ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

Progress Towards Graph Optimization: Efficient
Learning of Vector to Graph Space Mappings

Stefan Mautner! and Rolf Backofen!, Fabrizio Costa? *

1- Albert-Ludwigs-University Freiburg - Department of Computer Science
Georges-Koehler-Allee 106 - 79110 Freiburg - Germany

2- University of Exeter - Department of Computer Science
Exeter EX4 4QF - United Kingdom

Abstract.  Optimization in vector space domains is well understood.
However, in high dimensional settings or when dealing with structured
data such as sequences and graphs, optimization becomes difficult. A
possible strategy is to map graphs to vector codes and use machine learning
to learn a map from codes back to graphs. This in turn allows to employ
standard optimization techniques over vectors to optimize graphs. Here we
propose an approach to invert a vector mapping based on a combination
of graph kernels and graph grammars. We evaluate the proposed approach
in an artificial setup and on real molecular graphs.

1 Introduction

Graphs offer a natural and compact way to encode relational information as
domain experts find it intuitive to describe problems in their field of expertise in
terms of entities (nodes) and relations between entities (edges) and encode both
qualitative and quantitative knowledge using categorical or numerical labels. In
the traditional optimization setup, the desired objective is known and an efficient
procedure exist to compute it. However there are several types of scenarios
that significantly increase the difficulty of the optimization problem, ranging
from a large number of variables, to many simultaneous objectives, to high
computational costs (e.g. when the objective is measured using simulators or
real experiments). Optimization problems over the domain of graphs incur in two
additional types of difficulties: the first is the mutable state of nodes and edges,
the second is the complexity of the graph domain. When problem instances
have non mutable structure (i.e. only labels change, but not nodes and edges)
one can resort to standard optimization techniques over the vectorized sequence
of attributes; when both nodes and edges can change one must resort to non-
standard combinatorial approaches. The complexity is then depending on the
connectivity density and the size of the labels alphabet or if the labels are over
the real field.

Recently a novel stream of machine learning concerned with generating com-
plex artifacts (see for example the Constructive Machine Learning Workshop se-
ries) which falls mostly in the mutable, low degree, no real valued attributes case,
of which drug design is a prototypical example. While bespoke computational

*This project was funded by Deutsche Forschungs Gesellschaft (DFG grant BA 2168/3-3)

287



ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

approaches to drug design date back to the 50s [I] and have a long tradition in
chemoinformatics, the idea of treating the problem as an instance of a more gen-
eral graph optimization problem has recently gained more attention, due in part
to the application of deep learning techniques [2]. Some approaches [3] try to
encode the molecules as strings (SMILES), other [4] use reinforcement learning
to design molecules that optimize desired properties. Most approaches face the
encoding-decoding problem, i.e. the need to encode graphs as vectors, perform
changes in this space and then decode the result back to the graph space. Much
effort is placed in trying to develop techniques that are end-to-end differentiable
to fully leverage the potential offered by deep network approaches. Our idea is
instead to map graphs to vector codes in very high dimensional spaces and use a
multi-objective optimization scheme to learn a map from codes back to graphs.
In this way we will be able to employ standard and well tested techniques, such
as Bayesian Optimization, to perform graph optimization. Here we study the
first step of this program and propose an approach to invert a vector mapping
based on a combination of graph kernels and graph grammars.

2 Methods

Given a procedure to vectorize graphs, that is, a map from graphs to points in
a vector space, possibly of a very high dimensionality, our objective is to invert
such map and go from any point in the vector space, back to the corresponding
graph. We make the following observations.

High dimensionality. Due to the curse-of-dimensionality it can be difficult
to gauge distances, i.e. to ascertain if a given numerical value represents a large
distance from the desired solution or if we are in fact reasonably close.

Manifold linearity violation. We cannot assume that the vectorization
procedure will be capable to obtain a linear manifold, that is, that the geometric
average of the codes assigned to two graphs G4, Gp will correspond to the code
of the “average graph”, where the meaning of average could be for example that
it has the same edit-distance from both G4 and Gp.

Domain bias. Knowing that a graph has a desired distance from other
graphs could not be enough in practice. Consider the following case: we are
looking for the average graph and we select a subgraph G¢ that is in common
between two graphs G4, Gp of size m, with, say, half the size |G¢| = m/2; in
this scenario G¢ is the average graph between G4 and G g but it is unlikely to
be what we want (it does not seem to belong to the same population given its
smaller size, it is just a fragment, not a whole instance). If we enforce a size
constraint we still have to define how to up-size the graph. The answer would
be a form of domain bias.

To address these issues we propose the following approach: given a code
vector x we extract from a set of example graphs two sets of neighbours: a
smaller set ¢ that we call landmarks, and a larger set k. The neighbors are
obtained by first mapping graphs to high dimensional vector spaces and then
performing the neighbor search in this space. We then cast the inverse mapping

288



ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

problem in a multi objective optimization problem with three objectives: 1)
minimize the distance discrepancy with respect to ¢ neighbors; 2) minimize the
size discrepancy to the ¢ neighbors and 3) maximize the ranking score of k
neighbors. Objective 1) allows us to gauge distances w.r.t. the landmarks,
objective 2) forces the solution to have roughly the same size as the average
landmark and objective 3) accounts for the domain bias, since the score is a
function of all the k neighbors and can capture dependencies on an extended set
of features.

To address the manifold linearity problem we perform the search operations
in the graph space, that is, we start from the landmark graphs and we iteratively
modify them to obtain intermediate solutions that are always feasible. The
feasibility is ensured by using a grammar to generate the candidates for the
search that is induced on the local neighborhood of size k.

In summary, to build a graph corresponding to a given target point in a
vector space we 1) start from a set of graphs whose code is close to the target,
2) use a graph grammar to perform a local search and we 3) optimize the result
according to a multi objective score.

2.1 Graph Vectorization

To map graphs to vector spaces we make use of the graph kernel developed in [5],
called Neighborhood Subgraph Pairwise Distance Kernel (NSPDK). The idea is
to decompose a graph into small parts (i.e. subgraphs of a pre-defined type)
and use them as features, that is create a high dimensional vector representa-
tion where each feature is associated to a subgraph and the associated value
represents the number of times that the subgraph occurs in the graph instance.
In NSPDK the subgraphs are built from small neighborhoods of increasing radii
7 < Tmaz (1.e. graphs induced by all nodes that are connected to a root vertex
by a shortest path of at most r edges). Finally, all pairs of such subgraphs whose
roots are at a distance not greater than d < d,,,, are considered as individual
features. In a graph with n nodes, the number of features is proportional (with
small multiplicative factor that depends on 7,4, and dy,q.) to n. This allows us
to use a hashing scheme to map these features to integers and use these directly
as feature indicators (see [6] for details). While the domain of the possible fea-
ture indicators is large (10%), every single graph will have only a few hundreds
non zero features. Using a sparse vector encoding allows us to obtain efficient
storage and low run times.

2.2 Graph Grammar

A graph grammar is a generative device that can model a family of graphs via
a finite set of production rules, i.e. instructions that prescribe how to build a
derived graph starting from an original graph. Using a graph grammar we will
generate a number of perturbed versions of any given graph, we then evaluate
them to find the modified version that better fits our objective functions. The
rules can be automatically induced from a dataset and ensure that the gener-

289



ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

ated graphs belong to the same “type”, i.e. that they respect the feasibility
constraints implicit in the defining dataset.

We use the Locally Substitutable Graph Grammar (LSGG) defined in [6].
The grammar is characterized by core graphs and interface graphs. Given a
node v, a core graph is simply a neighborhood graph of radius R (also called
the core size) rooted in v. An interface graph is the difference graph of two
neighborhood graphs with the same root and different radii. The value of the
difference between the radii is the interface size. The generation rules allow to
swap cores provided that they are associated to the same interface or context.

2.3 Objective Functions

We consider three objectives.

The first objective function minimizes the distance discrepancy to the ¢ land-
mark graphs g; with ¢ € 1,...,¢. Given a target code x we compute the dis-
tances d; from each landmark. Given a candidate graph g to score, we vectorize
g and calculate the distances d to the landmarks. The first objective is then
fHg) = %Ziel,‘..,é |d; — dj].

The second objective function minimizes the size discrepancy with respect

to the n neighbors, i.e. f2(g) = ||g| — %Zzeln lgill-
For the third objective we induce a Ranking SVM [7] on the k neighbors.

2.4 Optimization

We employ a simple greedy strategy: given the multiple objectives, we maintain
the Pareto set of the non dominated solutions (i.e. the set of all solutions that
are not outperformed on all objectives by another solution). We proceed in an
iterative fashion and sample instances (graphs) from the Pareto set and from a
separate set of instances that optimize each objective individually. For each of
the sampled graphs we generate the set of all possible perturbed graphs employ-
ing the graph grammar. Each candidate graph is then scored by all objective
functions and the Pareto set is updated, removing all graphs that are dominated
on all objectives by other graphs in the set. The procedure is repeated until a
perfect reconstruction is obtained (i.e. f!(g) = 0) or when a maximal number
of iteration is reached.

3 Empirical evaluation

Artificial Grammar: We evaluate the efficiency of the proposed approach
on an artificial dataset, i.e. a set generated by sampling a pre-specified graph
grammar. We generate 30 random graphs with 8 vertices, with a maximum
vertex degree of 3, and a node (edge) label dictionary size of 4 (2). We induce the
LSGG (i.e. we collect all pairs of cores and corresponding interfaces). Starting
from each initial graph we apply all possible grammar production rules, remove
duplicates, select at random 550 instances. We repeat this procedure three times
obtaining graphs that are progressively more diverse. We use 500 instances for

290



ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

the training set and the remaining 50 as targets. For each target graph we
extract 10 landmarks and 50 neighbors from the training set. We induce the
graph grammar on the 50 neighbors and we run our optimization procedure. We
measure the fraction of times that we can perfectly reconstruct the target (which
is quite a stringent requirement). Table [1| shows the success rate for different
parameters of the grammar. Note that limiting the cores to size 0 (i.e. allowing
to change only a single node label at each move) degrades the performances.
Larger cores allow a richer set of moves, and the capacity to change the size of
the graph (e.g. replacing a small core with a larger one expands the size of the
graph). Larger interface size create very specific substitution rules that model
well the domain constraints but can hinder the search. Note that limiting the
grammar to the closest 50 neighbors allows to sample more than 70% of the true
grammar and it is therefore not a severely limiting factor in the overall design.

C|I | R PubChem AID | I=1 I1=2

2 | .5 .62(31) AID119 .85 (17) | .75 (15)

2 |1 | .60 (30) ATD1345082 .45 (9) .85 (17)

2 |2 |.20(10) ATD624202 .80 (16) | .75 (15)

1 1.51].62(31) AID977611 .70 (14) | .55 (11)
1|1 | .42(21)

12 |.10(5) Table 2: Fraction of successful recon-
0 [.5].04(2 structions out of 20 chemical compounds
0|1 |.04(2 selected at random as targets. I is the
0 |2 |.00(0) interface size. The core size was 3. The

number in parenthesis is the number of
Table 1: Fraction of successful recon- perfectly reconstructed graphs.
structions out of 50 graph generated

at random from a grammar. C is the

core size, I is the interface size. The

number in parenthesis is the number

of perfectly reconstructed graphs.

The hyper parameters of the proposed approach include the graph vectorizer
radius 7 and distance d, the graph grammar core C' and interface I, size and
the optimization procedure number of landmarks ¢ and number of neighbors
n. The optimized values, obtained under cross-validation, are r = 3, d = 3,
¢ € [10,20], n € [50,100]. The number of neighbors n affects the total number
of grammar rules extracted and hence the complexity of the searched space and
the run time, going from 18 minutes for n = 75 to 39 minutes for n = 400. A
Python implementation is available from |github.com/smautner/reconstruct.

Chemical compounds: We queried the PubChem repository to extract
4 bio assays containing more than 5000 active compounds with the keyword
“cancer”. Molecular graphs are on average 3 times larger than the examples
generated in the artificial setup (12.5 vs 30 nodes on average) and thus compu-
tationally more challenging. To better capture entire cycles (a feature known to
be important when predicting chemical properties) we increased the core radius.

291


 github.com/smautner/reconstruct

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

To limit the number of possible rule applications we selected rules that occurred
at least twice in the 50 neighbors. We investigate two settings in table |2l The
interface size 2 version is only slightly worse but completes all runs on 32Gb of
memory while the interface size 1 version performs better as one would expect,
but even on 128Gb of memory, 25 construction attempts out of 80 failed running
out of memory.

4 Conclusions

We have exhibited a procedure that can learn how to perfectly reconstruct more
than 70% of the test graphs once given their corresponding vector code and
information on relatively few instances in their neighborhood.

As described in the Introduction, this routine is a useful step in the formu-
lation of a more ambitious generalized graph Bayesian optimization procedure
and hence it represent significant progress towards its development.

In the future we will analyze the dependency between the quality of the
reconstruction and the graph grammar parameters and we will extended the
approach to tackle more challenging graph types, i.e. graphs with larger label
dictionaries and with real valued attributes.

References

[1] Markus Hartenfeller and Gisbert Schneider. Enabling future drug discovery
by de novo design. Wiley Interdisciplinary Reviews: Computational Molecu-
lar Science, 1(5):742-759, 2011.

[2] Peter Ertl, Richard Lewis, Eric Martin, and Valery Polyakov. In silico gen-
eration of novel, drug-like chemical matter using the lstm neural network.
arXiv preprint arXiw:1712.07449, 2017.

[3] Matt J Kusner, Brooks Paige, and José Miguel Herndndez-Lobato. Grammar
variational autoencoder. arXiv preprint arXiv:1703.01925, 2017.

[4] J. You, B. Liu, R. Ying, V. Pande, and J. Leskovec. Graph Convolutional
Policy Network for Goal-Directed Molecular Graph Generation. ArXiv e-
prints, June 2018.

[6] Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise
distance kernel. In Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, pages 255-262. Omnipress, 2010.

[6] Fabrizio Costa. Learning an efficient constructive sampler for graphs. Artif.
Intell., 2017.

[7] Thorsten Joachims. Optimizing search engines using clickthrough data. In
Proceedings of the eighth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 133-142. ACM, 2002.

292



	Introduction
	Methods
	Graph Vectorization
	Graph Grammar
	Objective Functions
	Optimization

	Empirical evaluation
	Conclusions



