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Abstract. The optimization of weighted string alignments is a well
studied problem recurring in a number of application domains and can
be solved efficiently. The problem becomes MAX-SNP-hard as soon as
arbitrary pairwise dependencies among the alignment edges are intro-
duced. We present a global propagator for this problem which is based
on efficiently solving a relaxation of it. In the context of bioinformatics,
the problem is known as alignment of arc-annotated sequences, which
is e.g. used for comparing RNA molecules. For a restricted version of
this alignment problem, we show that a constraint program based on
our propagator is on par with state of the art methods. For the general
problem with unrestricted dependencies, our tool constitutes the first
available method with promising applications in this field.

The maximum weight string alignment problem for strings Sa and Sb asks
for a partial matching of positions in Sa and Sb that preserves the string order
and has maximum weight. This problem is efficiently solved by dynamic pro-
gramming (DP) [10]. An extended variant of the problem introduces pairwise
dependencies among positions in each string Sa and Sb. In this problem variant,
one optimizes the sum of weights, where a weight is associated with each pair of
matched positions and with each pair of matched dependencies. In general, this
problem is MAX-SNP-hard [2].

In bioinformatics, the problem has been studied as alignment of arc-annotated
sequences, where each arc represents a dependency. There, the problem has ap-
plications in aligning RNA or protein molecules that can be abstracted as se-
quences of monomers and structural dependencies among those that represent a
proximity of the respective positions in the molecules structure.

Due to the hardness of the problem, restricted versions with limited depen-
dencies, in particular nested and crossing ones, have been considered. For nested
and also certain restricted crossing dependencies the alignment problem can be
solved efficiently with DP algorithms [6, 9]. Heuristic approaches based on Integer
Linear Programming (ILP) are available for crossing dependencies specialized to



RNA [1] and for unlimited dependencies specialized to proteins [3]. By using
DP-based propagation, our approach is similar to Trick [11]. Furthermore, there
is prior work applying this idea in an optimization setting [5].

Contribution In this work, we consider a constraint programming approach to
the arc-annotated sequence alignment problem with unlimited dependencies.
Our main contribution is a general propagator for the maximum weight string
alignment with arbitrary pairwise dependencies. The propagator is based on a
relaxation that resolves the dependencies by bounding their weight contribution.
It propagates on the upper bound of the total weight and prunes the valid
alignments accordingly. Furthermore, we discuss decomposition into independent
subproblems for optimization approaches using our propagator.

We apply the technique to RNA sequence-structure alignment and show that
results are comparable to the state-of-the-art ILP approach Lara [1]. Finally, we
discuss a new method to compare riboswitches, which was not applicable before,
because prior RNA alignment approaches score at most crossing dependencies.

1 Preliminaries

An arc-annotated sequence is a pair (S, P ), where the sequence S is a string over
some alphabet Σ and P is a set of arcs (i, j) with 1 ≤ i < j ≤ |S|. We denote
the i-th symbol of S by S[i] and S[i..j] is the subsequence SiSi+1 . . . Sj .

We distinguish crossing and unlimited sets of arcs. A set P , where each
sequence position is involved in at most one arc, i.e. ∀(i, j) 6= (i′, j′) ∈ P : i 6=
i′ ∧ j 6= j′ ∧ i 6= j ∧ i′ 6= j′, is called crossing. Otherwise it is called unlimited.

An alignment A of two arc-annotated sequences (Sa, Pa) and (Sb, Pb) is a
ordered partial matching between the positions of Sa and Sb. More precisely,
A ⊆ {1, . . . , |Sa|} × {1, . . . , |Sb|} has to satisfy for all (i, i′), (j, j′) ∈ A that
1.) i > j implies i′ > j′ and 2.) i = j if and only if i′ = j′. We define the
(i, i′)-prefix of A as A ∩ { (j, j′) | j ≤ i, j′ ≤ i′ } and the (i, i′)-suffix of A as
A ∩ { (j, j′) | j > i, j′ > i′ }.

Fix two arc-annotated sequences (Sa, Pa) and (Sb, Pb) with unlimited struc-
tures Pa and Pb. Define the weight of alignment A of (Sa, Pa) and (Sb, Pb) as

weight(A) :=
∑

(i,i′)∈A

σ(i, i′) +
∑

(i,j)∈Pa,(i′,j′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(i, j, i′, j′) + γ(|Sa|+|Sb|−2|A|),

where σ(i, i′) is the similarity of sequence positions Sa[i] and Sb[i′], τ(i, j, i′, j′) is
the similarity of arcs (i, j) ∈ Pa and (i′, j′) ∈ Pb and γ is the gap cost associated
with each sequence position that is not matched.

The alignment problem is to determine

argmax
A alignment of (Sa, Pa) and (Sb, Pb)

weight(A).

Note that on crossing arc annotation, the ILP approach Lara [1] solves essentially
the same problem. On unlimited input, Lara scores only a crossing subset of the
matched arcs whereas our approach scores all matches of arcs.



2 Constraint Model

We model an alignment of arc-annotated sequences (Sa, Pa) and (Sb, Pb) by
variables MDi and Mi for 1 ≤ i ≤ |Sa| with initial domains D(MDi) = {1, . . . , |Sb|}
and D(Mi) = {0, 1}. We write MD and M to denote the vectors of respective
variables MDi and Mi.

A valuation V of these variables corresponds to at most one alignment AV

of (Sa, Pa) and (Sb, Pb) as defined by

V (MDi) = j ∧ V (Mi) = 1 iff (i, j) ∈ A
V (MDi) = j ∧ V (Mi) = 0 iff @j with (i, j) ∈ A

∧ ∀(i′, j′) ∈ A : i′ < i→ j′ ≤ j ∧ i′ > i→ j′ > j.

In this way, Mi tells whether i is matched or deleted and the value j of MDi tells
that i is matched to j or deleted after j. One can show that for each alignment
A of (Sa, Pa) and (Sb, Pb) there is a corresponding valuation V with A = AV .

For example, the following alignment A = {(1, 1), (2, 4), (4, 5)} of Sa =

ACUG and Sb = ACACG, which is often written as
A--CUG
ACAC-G

, corresponds to

the valuation MD = (1, 4, 4, 5) and M = (1, 1, 0, 1).
We introduce a constraint StringAlignment(MD,M) that is satisfied by

any valuation with a corresponding alignment. For modeling the weight of the
alignment, we introduce a variable Weight and a constraint StringAlignmen-
tWeight(MD,M , Weight). This constraint relates a valuation of MD and M to the
weight of its corresponding alignment. Note that, formally, (Sa, Pa) and (Sb, Pb)
are parameters of the constraints but we omit them to simplify notation.

Both constraints are propagated by our propagator described in the next
section. For finding optimal alignments we perform a branch-and-bound search
enumerating MD and M according to a specific search strategy described after
introducing the propagator itself.

3 The Alignment Propagator

Our propagator computes hyper-arc consistency for StringAlignment(MD,M)
and propagates StringAlignmentWeight(MD,M , Weight).

It prunes MD and M due to the weight by computing upper bounds of
weights for single variable assignments and furthermore computes lower and up-
per bounds for Weight based on MD and M . Computing such bounds efficiently
is essential for branch-and-bound optimization.

Define the class A(D) as union of AV over all valuations V that satisfy D.
The computation of bounds is based on a relaxation of the alignment problem.
In this relaxation the two ends of each arc match are decoupled. Thus in the
relaxed optimization problem for D, we maximize a relaxed weight

weightn,m
relaxed(A) :=

∑
(i,i′)∈A

[σ(i, i′) + ubD(i, i′)] + γ(n+m− |A|),



over all alignments in A(D), where n = |Sa| and m = |Sb| and

ubD(i, i′) :=
1
2

max
A∈A(D)

[
∑

(i,j)∈Pa,(i′,j′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(i, j, i′, j′) +
∑

(j,i)∈Pa,(j′,i′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(j, i, j′, i′)].

Here, ubD works as an upper bound for the weight contributions by arc
matches involving (i, i′) and consequently weight|Sa|,|Sb|

relaxed (A) ≥ weight(A) for A ∈
A(D). Thus, solving the relaxed problem yields an upper bound of Weight.

For a moment, postpone how to efficiently compute ubD(i, i′). Then, because
the relaxed weight has the form of a sequence similarity score, one can apply
the Smith-Waterman algorithm [10] to maximize the relaxed weight in O(n2) by
dynamic programming, where n = max(|Sa|, |Sb|). The optimization problem is
easily constrained due to domain D, because domains directly restrict the valid
cases in the dynamic programming recursion.

Tracing back through the dynamic programming matrix yields an alignment
Al. If Al also satisfies all other constraints of the constraint problem, then
weight(Al) is a lower bound of Weight. For the later studied RNA alignment
problem, this bound can always be propagated, since there are no other con-
straints. Furthermore, we compute upper bounds for each single variable valua-
tion. This requires to complement the above “forward algorithm” that computes
the matrix entries

Prefix (i, i′) := max
(i, i′)-prefix Ap

ii′ of A∈A(D)
weighti,i′

relaxed(Ap
ii′)

by a symmetric “backward algorithm” that computes the matrix entries

Suffix (i, i′) := max
(i, i′)-suffix As

ii′ of A∈A(D)
weight|Sa|−i,|Sb|−i′

relaxed (As
ii′).

Now the variables MD can be pruned efficiently, because Prefix (i, i′)+Suffix (i, i′)
is an upper bound of Weight for the assignment MDi = j. Hence, j can be re-
moved from the domain of MDi, if Prefix (i, i′) + Suffix (i, i′) is larger than the
upper bound of Weight. Similarly, we prune M using the two matrices.

It remains to describe the efficient computation of ubD(i, i′). It suffices to
describe the maximization of

∑
(i,j)∈Pa,(i′,j′)∈Pb,
(i,i′)∈A,(j,j′)∈A

τ(i, j, i′, j′) over alignments in

A(D). A single match (j, j′) can occur in an alignment in A(D) if j′ ∈ D(MDj)
and 1 ∈ D(Mj). However, we look for the best set of simultaneously valid matches
(j, j′). The structure of this subproblem is analogous to sequence alignment. For
solving it efficiently, we define sorted lists j1, . . . , jl and j′1, . . . , j

′
l′ such that

(jh, i) ∈ Pa for all 1 ≤ h ≤ l and (j′h′ , i′) ∈ Pb for all 1 ≤ h′ ≤ l′. We apply
dynamic programming for evaluating

UL(0, 0) = 0 UL(h, 0) = 0 UL(0, h′) = 0
UL(h, h′) =

max


UL(h− 1, h′) unless MDjh

= j′h′ and Mjh
= 1

UL(h, h′ − 1) unless MDjh
= j′h′ and Mjh

= 1
UL(h− 1, h′ − 1) + τ(jh, j′h′ , i, i′) j′h′ ∈ D(MDjh

) and 1 ∈ D(Mjh
)



for 1 ≤ h ≤ l, 1 ≤ h′ ≤ l′. Then, we perform the same construction for the
respective r and r′ many arcs to the right of i and i′ and evaluate the cor-
responding recursion equation UR(h, h′) for 1 ≤ h ≤ r, 1 ≤ h′ ≤ r′. Then,
ubD(i, i′) = UL(l, l′) + UL(r, r′).

Therefore, ubD(i, i′) is computed in O(ll′+rr′) time. For crossing arcs l+r =
l′ + r′ = 1 and for many other applications l + r and l′ + r′ can be constantly
bounded [12] such that the propagator runs in O(n2) time and space.

Affine Gap Cost In bioinformatics, penalizing unmatched positions using an
affine weighting function yields more realistic results. Our method is straight-
forwardly extended to such scoring by using a Gotoh-like forward and backward
algorithm [4] in the propagator without increasing its complexity. It appears that
this modification comes more natural in our approach than the corresponding
extension in ILP, because it does not require any change of the model.

Propagator-guided Search Strategy To maximize the use of the propagator in a
branch-and-bound setting, we suggest a search strategy that aims at disproving
overestimated bounds fast and finding valid good alignments quickly. To achieve
this, information computed by the propagator in each propagation step can be
used to guide the search. In particular, this allows to select a variable that
yields a high undecided contribution to the upper bound of the total weight.
Furthermore, the computed backtrace provides a good candidate for a solution,
which can be favored by the search strategy.

In our application to RNA, we select a variable with highest undecided con-
tribution to the upper bound and domain size as tie breaking. Its domain is split
such that the 20% highest relaxed weights are chosen first.

4 Problem Decomposition

Certain constraint optimization problems can be solved faster by detecting inde-
pendent subproblems during search and optimizing these subproblems indepen-
dently. In our setting, independent means that the two parts of the alignment do
not depend on each other due to the string order, arcs connecting the two parts,
or due to additional constraints other than StringAlignment and StringAlignmen-
tWeight. In the following, we denote anything that makes two subproblems de-
pendent a dependency, not only dependencies introduced by arcs.

In general, problem decomposition introduces overhead for detecting depen-
dencies and even interferes with Branch-and-Bound when subproblems cannot
be bounded well (confer AND/OR search [7], which however doesn’t discuss
decomposition in the presence of global propagators). However, the string align-
ment problem suggests a special form of decomposition along the string order,
where our propagator provides upper bounds for the partial problems. The de-
pendency due to the string order between the two subproblems for variables
MD1, . . . , MDi−1, M1, . . . , Mi−1 and MDi+1, . . . , MD|Sa|, Mi+1, . . . , M|Sa| is resolved as
soon as a matching edge (i, j) is assigned (i.e. MDi = j and Mi = 1). The problem



can be decomposed, if in addition the dependencies due to arcs are resolved and
the corresponding variables do not have dependencies by other constraints. No-
tably, for resolving the dependencies due to an arc (i, j) it suffices that one of its
ends is matched, i.e. ∀A ∈ D(A) : (i, i′) ∈ A (or ∀A ∈ D(A) : (j, j′) ∈ A). Then
one can move the weight of each arc match, τ(i, j, i′, j′), to the match weight of
the other end σ(j, j′) (or σ(i, i′) respectively) and discard the dependency.

In the RNA alignment problem, all dependencies can be checked within the
propagator.1 To avoid overhead, we apply the decomposition only if an inde-
pendent subproblem for MDi, . . . , MDj , Mi, . . . , Mj can be solved to optimality by
the propagator alone. This is the case, if all arc dependencies in the subproblem
are resolved. Then, the problem reduces to maximum weighted string alignment
without dependencies and the traceback alignment represents an optimal solu-
tion. Assigning the traceback of the subproblem to MDi, . . . , MDj , Mi, . . . , Mj is a
form of symmetry breaking, because it discards alignments with less or equal
weight that are systematically generated from other alignments in A(D).

5 Results

The propagator and its application to RNA sequence-structure alignment, called
Carna, is implemented in C++ using the constraint programming system Gecode.
For handling input and output as well as for special data structures we reused
code of LocARNA [12].

We run tests for two application scenarios. All experiments were performed
under 32-bit Linux on a T400s notebook with Intel P9600 CPU. First, we explore
Carna’s behavior on crossing input structure using instances from all 16 Rfam
families with crossing structure. Table 1 compares our results to Lara [1]. The
table omits all 8 instances where both approaches run in less than 0.1 seconds. In
all but one of the omitted cases, Carna solves the problem without backtracking.
In terms of performance, with the single exception of tmRNA, both programs
are on a par for the simpler class of crossing structures.

In our second scenario, we evaluate the behavior on the general class of
unlimited structures. Therefore, we apply the approach to the alignment of ri-
boswitches, which are RNA molecules with more than one evolutionary con-
served structure. We annotate the RNA sequences by the set of all base pairs
with sufficiently high probability in the RNA’s structure ensemble [8]. This set
approximates the overlay of the different riboswitch structures. In consequence,
the alignment is optimized with respect to all these structures simultaneously.
Since the set of base pairs is unlimited this application has not been possible for
existing approaches, which at most score crossing structure. The Rfam database
contains 10 RNA riboswitch families that are confirmed by literature. To bench-
mark the approach, we align 100 random instances from each of those families.
Since in large scale studies an instance is rather skipped than spending much
time on it, we set a time limit of 1 minute for each instance. The results are
1 This is important for our implementation, because checking for independent sub-

problems in the presence of arbitrary propagators is expensive in Gecode.



Family Lengths Run-time (s) Carna Search Tree

Sa Sb Carna Lara Depth Fails Size

Entero OriR 126 130 0.03 0.18 38 13 50
Intron gpI 443 436 0.1 0.2 0 0 1

IRES Cripavirus 202 199 0.2 0.04 157 127 296
RNaseP arch 303 367 0.46 1.4 63 8 64

RNaseP bact b 408 401 3.0 2.3 370 677 1463
RNaseP nuc 317 346 0.07 2.9 14 4 16

Telomerase-vert 448 451 0.47 2.3 146 32 161
tmRNA 384 367 63 3.7 433 14347 28785

Table 1. Results for the eight harder instances of the benchmark set with crossing
structures. We omit details for 8 instances where both programs run in less than 0.1
seconds. All times are given as user times.

given in Table 2. For this new problem, not all instances could be solved within
our strict time limit. However, the results show that the approach handles all Ri-
boswitch families sufficiently well for bioinformatics applications with only some
limitations for the very longest sequences.

Family Length Base pairs Time (s) Memory (MB) Limit

SAH riboswitch 79 81 0.13 3.3 2%
SAM alpha 79 96 0.03 1.9 0%
Purine 101 74 0.07 2.3 0%
Glycine 101 83 0.44 5.0 3%
SAM 106 74 0.06 6.0 0%
TPP 107 96 0.43 8.7 13%
SAM-IV 116 128 0.05 3.7 2%
MOCO RNA motif 141 111 0.24 9.4 10%
Lysine 181 210 60 14.5 60%
Cobalamin 204 237 60 18.7 71%

Table 2. Rfam Riboswitches. For 100 instances from each Rfam family annotated as
riboswitch and confirmed by literature: Medians of average sequence length, average
number of base pairs, and run-time (user time), maximal memory requirement and
percentage of instances not solved to optimality within a given time limit of 1 min.

6 Discussion

We presented a propagator for the problem of weighted string alignment with ar-
bitrary pairwise dependencies, which is also known as the alignment problem for
arc-annotated sequences with unlimited structure. Whereas the problem itself
is MAX-SNP-hard, our propagator allows for an effective constraint program-
ming approach by efficiently solving relaxations of the problem. Futhermore, we



proposed a search strategy that improves the benefit due to the propagator. Fi-
nally, we showed that the weighted string alignment problem can be decomposed
into independent subproblems during search. This allows for a AND/OR-type
optimization in the context of our global propagator.

To evaluate the applicability of our method in practice, we apply it to the
alignment of RNA structures. While all previous approaches in this area are
limited to score at most crossing subsets of the input structures, our approach is
able to align unlimited structures. This is useful to align Riboswitches and other
molecules with more than one conserved structure, because it allows considering
all their potential structural conformations simultaneously.
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