Sparsification of RNA Structure Prediction
Including Pseudoknots

Mathias Mohl'*, Raheleh Salari2*, Sebastian Will' 3*,
Rolf Backofen '** and S. Cenk Sahinalp 2**

! Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universitét,
Freiburg, Germany
2 Lab for Computational Biology, School of Computing Science, Simon Fraser
University, Burnaby, BC, Canada
3 Computation and Biology Lab, CSAIL, MIT, Cambridge MA, USA

Abstract. Although many RNA molecules contain pseudoknots, com-
putational prediction of pseudoknotted RNA structure is still in its in-
fancy due to high running time and space consumption implied by the
dynamic programming formulations of the problem. In this paper, we
introduce sparsification to significantly speedup the dynamic program-
ming approaches for pseudoknotted RNA structure prediction, which
also lower the space requirements. Although sparsification has been ap-
plied to a number of RNA-related structure prediction problems in the
past few years, we provide the first application of sparsification to pseu-
doknotted RNA structure prediction specifically and to handling gapped
fragments more generally - which has a much more complex recursive
structure than other problems to which sparsification has been applied.
We show that sparsification, when applied to the fastest, as well as the
most general pseudoknotted structure prediction methods available, - re-
spectively the Reeder-Giegerich algorithm and the Rivas-Eddy algorithm
- reduces the number of ”candidate” substructures to be considered sig-
nificantly. In fact, experimental results on the sparsified Reeder-Giegerich
algorithm suggest a linear speedup over the unsparsified implementation.

1 Introduction

Recently discovered catalytic and regulatory RNAs [1, 2], exhibit their function-
ality due to specific secondary and tertiary structures [3, 4]. The vast majority of
computational analysis of non-coding RNAs have been restricted to nested sec-
ondary structures, neglecting pseudoknots - which are “among the most preva-
lent RNA structures” [5]. For example, Xayaphoummine et al. [6] estimated that
up to 30% of the base pairs in G+C-rich sequences form pseudoknots.

However the general problem of pseudoknotted RNA structure prediction is
NP-hard. As a result, a number of approaches have been introduced for handling
restricted classes of pseudoknots [7-13]. Condon et al. [14] give an overview of

* joint first authors
** to whom correspondence should be addressed

their structure classes and the algorithm-specific restrictions and Mohl et al. [15]
develop a general framework showing that all these algorithms follow a general
scheme, which they use for efficient alignment of pseudoknotted RNA.

The most general algorithm (with respect to the pseudoknot classes handled)
among the above by Rivas and Eddy (R&E) has a running time of O(n®) time
and space consumption of O(n*). It is therefore too expensive to directly apply
this algorithm for large scale data analysis. Unfortunately, even the most efficient
algorithm by Reeder and Giegerich (R&G) still has a high running time of O(n?),
although it strongly restricts the class of predictable pseudoknots.

In this paper we introduce the technique of sparsification to the problem of
pseudoknotted RNA structure prediction. Sparsification improves the expected
running time and space usage of a dynamic programming based structure pre-
diction algorithm without introducing additional restrictions on the structure
class handled or compromising the optimality of solutions. Sparsification has
been recently applied to improve time and space complexity of various existing
RNA-related structure prediction algorithms. In particular, it turned out to be
successful for RNA folding for pseudoknot-free structures [16, 17], simultaneous
alignment and folding [18] as well as RNA RNA interaction prediction [19].

Contributions. We study sparsification of pseudoknotted RNA structure predic-
tion. Algorithms developed for this problem differ from the previously sparsified
algorithms by their use of gapped fragments and their more complex recursion
structure. Our main contribution in this paper is the solution to the algorithmic
challenges due to this increased complexity. Among all DP based pseudoknot
prediction algorithms, we focus on the fastest algorithm (R&G) and the most
general one (R&E) and develop sparse variants of these dynamic programming
algorithms. Due to sparsification, the resulting algorithms need to consider only a
limited number of candidates substructures compared to the original algorithms.
As a result, we analyze the theoretical worst case complexities in terms of the
number of candidate substructures. We also present experimental results, com-
paring our implementations of the original and sparsified R&G algorithm. These
results suggest a significant (roughly a linear factor) reduction in the number of
candidates over the original algorithm.

2 Sparsification of the Reeder and Giegerich algorithm

The R&G algorithm [13] predicts the minimum free energy structure allowing
canonical pseudoknots for a sequence S of length n. It extends the Zuker algo-
rithm by adding one more matrix K (for knot), where K (7, j) denotes the energy
for the best canonical pseudoknot that starts at position ¢ and ends at position
j.* Canonical pseudoknots are defined as follows. Each pair of base pairs p; =
(¢,i") and po = (', 7) with ¢ < j' < i’ < j induces one canonical pseudoknot that
consists of two crossing stems {(¢,4), (i+1,¢'—=1),...,(i+d; v — 1,7 —d; i +1)}

4 The original presentation of the algorithm in terms of the ADP framework does not
explicitly consider a matrix K but only a motif knot

/
a 7/
T s

~ L.

Fig. 1. Recursion for canonical pseudoknots (a) and their sparsification (b).

and {(j',7), (' + 1,5 —1),...,(3' +dj; — 1,5 —dj; + 1)} where the stacking
length of the two stems, d; # and dj ;, respectively, is chosen as large as possible
such that still all base pairs are valid Watson-Crick base pairs.

To allow for sparsification, we restrict the scoring scheme slightly such that
the energy of a canonical pseudoknot only depends on the left ends of its base
pairs® and hence can be described as PK-Energy (i,d; i+, 5, dj, ;). Then,

K (i, j) = minscore (i, j', 7', j) (1)
,L/7j/

with score (i, 5,4, 7) =
PK-Energy (i, d; i, j', djr ;) + (2)
W(i+dip,j' = 1)+ W(' +dj,i" —dig) + W+ 1,5~ djj))

As shown in Fig. 1(a), for each canonical pseudoknot starting at ¢ and ending at
j the recursion decomposes into the pseudoknot itself and the three fragments
in-between its two crossing stems. Such pseudoknots add one case in the compu-
tation of a matrix entry W (i, j), which, as in the Zuker algorithm, contains the
optimal energy of a substructure starting at position ¢ and ending at position
j. Due to the restriction to canonical pseudoknots, the recursion of R&G mini-
mizes only over all possible instances of i’ and j’, because the maximal stacking
lengths d; + and d;; are uniquely determined once i’ and j’ are fixed. Further-
more, Reeder and Giegerich note that the maximal stacking length d, , can be
precomputed for all z, y in O(n3) time and stored in an O(n?) table.

In order to sparsify the algorithm, we develop an appropriate notion of a
candidate such that it is not necessary to minimize over all possible 7' and j’ but
only over the candidates.

5 The restricted scoring scheme does not distinguish between G-C and G-U base pairs
in pseudoknot-stems, since their left ends are identical.

Definition 1 (R&G candidate).
Leti < j' <} <iy and d;j; <i} —j'. Then i} dominates i5 with respect to
(iajlv dj/,j) Zﬁ
scorey, (i,5',1y) > scorey (i,5',1), where

score;, (i, j',4") :=PK-Energy (i,d; i+, j', dj: ;)
+W(i+di,j = 1)+ W +djj,i" —diw) + W3 + 1,4p).

We say that iy is a candidate with respect to (1,7, d;j. ;) if there does not exist
any 1} that dominates it.

The notion of a candidate is visualized in Fig. 1(b). There, 7] dominates i} if
the score for the gray area at the top (including the dashed part whose exact
position is not determined) is not better than the score for the corresponding
gray area at the bottom plus the green part. Note that these scores (and hence
the candidate i’) depend only on i, j/, and d;/; and are independent of d; ;» and
j. The following lemma shows that the notion of a candidate given in Def. 1 is
suitable for sparsification, i.e. some i’ needs to be considered in the recursion (for
all 7) only if it is a candidate, because otherwise it is dominated by a candidate
that yields a better score.

Lemma 1 (R&G sparsification). Let i), be dominated by i} with respect to
some (1,7',dj ;). Then for all j it holds score (i, j', 1}, j) < score (i,5',5,7).

Proof. We start with the inequality of Def. 1 and add W (i, +1, j —d; ;) on both
sides. Then the claim follows immediately from W (i} + 1,7 — dj;) < W(i} +
1,i5)+W(i5+1,j—dj ;). In Fig. 1(b) this corresponds to the fact that the score
for the red box is at least as good as the score from the green and the blue box
together. This triangle inequality holds by the correctness of the (unsparsified)
algorithm: For all z < y < z we have W (z,y) + W(y+1,2) < W(x, 2) since the
concatenation of the best structures for the ranges (z,y) and (y, z) always forms
a valid structure for the range (z, z) with score W (z,y) + W{(y + 1, z) which is
hence never better than the optimal score W (z, z) for that range. O

The sparsified algorithm maintains lists L; of candidates for each pair (j', d; ;)
since only the lists for one 7 need to be maintained in memory at the same time.
Whenever in the computation of some score(s, j/,4’, j) the ' is considered the
first time for this ¢ and j’, it is checked whether it is a candidate and if so, it is
added to the respective list. For all other instances of j, ¢’ is then considered only
if it is contained in the list. The sparsified algorithm is given by the following
pseudo-code (n := |5]).

1: fori:=nto1ldo
2: for all d; ;,j' <n do L;(j',dj ;) :=empty list;
for j:=i+3 ton do
K(i,j) =0
for //:=i+1toj—2do
// check new elements for candidacy

7: for i. := max{j’ + djr j,checked; j a , | +1} to j —d;; do
8: if score;, (4, j',i.) < score;, (i,7',4) for all ¢/ € L;(j',d;j.;) then
9: add ic to Li(jl, dj’,j)

10: end if

11: end for

12: checked; j: 4, . = max(checked; jr q, ;. j — djr ;)

13: // iterate over all candidates

14: Ki,j/,j =

15: for all i’ € L;(j',d;;) do

16: K; j j ==min{K; j ;,score(i,5",7,j)}

17: end for

18: K(Z,j) = min{K(i,j),Ki7j/7j}

19: end for

20: compute matrix entries V (4, j) and W (i, j) as in Wexler et al.

21: W (i, j) = min(W (i, 5), K(4,7))

22: end for

23: end for

The candidate lists are initialized in line 2. In lines 7 to 11 all new values i, that
have not been considered so far, are tested for candidacy. Here, checkedwl,dj,,j
denotes the largest i’ that has been checked for candidacy in list L;(j’, dj ;).
Lines 14 to 17 compute scores score (4, 5,4, j) for all candidates ¢’. In line
20, we compute W (i, j) and V (7, j) as in the sparsified pseudoknot-free structure
prediction approach due to Wexler et al. [16]. The computation of matrices K
and W is interleaved such that all entries K(4,5) and W (i, j) are computed
before all entries K(i',j') and W (i',5') for i <4’ <j < jandi#i or j # j'.

Complezity Analysis Whereas the original algorithm requires O(n*) time (for
n = |S]), the sparsified variant requires O(n®L) time where L is the total size
for all candidate lists of some ¢ i.e. L := max; Zj,’dj” |Li(j’,djr ;)|. Obviously,
L < n. In order to maintain the asymptotic space complexity O(n?) of the
original algorithm, we do not maintain all lists L;(j,d;s ;) in memory but only
the lists with d;,; < k where k& > 0 is a small constant. Please note that to keep
presentation simple, we didn’t make this explicit in the pseudo-code. Since the
maximal stacking length is usually small, there are only very few instances of j
with dj; > k such that for those few j it is cheap to consider all i’ as candidates.
Hence, we store O(kn) = O(n) candidate lists each requiring at most O(n) space.

3 Sparsification of the Rivas and Eddy Algorithm

The class of structures predicted by the R&E algorithm [8], here called class of
R&E structures, is the most general RNA secondary structure prediction algo-
rithm described in the literature [14]. To keep presentation simple we explain the
sparsification strategy for a base-pair maximization algorithm that handles the
R&E structure class. Finally, we motivate that sparsification can be transferred
to the R&E energy minimization algorithm.

First, we give recursions of base pair maximization for R&E structures. Note
that the recursions are intentionally very close to the recursions of the R&E
energy minimization algorithm. After initialization for ¢ > j and k& > [

.. J0 ifi=jori=j5+1 Wi j; k)= —c0if j<iorl<k
W)= {—oo ifi>j+1 G5k R) = bp
1 if S;, Sk complementary

where bp(i,j) = is the base pair contribution,

—oo otherwise,
the recursions (R&E recursions) are given for 1 <i < j <k <l <|S] as

Wi, j—1) (127)
W (i j) = max bp(@j)—i-’W.(i—kl,j—l)’ | (1°21°)
maxj W(i,j" — 1)+ W(j', j) (12)
max; gy Wi, j' — LE +1, =)+ W (5, KU, 5) (1212)
W(i+1,5; k1) (1°262)
Wi, j— 1;k,1) (12°G1)
Wi, ji k+1,1) (162°1)
Wi, j;k,l —1) (16127)
max; W(i,j")+ W' +1,5;k,1) (12G2)
Wi, j: k. 1) = max max W(?’,]"’ - 1,5k 0)+W(5',j) (12G1)
maxy W (i, j; 1"+ 1,1) + W(k,1') (1G21)
maxy W (i, j; k' = 1)+ W (', 1) (1G612)
max; p W(i, 7 — LK +1,0) + W(5', j; k, k') (12G21)
maxj g W(i,j — Lk, k" — 1)+ W(j', j;k',1) (12G12)
maxy p W(i, 53 +1,1' = 1) + W(k,k';1',1) (1G212)
maxy ;o Wi, — 1 +1,5) + W(i',j' k1) (12162).

It is easy to check that W (1,]S|) is the maximal number of base pairs in a
R&E structure of S, because the recursions perform the same decompositions
as the original R&E recursions. Note that W (i, j; k,1) is the maximal number
of base pairs in structures with at least one base pair that spans the gap. We
label each recursion case in a way that illustrates the type of the decomposition
of this case. The idea of these labels is taken from MOohl et al. [15], where we
developed a type system for decompositions, which there are called splits. For
this reason, we call these labels split types, however, we won’t need any details
of the typing system. The decomposition by R&E is illustrated in Figure 2.

A fragment is defined as a set of positions of the fixed sequence S. The
fragments corresponding to matrix entries in the R&FE recursion can be de-
scribed conveniently by their boundaries. We distinguish ungapped fragments
F ={i,...,j}, written (¢,7), and I-gap fragments F' = {i,...,j} U{k,... 1},
written (i, j; k,1) where i, j, k, [, are called boundaries of respective F or F/. A
split of a fragment F is a tuple (F}, Fy) such that F' = Fy U Fy and Fy N Fy = (.

1'2G62 12'Gl1 162'1

Fig. 2. Decomposition for R&E base pair maximization annotated with labels, i.e. split
types, of the corresponding recursion cases.

For our sparsification approach, we will show that in each recursion case,
certain optimally decomposable fragments do not have to be considered for com-
puting an optimal solution, because each decomposition using these fragments
can be replaced by a decomposition using a smaller fragment. We define optimal
decomposability with respect to the split type of a R&E recursion case.

Definition 2 (Optimally decomposable). A fragment F is optimally de-
composable by a split of type T' (T-OD) iff there is a split (Fy, Fy) that occurs
in recursion case T and W (Fy) + W (Fy) > W(F).

A fragment F is optimally decomposable w.r.t a set of split types 7 (7-OD)
iff Fis T-OD for someT € T.

Here, we emphasize that testing 7-OD for a fragment F' is simple in a run of
the DP algorithm. After evaluating the case T in the computation of W (F'), one
compares the maximum of the case to W (F'). For example, a fragment (4, j; k,)
is 12G21-OD iff W (i, j; k,1) = maxjr p W (i, j' — L;K' + 1,1) + W(5', j: k. K').

In the following we show that for the maximization in a recursion case T', we
do not need to consider T’-OD fragments as second fragment of the split, where
T’ is from a T-specific set of split types. As an example consider the recursion
case 12G21, which splits fragments (i, j; k,1) into Fy = (¢,5' — 1;k" + 1,1) and
Fy = (§',4; k,k'). Assume that Fy is 12G21-OD. Then we can show that every
evaluation of W (F') where W (F) = W (Fy) + W (F3) can be replaced by another
at least equally good evaluation that splits F' into F| and Fj C F5, where F} is
the second fragment in the 12G21-split of F5. However, note that the argument
is split type specific and cannot be applied e.g. when F5 is 12G12-OD.

For sparsifying R&E, we define the following sets of split types.

775 = {12} T, = {1262,12G1,1G21}
771%(;1 = 7?512 = T1R(§21 = {12} 7?;62 = {12G2}
TE.0 = {1262,1G12,12G21} T, = {1262, 1G21,12G12}
T, = {1261,1G21,12G21} T . = {1262, 1261, 12162}

These sets are defined such that in a recursion case T, whenever the second
fragment of a split (F}, F») of F' can be optimally decomposed by a split of a type
in 77, a different split (F], F3) of type T can be applied to F', where Fy C Fb.
As we show later, this split will be just as good as (Fy, F3) for computing W (F).
Then, one systematically obtains sparsified recursion equations W' (i, j) and
W'(i,j; k,1) from the equations for W (i, j) and W (i, j; k,) by replacing symbol
W by W’ and modifying them in the following way. For each case T in the
recursion of W (i,) and W (i, j; k,l) that maximizes over W (Fy) + W (Fy) for
respective splits of the fragment F' = (i, j) or F' = (4, j; k, 1), maximize only over
fragments F, that are not 77°-OD. In an algorithm that evaluates the sparsified
recursion, such non-77"-OD fragments correspond to entries of candidate lists.
For example, case 12G21 of W is modified in the equation for W’(i, j; k,1) to

max W', =LK +1,0)+W'(§, j; k, k') (12621 of W?).
3K, (5'.3kk") not T, -OD

Theorem 1. Let W be the matriz of the REE recursion and W' its sparsified
variant, then W (1,|S|) = W’(1,15]).

Proof. We show for all 1 < i,j,k,1 <|S|, W(i,j) = W'(i,7) and W(i,j; k,1) =
W'(i,j; k,1). First note that it holds that W (i,5) > W'(4,5) and W (4, j;k,1) >
W'(i,j; k,1). The claim is shown by induction on the fragment size and a case
distinction over recursion cases. For the case of split type 12, we show that

maXW(iaj/_1)+W(j/7j): max W’(i,j/—l)—I—W/(j/,j).

7’ 3’5 (3".4) not Tj5-OD

Let (j',7) be 12-OD for some j' : ¢ < j/ < j. By IH, it suffices to find a
(smaller) fragment (5", 7), where j” > j and W (4, 5" — 1)+ W (5", j) > W (i, —
1)+ W(j', j). Either (j/,7) is not 12-OD or there is a j”, such that W (j’,5) =
W', 3" =1)+W (5", j) and thus W (i, ;" = 1)+ W (5", j) = W(i,j' = 1)+ W (j’, j)
because

W(iaj” - 1) + W(j//aj) zA-incq W(Zajl - 1) + W(jlaj// - 1) + W(j//aj)
=12.0p W(i,j' = 1) + W(j', 7).

The triangle inequality (A-ineq) is an immediate consequence of the correctness
of the recursion for W. Thus, for the decompositions of all recursion cases there
holds such a corresponding inequation. Analogous arguments can be given for
all other modified recursion cases. Exemplarily, we elaborate the argument for
the complex case 12G21. Let F} = (4,5’ — 1; k' + 1,1) and F, = (5, j; k, k'), such
that (Fy, Fy) is a split of type 12G21 of (4, j; k, k). We need to show for all 7%~
OD fragments F, there are non-empty ungapped or 1-gap fragments F| and Fj,
where F{ U F} = F5, F{ N F} =0, and W(Fy U F]) + W(F3) > W(Fy) + W(Fy)
and the split (F} U FY], Fy) occurs in a recursion case of R&E. Again, either F is
not 7£.,,-OD or one of the following cases applies. Case 1 (12G2): for some j”,
W', gk, k) =W, j" — 1)+ W(5",j; k, k). Then, the claim holds for F]| =
(4,7 = 1) and Fj = (5", j; k, k') by triangle inequality and split (Fy U FY, F3)
occurs in recursion case 12G21. Case 2 (2G21): for some k", W(j',j; k, k') =

W', 5k, k") + W(E" + 1,k"). The claim holds for F} = (j/,j;k,k”). Case 3
(12621): for some j", K", W (i, ji k. ') = W(j', "~ L; k" +1, K)+ W (", j; k, k).
Again, this satisfies the claim by triangle inequality. O

Algorithm The recursion equation W' tailors a sparsified dynamic program-
ming algorithm for the evaluation of W'(1,|S|) with very limited overhead. We
maintain separate candidate lists for each sparsified recursion case. As already
mentioned, the T-OD properties of each fragment F' can be easily checked af-
ter evaluation of each case of W(F'). A fragment is added to a candidate list
for recursion case T' iff it is not 77"-OD. The maximizations are restricted to
run only over the candidates in the respective candidate list. Their intended use
dictates the exact nature of such candidate lists. For a case T, which splits a
fragments T into T} and T3, there are candidate lists for all boundaries of a frag-
ment T that are not adjacent to boundaries of T} due to split type T'. The list
entries are tuples of the adjacent boundaries and the fragment score for T5. In
order to profit from a reduced number of candidates in space, we maintain two
three-dimensional slices of the matrix for W (i, j; k, 1), storing entries only for the
current ¢ and i + 1. Scores W (i, j; k,) for larger i are stored for candidates only.

R&E Free Energy Minimization Sparsification is analogously applied to the en-
ergy minimizing R&E algorithm. This algorithm distinguishes several additional
matrices that contain minimal energies for fragments (¢, j) or (i, j; k, [) under the
condition that respectively the base pair (4, j) or base pairs (¢,1) and (7, k) or one
of them exist. Almost all decompositions in the recursion for these matrices are
of discussed split types and are sparsified analogously. The only notable excep-
tion is due to internal loops. Internal loops require minimizing over all possible
positions of the inner loop base pair, where commonly the loop size is restricted
by a constant K such that minimizing takes constant time. However, handling
inner loops requires access to entries of non-candidate fragments (¢, j'; k’,1") for
1 <1’ < i+ K+2. This is handled by maintaining matrix slices for i to 7 + K + 2
in O(n3) space, which preserves total space complexity.

Complexity Analysis The described algorithm profits from sparsification in time
and space. Compared to O(n%) time and O(n*) space of the unsparsified algo-
rithm (for n = |S]), we obtain complexities in the number of candidates. Let Zr
denote the maximal length of a candidate lists for case T" and Z denote the total
number of entries in all lists. Then, the time complexity is O(n?(Z1a + Z1212) +
n*(Zisea + Ziogt + Zicor + Zigra + Ziseor + Ziseia + Zig212 + Zi2162)) and space
Complexity is O(n3 + Z) In the worst case, Z127 Zi2G25 Z12G1; ZlG21 and Z1(;12
are O(Tl), 212G21, Zig(;lg, Z1G212, Z121G2 are O(n2), and 21212 is O(TLS), ﬁnally Z
is O(n*) in the worst case.

4 Experimental Results

In order to evaluate the effect of sparsification on pseudoknotted RNA sec-
ondary structure prediction, we implemented original and sparsified variants
of the Reeder and Giegerich (R&G) algorithm.

500 5 v
a) b)

400 4
—_ o
2 300 3 3
2 @
£ 2
2 B original @n
£ 200 omna 2
H @ sparsified
]
«

100 1 w-

0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Sequence length Sequence length

Fig. 3. Running times of the original and sparsified variants of the R&G algorithm.

Data Set We obtained all RNA sequences from PseudoBase[20], which are known
to have some pseudoknots in their secondary structures. This set contains 294 se-
quences that their length is distributed between 76nt and 93399nt. We randomly
divided all long sequences into subsequences shorter than 1000nt. Therefore the
data set that we used in our experiments contains 1563 sequences with length
between 76nt and 1000nt.

Performance We applied both variants of the R&G algorithm to our data set.
Fig. 3 shows the running time of the algorithms on a server with Intel Core Duo
CPU at 2.53GHz and 4GB RAM. The results in Fig. 3 show that sparsification
significantly improves the running time of the R&G algorithm. As the RNA
sequences get longer, the relative performance of the sparsified algorithm (with
respect to the non-sparsified ones) improves. Fig. 3.(b) shows the speedup of the
sparsified algorithm, which fits well to a linear regression (R? = 0.84).

Number of candidates For a better understanding of the effect of sparsification on
the R&G algorithm, we measured the number of (i, j') pairs which are checked
in each fragment [i, j] in both original and sparsified variants of the algorithm.
Note that the number of (', j') pairs is in order of O((j —)?) in the worst case.
Fig. 4 shows the average number of (i’, j') pairs on fragments of equal length
which are checked by the two variants of the algorithm. As expected, this amount
is significantly smaller for the sparsified algorithm compared to the original one.
Moreover, we observe that as the fragments get longer, the difference between
the average number of (i/,j’) pairs in the sparsified and the original algorithm
increases. We define the work load per each fragment [i,j] as the number of
candidate (i',j’) pairs. Figure 4(b), shows a significant reduction of the work
load in the sparsified algorithms. As it can be seen for subsequences of length
1000nt, the work load by the sparsified algorithm is reduced by a factor of about
10 compared to the original algorithm. Note that the work load reduction at
fragment length 1000nt does not yield the same speedup for sequences of length
1000nt (here this speedup is about 3.5, confer Fig.3(b)), because for a sequence
of length n, all fragments of smaller length are processed by the algorithm.

a) 200000 b) 12

8 160000 & 10
3] 8
k] 5] 8
<4 S
§ 120000 g
o o 6
Iy g " original 3
€ 80000 . = sparsified x
=3 > o 4
1=
S =
o
© 40000
[} 2
>
< ——
--=
0 —esanstbttin s g = = = 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Fragment length Fragment length

Fig. 4. Average number of (¢’,j’) candidates in the original and sparsified variants of
the R&G algorithm.

5 Conclusion

The presented work gives two examples for sparsification in the context of gap
fragments and a complex recursion structure. Since we successfully sparsified
the fastest and the most complex pseudoknot structure prediction algorithm for
RNA, it is likely that all other DP-based pseudoknot-algorithm can be sparsified.
Thus, the paper motivates further generalization of sparsification for systematic
application to complex DP-algorithms as RNA structure prediction algorithms.
Even more, by providing detailed examples the paper directly prepares such
generalization. Our results from an implementation of the sparsified Reeder and
Giegerich algorithm show a significant, presumably even linear, expected work
load reduction due to sparsification.

Acknowledgments This work is partially supported by DFG grants WI 3628/1-1
and BA 2168/3-1 R. Salari was supported by SFU-CTEF funded Bioinformatics
for Combating Infectious Diseases Project co-lead by Sahinalp. S.C. Sahinalp
was supported by MITACS, NSERC, the CRC program and the Michael Smith
Foundation for Health Research.

References

1. Sharp, P.A.: The centrality of RNA. Cell 136(4) (2009) 577-80

2. Amaral, P.P., Dinger, M.E., Mercer, T.R., Mattick, J.S.: The eukaryotic genome
as an RNA machine. Science 319(5871) (2008) 1787-9

3. Washietl, S., Pedersen, J.S., Korbel, J.O., Stocsits, C., Gruber, A.R., Hackermuller,
J., Hertel, J., Lindemeyer, M., Reiche, K., Tanzer, A., Ucla, C., Wyss, C., An-
tonarakis, S.E., Denoeud, F., Lagarde, J., Drenkow, J., Kapranov, P., Gingeras,
T.R., Guigo, R., Snyder, M., Gerstein, M.B., Reymond, A., Hofacker, I.L., Stadler,
P.F.: Structured RNAs in the ENCODE selected regions of the human genome.
Genome Res 17(6) (2007) 852-64

4. Mattick, J.S., Makunin, I.V.: Non-coding RNA. Hum Mol Genet 15 Spec No 1
(2006) R17-29

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions.
PLoS Biol 3(6) (2005) €213

Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and
statistics of pseudoknots in RNA structures using exactly clustered stochastic sim-
ulations. Proc. Natl. Acad. Sci. USA 100(26) (2003) 15310-5

Lyngso, R.B., Pedersen, C.N.S.: Pseudoknots in RNA secondary structures. In:
Proc. of the Fourth Annual International Conferences on Computational Molecular
Biology (RECOMB’00), ACM Press (2000) BRICS Report Series RS-00-1.

Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure
prediction including pseudoknots. Journal of Molecular Biology 285(5) (1999)
2053-68

Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars
for RNA structure prediction. Theoretical Computer Science 210 (1999) 277 — 303
Paper as Print Copy.

Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Applied Mathematics 104 (2000) 45-62
Deogun, J.S., Donis, R., Komina, O., Ma, F.: RNA secondary structure prediction
with simple pseudoknots. In: APBC ’04: Proceedings of the second conference on
Asia-Pacific bioinformatics, Darlinghurst, Australia, Australia, Australian Com-
puter Society, Inc. (2004) 239-246

Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary
structure including pseudoknots. J Comput Chem 24(13) (2003) 166477
Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical
pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5
(2004) 104

Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseu-
doknotted structures. Theoretical Computer Science 320(1) (2004) 35-50

Mohl, M., Will, S., Backofen, R.: Lifting prediction to alignment of RNA pseudo-
knots. Journal of Computational Biology (2010) Accepted.

Wexler, Y., Zilberstein, C.B.Z., Ziv-Ukelson, M.: A study of accessible motifs and
rna folding complexity. In Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A.,
Waterman, M.S.; eds.: Proc. of the Tenth Annual International Conferences on
Computational Molecular Biology (RECOMB’06). Volume 3909 of Lecture Notes
in Computer Science., Springer (2006) 473-487

Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and
space efficient algorithms. In Kucherov, G., Ukkonen, E., eds.: Proc. 20th Symp.
Combinatorial Pattern Matching. Volume 5577 of LNCS., Springer (2009) 249-262
Ziv-Ukelson, M., Gat-Viks, 1., Wexler, Y., Shamir, R.: A faster algorithm for RNA
co-folding. In Crandall, K.A., Lagergren, J., eds.: WABI 2008. Volume 5251 of
Lecture Notes in Computer Science., Springer (2008) 174-185

Salari, R., Mohl, M., Will, S.; Sahinalp, S.C., Backofen, R.: Time and space efficient
RNA-RNA interaction prediction via sparse folding. In: Proc. of RECOMB 2010.
(2010) Accepted.

van Batenburg, F.H., Gultyaev, A.P., Pleij, C.W., Ng, J., Oliehoek, J.: Pseudobase:
a database with RNA pseudoknots. Nucleic Acids Research 28(1) (2000) 2014

