. Naturally , when using estimations in-
stead of real objective function values, an interesting point is how the estimates
fit to the real values. The correlation plot in Figure 5 shows that our estimations
show an impressive predictive power on the whole range of quality values except
in the middle range where the prediction seems to underestimate the real values
a bit. In spite of high correlations between estimation and real quality values, the
intersection of final feature subsets picked by the original SFF'S and the Lazy-SFFS
is small for both datasets. For the Spl dataset, the final feature subsets have three
features in common, for the AP1 dataset, there are two features in common. This is
not surprising, since the candidate feature set X were created by iterating through
the free-parameter-space of each type of features. Thus, there are redundant fea-
tures, which lead to very close results but influence the further traversal through
the search space.

T
Spl dataset+
AP1 dataset x

0.8

estimations
o
(=]

T

o
>
T

0.2 sl 4

real objective function values

Fig. 5. Dot p}ot of real objective function values J()) for feature subsets vs. the corresponding
estimations J()).
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Fig. 6. Number of evaluations in dependence of an approached feature subset quality. The y-axis
is in logscale. a.) Spl dataset. Two points are marked to illustrate the improvement of Lazy-
SFFS compared to SFFS. To reach a model quality of 0.9, SFFS evaluates approximately 3200
feature subsets. Lazy-SFFS only needs 650. Following the lower horizontal dashed line reveals that
spending 650 evaluations achieves a quality of 0.9 for Lazy-SFF'S and a quality less than 0.4 for
the baseline SFFS, respectively. b.) AP1 dataset
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Fig. 7. Size of currently examined feature subsets in relation to the number of quality function
computations so far. a.) Spl data set, b.) AP1 data set. The Lazy-SFFS reaches deeper regions of
the search space for a fixed number of evaluations. After having found the (putative) optimum,
the search strategy (SFFS) always adds new features without having the possibility of deleting
some of them because deletion would not improve the quality. This behavior is given by the SFFS
strategy and can be ommitted by defining a suitable stop criterion in real-world applications.

In order to provide a comparison of concrete running time between both algo-
rithms, we measured the time an algorithm takes for adding the next best feature
when applied to the Spl dataset. The original SFF'S which evaluates each candidate
feature by a complete cross validation, needs 344 seconds for this task, averaged
over 10 rounds. The Lazy-SFFS calculates only 20% of true quality values, but
updating the estimation unit with these true qualities needs 138 seconds. Of this
time, only 3.3 seconds are consumed for estimating the qualities of all candidate
feature subsets.

A common working hypothesis for developing wrapper methods is that in general
wrappers achieve better predictions of feature subset qualities than filters. To test
this argument for our datasets, we applied two filter methods and evaluated the
resulting feature subsets by cross validation. The first filter method is a ranker which
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sorts the features with respect to the normalized transinformation of single features
and the class labels 3°. The second filter is the FCBF algorithm, a correlation based
filter published in 3°, which accounts for redundancy among features. Since the
original SFFS algorithm achieved the best result for feature subsets of size 10 in
both datasets, we chose the 10 best features predicted by both filters and calculated
qualities J()). In all cases the feature subsets resulting from filter methods range
well below what is achievable with wrapper methods with respect to the cross-
validated Fp s-measure. See Table 2 for results of a ranker and FCBF as well as
for the wrappers SFFS and Lazy-SFFS which constitute a lower bound for an
optimal feature set the SFFS feature subsets with respect to the cross-validated
Fy 5-measure (see Table 2).

dataset ranker FCBF SFFS Lazy-SFFS
Spl 0.8435 0.8584 0.9282 0.9282
AP1 0.3409 0.6736 0.7804 0.08082

Table 2. Comparison of quality values J()’) of feature subsets of size 10 found by the two filter
methods and the first subsets of size 10 evaluated by SFFS and Lazy-SFFS. For both datasets, the
wrapper finds a feature subset of higher quality. Note that SFF'S and Lazy-SFFS differ significantly
in search efficiency rather than Fp 5 performance. Note further, that the filter methods and the
wrapper methods are in the same sense optimistic since the same part of data which is used for
feature selection is also used for evaluation.

6. Conclusions

Feature subset selection is an central task for designing recognition systems and
is applied in diverse fields of computational biology. In this paper we have faced
the problem of selecting predicative properties of transcription factor binding sites
for the purpose of predicting unknown sites in promoter sequences. We have de-
veloped a quality estimation technique which reduces the number of feature subset
evaluations by more than 70% compared to the baseline SFFS algorithm. For ex-
ample, for the Spl dataset, spending 650 evaluations achieves a quality of 0.9 for
Lazy-SFFS and a quality less than 0.4 for the baseline SFFS, respectively (see 6).
The estimator is refined incrementally while searching, using a kernel function for
minimising the mean standard error. This is a common technique in the field of
support vector machines. The reduction of the time-consuming cross validations
of each feature subset allows us to search deeper regions of the search space in a
suitable time. Naturally, the approach can be applied very easily to arbitrary fea-
ture selection problems. Especially microarray and mass spectrography data are of
special interest.
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