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Abstract

Motivation: CRISPR-Cas are important systems found in most archaeal and many bacterial genomes, providing
adaptive immunity against mobile genetic elements in prokaryotes. The CRISPR-Cas systems are encoded by a set
of consecutive cas genes, here termed cassette. The identification of cassette boundaries is key for finding cassettes
in CRISPR research field. This is often carried out by using Hidden Markov Models and manual annotation. In this
article, we propose the first method able to automatically define the cassette boundaries. In addition, we present a
Cas-type predictive model used by the method to assign each gene located in the region defined by a cassette’s
boundaries a Cas label from a set of pre-defined Cas types. Furthermore, the proposed method can detect potential-
ly new cas genes and decompose a cassette into its modules.

Results: We evaluate the predictive performance of our proposed method on data collected from the two most re-
cent CRISPR classification studies. In our experiments, we obtain an average similarity of 0.86 between the predicted
and expected cassettes. Besides, we achieve F-scores above 0.9 for the classification of cas genes of known types
and 0.73 for the unknown ones. Finally, we conduct two additional study cases, where we investigate the occurrence
of potentially new cas genes and the occurrence of module exchange between different genomes.

Availability and implementation: https://github.com/BackofenLab/Casboundary.

Contact: alkhanbo@informatik.uni-freiburg.de or backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Prokaryotes face tremendous evolutionary pressures from viral pred-
ators, such as bacteriophages, which are responsible for eradicating
almost half of the earth’s bacterial population each day (Suttle,
2016). This constant threat has been hypothesized to comprise the
single most important driver of the planet life evolution (Koonin
et al., 2020). Bacteria and archaea face an enormous incentive to de-
fend themselves against viral invaders by evolving defense systems,
some of which are innate and others adaptive. Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPRs) constitute one
such nucleic acid based adaptive immune system, which functions
through three distinct stages: acquisition, processing and interfer-
ence. Upon a naive infection, a piece of viral nucleic acid is incorpo-
rated as a spacer between the repeats of the CRISPR locus on the
host chromosome during its acquisition. The whole CRISPR locus,

which includes memories from dozens of past viral infections, is
transcribed into a long piece of RNA that is processed into small
mature CRISPR RNAs (crRNAs), each corresponding to a different
acquired viral epitope. crRNAs are loaded onto the Cas (Crispr
ASsociated) interference complex, which then scans all intracellular
nucleic acid for a matching nucleotide sequence, in which case the
target nucleic acid is cleaved, effectively protecting the cell from re-
infection by any virus for which a matching spacer exists.

Bacteriophages and archaeal viruses evade CRISPR immunity by
several mechanisms. Known mechanisms include direct mutations
of the nucleic acid such that it is no longer targeted by the host
(Horvath et al., 2008), or the evolution of small anti-CRISPR pro-
teins. These proteins interfere with the proper function of the Cas
proteins that mediate CRISPR immunity by either clogging catalytic
sites or preventing complex assembly. Hosts evade such anti-
CRISPR immunity by carrying several distantly related CRISPR-Cas
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systems at once, and by frequently exchanging their CRISPR-Cas
systems for different ones through horizontal gene transfer. This dy-
namic has driven the diversification of CRISPR-Cas systems into six
types that are further subdivided into 33 subtypes (Makarova et al.,
2020), each with its own evolutionary trajectory. Corresponding
Cas protein subunits from two different hosts, even when belonging
to the same subtype, can have sequences so distant that they are
unalignable despite sharing the same underlying protein structure.
Such extreme diversification is caused by Cas proteins mutating in
order to avoid being inactivated by phage anti-CRISPRs. The rapid
evolution of CRISPR-Cas systems makes their detection difficulty in
metagenomic sequences of uncultured bacteria and archaea, because
none of the existing known CRISPR-Cas systems in completely
sequenced genomes is a close enough match. Although the new Cas
proteins are structurally similar to known Cas proteins, the amino
acid sequences have diverged to an extent that makes them difficult
to detect even using the most sensitive sequence alignment methods
(Remmert et al., 2012). While some Cas proteins such as Cas1 are
easy to detect due to its very conserved sequence, other proteins,
such as Cas8, are notoriously difficult to identify, owing to their
strong sequence heterogeneity. Thus, even the most modern bio-
informatics pipelines for annotation of genomic CRISPRCas loci
have difficulties in detecting all cas genes comprising a complete
CRISPR cassette.

According to comparative genomics studies of chromosomally
encoded CRISPR-Cas systems (Garrett et al., 2011; Makarova et al.,
2015; Shah et al., 2018; Vestergaard et al., 2014), these systems are
carried on genomic cassettes, which are further divided into modules
corresponding to the different functional stages of the immune re-
sponse. Cassettes, as well as modules, are normally integral, mean-
ing they have defined boundaries and are not intermixed with
foreign genes. Thus, a typical bacterium may carry several Cas cas-
settes, and each cassette can be further divided into several operons,
each corresponding to a functional module. Class 1 systems, in par-
ticular, have elaborated heteromultimeric interference complexes
typically consisting of between four and eight genes. Knowing where
the module starts and ends on the genome narrows down the possi-
bilities and is an invaluable aid in annotating the cas genes that do
not yield matches to any known Cas proteins.

Current bioinformatics pipelines for annotating cas genes treat
each gene separately, while a cassette-aware pipeline could infer the
identities of missing genes by simple exclusion (Alkhnbashi et al.,
2014, 2016, 2020; Couvin et al., 2018; Crawley et al., 2018; Lange
et al., 2013; Zhang and Ye, 2017).

In this article, we propose a new method to automatically define
the boundaries of a CRISPR cassette. The proposed method takes
into account the relation of a potential signature gene and genes that
are contained in its neighboring region. Furthermore, the method
labels the cas genes after the cassette boundaries have been defined,
being also able to indicate genes that may belong to new putative
types.

2 Materials and methods

This section introduces notation, definitions and problems
addressed in this article. Afterwards, it describes our proposed
method for cassette boundary detection and Cas type prediction in
details.

2.1 Problem statement and notations
For a given genome, let g1; . . . ; gn be all genes of the genome ordered
by its genomic location (i.e. gi is located between gi�1 and giþ1 on
the genome), and let G ¼ fgiji 2 ½1 : n�g be the set of all genes in the
genome. With Gc we denote the set of all cas genes in this genome,
and the set of all cas signature genes by Gs. Gu ¼ G Gc is the set of all
non-cas genes.

We denote Sij � G as a set of consecutive genes Sij ¼ fgi; . . . ; gjg
and the set of all its consecutive subsets as SubðSijÞ. Note that
SubðSijÞ is not exponential in size as we considering only subsets that
contain all genes in a genomic region. A consecutive subset C is

called a cassette if it contains a sufficient number of cas genes and
not too long stretches of non-cas genes. Formally, C ¼ Spq is a cas-
sette if

1. gp 2 Gc and gq 2 Gc (first and last gene is a cas gene)

2. gp�1 62 Gc and gqþ1 62 Gc (the cassette is maximal)

3. p� qþ 1 � 3 (the cassette contains at least three genes)

4. 8U 2 SubðSpqÞ : U � Gu ! jUj � 3 (each consecutive subset of

non-cas genes (called gap) is smaller than 3).

We call gp and gq lower bound and upper bound of the cassette,
respectively. A cassette is often recognized by the presence of its sig-

nature gene, gs
i . The set of all cassettes is notated as Gcs.

We formalize the problems addressed in this article as follows:

• Cassette boundary detection: in the first task, we aim at detecting

the boundary for each cassette, given its signature cas gene. For

such, we define a function fcðR; gs
i Þ that takes a potential region

R and a signature gene gs
i 2 R as its input and returns the boun-

daries of the maximal cassette Spq 2 Gcs with Spg � R and

gs
i 2 Spg.

• Cas type prediction: in the second task, we want to determine

the label for every cas gene. Formally, we define function

fl : Gc ! L [ fNg, which maps a cas gene in Gc to a label in

L [ fNg, where L is the set of known Cas labels (such as Cas1,

Cas2 etc.) and N is the label for unannotated cas genes.

2.2 Detection of cassette boundaries
In this section, we describe our proposed method for cassette bound-

ary detection implementing the function fc. Our method is based on
our assumption that the relation between a cas gene in a cassette
and its signature gene is stronger than the relation for a gene that

does not belong to that cassette. This assumption is motivated by
the common understanding that signature genes gs 2 Gs play an im-

portant role in defining the cassettes (Makarova et al., 2015, 2020)
and should be used as an anchor point in learning the cassette detec-
tion function fc. Furthermore, to simplify the problem of cassette de-

tection, we define an auxiliary function f ðgj; g
s
i Þ that is 1 (positive) if

both genes are located in the same cassette and 0 (negative) other-
wise. Thus, the first step of our method is to train a binary classifica-

tion model for this auxiliary function f. We then use this trained
model to detect cassette boundaries in a incremental manner as

follows.
First, we slide over the genome. Whenever a signature gene gs

i is

identified, a potential region, R, is defined for detecting the cassette
boundary as R ¼ Si�k;iþk, where k>0 is large enough such that the
full cassette is located inside this region. Next, the model is applied

to predict the label for every tuple ðgj; g
s
i Þ; gj 2 R starting from the

genes located next to gs
i and extending the range in a stepwise man-

ner. Finally, the boundaries p, g are predicted by Algorithm 1.

THEOREM Let R ¼ Si�k;iþk be the region around a signature gene gs
i and

Spq be the associated cassette predicted by Algorithm 1. Then

Spq ¼ fcðR; gs
i Þ.

PROOF Let fcðR; gs
i Þ ¼ Ss;t 2 Gcs. First we note that R \ Spq 6¼1 as both R

and Spq contain gs
i . To show equality, we proof by contradiction that

there are no left-handed differences. The right-handed cases are analo-

gous. Now lets assume that s< p. In this case, let r be maximal in s �
r < p � i such that gr 2 Gc, which must exists as gs 2 Gc by definition

of a cassette. Then U ¼ fgrþ1; . . . ; gp�1g � Gu by construction. As Sst is a

cassette and gr 2 Sst ^ gs
i 2 Sst, we know that f ðgr; g

s
i Þ ¼ 1 and jUj � 3.

Hence, gr would have been detected on the first loop of Algorithm 1 as it

started from position i> p and must have considered position p, which is

a contradiction.
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For the other case let’s assume p< s. Note that s must have been visited

in the first loop of Algorithm 1 as s � i. Let be gr be a cas gene with p �
r < s � i and r maximal. This must exist as gp 2 Gc by the stop condi-

tion of the first loop in Algorithm 1. Let U ¼ fgrþ1; . . . ; gs�1g. By the

first loop of Algorithm 1, we know f ðgr; g
s
i Þ ¼ 1 and jUj � 3. Thus,

Sr;t � Ss;t is a larger cassette, which is a contradiction to the maximality

of Ss;t .

Finally, we get s¼ p and analogously t¼ q, which proofs our claim.

2.3 Classification of Cas proteins
Given the boundaries of a cassette, it is important to know the type

of each cas gene in the cassette. A cas gene may belong to a set of
predefined types or to a new type (i.e. previously undefined). To cre-
ate a model able to identify the type of a cas gene, we train a multi-

class classification model whose output indicates the probabilities of
a given cas gene to belong to each Cas type. For such, we follow the

procedure for word classification proposed in Shu et al. (2017),
briefly described next:

1. We assume that the probability values of all examples gi that be-

long to each class Cj are normally distributed and centered at

lðCjÞ ¼ 1. To create the other half of the distribution, we mirror

each of these probability values around lðCjÞ (i.e. for each prob-

ability value PðCjjgiÞ associated to a training example gi, we cre-

ate the artificial point 1þ ð1� PðCjjgiÞÞ).
2. We estimate the standard deviation rðCjÞ using the obtained

probabilities and the artificial mirrored values.

3. Finally, for each class Cj, if the predicted probability for a test ex-

ample gk is below the threshold tðCjÞ ¼ maxð0:5; 1� a rðCjÞÞ, gk

is considered as an outlier for Cj. If the example is considered as

an outlier for all classes, we label it as N (unnanotated). As sug-

gested by Shu et al. (2017), we used a ¼ 3. Otherwise, if the cas

gene is not considered as an outlier, we assign to it the label with

the highest probability.

In the original paper, Shu et al. (2017) used the training exam-
ples to estimate all thresholds tðCjÞ. However, in our study, we
found out that this approach may yield overly optimistic estima-
tions. To overcome this limitation, we used instead a validation set
to estimate the thresholds.

2.4 Cassette modularization
Earlier studies (Garrett et al., 2011; Shah et al., 2011; Vestergaard
et al., 2014) have found that Cas cassettes can be subdivided into
discrete functional modules, with each module carrying out a separ-
ate function, and with its genes being spatially separate from other
modules within the cassette. Annotating the constituent modules in-
side a cassette can reveal important information in terms of the func-
tional organization of the CRISPR-Cas system. Typically, a cassette
is composed by three types of modules: adaptation, processing and
interference. The processing module typically consists of a single cas
gene, which is located either close by the interference module or far
away from the region defined by the cassette boundaries. For these
reasons, we take only the adaptation and interference modules into
account. The adaptation module contains genes that are the most
conserved across different genomes, being easy to detect. Therefore,
in the first step of our method, we want to detect the adaptation
module by searching for a sub-region containing Cas1, Cas2 and/or
Cas4. Next, the sub-regions which are adjacent to the adaptation
module will be considered as the interference modules.

In CRISPR-Cas field, a cassette can have one or more interfer-
ence modules. Based on the number of interference modules, we de-
fine cassettes with a single interference module as single cassettes
and cassettes with more than one interference modules as multi-
module cassettes. Note that the interference modules in a multi-
module cassette might be overlapped or separated.

3 Empirical evaluation

3.1 Data collection and preprocessing
We collect CRISPR data publicly available from Makarova et al.
(2015, 2020). Our dataset has 52730 Cas proteins, with 7793
CRISPR cassettes distributed into 22 different subtypes (see
Supplementary Table S1). We download the genomes from the
NCBI database and extract the Cas protein sequences by applying
the Prodigal tool v2.6.3 (Hyatt et al., 2010) on the respective gene
sequences. For each CRISPR cassette, we identify its signature gene
gs

i , the most important gene to define the cassette of interest
(Makarova et al., 2015, 2020). Next, we extract k genes down-
stream and k genes upstream to gs. Usually, the length of a CRISPR
cassette ranges from 3 to 15 genes (Makarova et al., 2015, 2020).
Thus, we set k¼50, which safely includes the full cassette in the
extracted region.

To define the features for each gene, we use three different types
of features, described as follows:

1. General HMM features: we collect all available Hidden Markov

Models (HMM) from the following public databases:

TIGRFAM (Haft, 2003), Pfam (Bateman, 2004), COG

(Tatusov, 2000) and CDD (Marchler-Bauer et al., 2011), totaliz-

ing 38847 HMMs. For each protein sequence, the features are

Algorithm 1: Detection of CRISPR boundaries.

Input:
- f : Auxiliary model,
- k: Potential region size parameter,
- R = Si−k,i+k: The potential region,
- gs

i : Signature gene.
Output: C ⊆ R: Cassette
begin

Init: r = 1, p = 0, gap = 0;
while r ≤ k and gap ≤ 3 do

if f(gi−r, gs
i ) = 1 then

p = r;
gap = 0;

else
gap = gap + 1;

end
r = r + 1;

end
Init: r = 1, q = 0, gap = 0;
while r ≤ k and gap ≤ 3 do

if f(gi+r, gs
i ) = 1 then

q = r;
gap = 0;

else
gap = gap + 1;

end
r = r + 1;

end
C = Si−p,i+q ;
if |C| < 3 then

return ∅;
end
return C;

end

Casboundary 3
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defined as the bitscores generated by each HMM. We reduce the

number of features to 500 using the Truncated Singular Value

Decomposition (Manning et al., 2009), with 60% of the original

data variance preserved.

2. Protein properties features: we calculate 12 features related to

the properties of each extracted protein, such as: molecular

weight, length, isoelectric point, number of negatively charged

residues, number of positively charged residues, extinction coef-

ficient (with and without cysteine), instability index, hydropho-

bicity and secondary structure properties (fraction of turn, sheet

and helix).

3. Specific HMM features: we build 623 HMM models for the dif-

ferent Cas protein models based on the core and signature genes

from the dataset used (Makarova et al., 2015, 2020). Since these

HMM models are more specific to the CRISPR domain, we be-

lieve that they may be better suited for the task of identifying po-

tentially new Cas types.

We create a dataset of 7793 cassettes, out of which 7687 are sin-
gle cassettes, such as those illustrated inFigure 1. Each one of the
remaining 106 cassettes, which are multi-module cassettes, can be
decomposed into two or three single cassettes whose signatures are
close in the genome. We divide these 106 cassettes into 2 subgroups:
(i) the Separated set, which contains 74 multi-module cassettes that
can be broken up into 145 single cassettes that do not overlap (e.g.
see Fig. 2a); and (ii) the Overlapped set, which contains 32 multi-
module cassettes that can be broken up into 70 single cassettes that
present some degree of overlap (e.g. see Fig. 2b).

3.2 Machine learning algorithms
Our method for cassette boundary detection requires a binary classi-
fication model, whereas the Cas type prediction demands a multi-
class classification model. In our experiments, we use two
algorithms to train them which, in addition to be known for their
good performance in several tasks, have different learning biases:

• Extremely Randomized Trees (ERT) (Geurts et al., 2006), which

is a classifier that integrates multiple decision trees in an ensem-

ble. To define the splits for each tree, this method selects, at each

step, a random subset of v features and a subset of v thresholds

(one for each feature). Afterwards, the feature that contains the

best randomly chosen threshold according to the quality criterion

is selected. After training, the class predicted for unseen examples

is defined by the majority vote of all trees.
• Deep Neural Networks (DNNs) (Goodfellow et al., 2016),

which are neural networks with a large number of layers whose

neurons’ total input is a dot product between a numeric vector

input and the neuron’s synaptic weights followed by the applica-

tion of a non-linear activation function. By using the first layers

to extract relevant features, DNNs can learn highly complex

functions. DNNs are usually computationally expensive to train.

However, with the recent advances in the computer processing

power, they have obtained the best predictive performance in a

wide range of applications (Liu et al., 2017).

3.3 Experimental setup
Two experiments are carried out to evaluate the predictive perform-
ance of the proposed method. The first assesses the ability of our
method to detect cassette boundaries. For such, we use 10-fold
cross-validation for the dataset with 7687 single cassettes, separat-
ing one of the training folds for validation, and hold-out for the
dataset with 106 multi-module cassettes. The second experiment
evaluates how well the proposed method classifies Cas proteins. In
this experiment, we employ hold-out for a dataset with 52730 Cas
proteins.

Cross-validation. We split the data into 10-folds. Before training,
we undersample the majority (negative) class, to mitigate the nega-
tive effect of data imbalance on the model training. We repeat the
experiment 10 times and report the average and standard deviation
of the performance over the 10�10 runs.

Hold-out. For the Cas type classification, we leave 20% of the
data out for testing and the remaining for training (80%) and a fifth
of the training set, for validation. To evaluate the performance for
undefined cas genes, we leave in turn one and three Cas types out of
the training and validation set to simulate undefined Cas types scen-
arios. We repeat this procedure to ensure that every Cas type is left
out once. We run the experiment 10 times. Regarding the bounda-
ries detection for multi-module cassettes, we use the 7687 single cas-
settes as a training and validation set and the 106 multi-module
cassettes as the test set.

Model selection. To tune the hyperparameters of each learning
algorithm, we employ the grid search with 32 different

Fig. 1. Examples of the structure of CRISPR cassettes: (a) single CRISPR cassette; and (b) single CRISPR cassette with a gap. The signature genes are in bold. Blue arrows are

interference genes while purple arrows are adaptation genes

Fig. 2. Examples of the structure of multi-module CRISPR cassettes: (a) multi-module cassette without overlap; and (b) multi-module cassette with overlap. The signature genes

are in bold. The blue and red arrows are interference genes, yellow arrows are processing genes and purple arrows are adaptation genes
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hyperparameter combinations. For ERT, we tune the number of
trees in f50; 100;150; 200g, the number of features randomly
selected for each split in f

ffiffiffiffi

m
p

; log2mg and the minimum number of
examples to be at a leaf node in f1;4; 7; 10g. For DNNs, we use two
hidden layers and vary their numbers of neurons in
f25; 50; 75; 100g, the Adam optimizer (Kingma and Ba, 2015) and
consider the learning rate values in f0:01; 0:001g. Concerning max-
imum gaps, we consider values between 0 and 3.

Evaluation metrics. For the evaluation of cassette boundaries de-
tection, we use the following measures:

• The Jaccard Similarity (JS), which is a popular measure for com-

paring different sets and is defined as:
• JSðCt; CpÞ ¼ jC

t\Cp j
jCt[Cp j ;

where Ct and Cp are the true and the predicted
cassette, respectively. This measure lies in the
interval ½0; 1� where 1 indicates a perfect
match.

• The Cassette Loss (CL), which is an adaptation of the mean ab-

solute error, a popular measure for the evaluation of regression

tasks. CL quantifies the gene-wise mean absolute error and is

defined as:
• CLðCt; CpÞ ¼ jp

t�pp jþjqt�qp j
2 ;

where pt (resp. pp) and qt (resp. qp) refer to
the index of the first and the last gene of the
true (resp. predicted) cassette, respectively.
This measure lies in the interval ½0;1Þ where
0 indicates a perfect match, i.e. the boundaries
of the predicted cassette are in perfect
agreement with true cassette. Intuitively, CL
denotes the average boundary deviation for
the left and right end together.

For the evaluation of the Cas protein classification, we use the F-
score with macro-averaging. Given a binary classification task
where we have a specific class of interest (positive class), the classic-
al F-score is defined as:

F� score ¼ 2TP

2TPþ FPþ FN

where TP, FP and FN correspond to the number of true positives,
false positives and false negatives, respectively. For the multiclass
scenario, the macro-averaging consists of calculating the F-score for
each individual class and reporting the average F-score as the global
performance measure. The main advantage of macro-averaging is
that it treats all classes with the same weight, independently of the
number of examples that they contain (Sokolova and Lapalme,
2009).

4 Results and discussion

In this section, we report and analyze the results obtained from our
experiments.

4.1 Detection of cassette boundaries
We report the histogram of JS and CL values for single cassette pre-
diction in Figure 3, using only the general HMM features, which
were our best results. For the histograms of other types of features,
please check our Supplementary Material (Supplementary Figs S1
and S2). From Figures 3a and c, it can be noticed that most of the JS
values are 1.0 and CL values are 0.0, indicating that our model is
able to correctly predict most of the cassettes. In addition, in
Table 1, we show the average JS and CL values that we obtained for

both single and multi-module cassettes. When comparing our results
to those achieved by CRISPRCasFinder (Couvin et al., 2018), the
closest tool to our method, it is possible to note that we achieved
around 16% of JS improvement in the best case for single cassettes.
In particular, our tool would predict cassette boundaries correctly
with a precision of roughly one position, whereas CRISPRCasFinder
would be roughly five positions away on average. Regarding multi-
module cassettes, we obtained JS values above 0.70, while
CRISPRCasFinder achieved extremely low JS values which are less
than 0.15 in both separated and overlapped cases. It confirms the su-
periority of our method over CRISPRCasFinder in the detection of
cassette boundaries. Besides, to illustrate the capability of our
method in this scenario, we present in Figure 4 an example of cas-
sette prediction for the organism Thermotoga sp. RQ2.

4.2 Classification of Cas proteins
In Figure 5, the average F-scores for Cas type prediction of our
method using a combination of specific HMMs and gene properties
features are shown. For details of the performance of the models
using different types of features, please see our Supplementary
Material (Supplementary Figs S3–S11).

Overall, our method achieved high predictive performances for
all Cas types using both ML models. More precisely, for the known
Cas types predictions most values are equal to or higher than 0.9.
Regarding the prediction of unknown Cas types, ERT and DNN
achieved average F-scores of 0.73 and 0.80, respectively. Although
the results for unknown Cas types are relatively lower than those of
known Cas types, this reduction is expected, given the difficulty of
the task for detecting new classes caused by the balancing between
the high F-scores for known classes and the ability to potentially
point out new genes. The high predictive performance of our models
shows their potential for the classification of Cas types for genes in
general and for un-predefined cas genes observed in many cassettes
in particular.

4.3 Prediction of potentially new Cas proteins
In this task, we use our method to investigate the problem of pre-
dicting (potentially) new Cas proteins, which is a typical scenario
for the analysis of novel cassettes. For such we integrated into our
method the best ML models that we obtained in the previous sec-
tion. They are able not only to integrate the knowledge extracted
from multiple HMM models and protein properties, but also to gen-
eralize the relations among those features.

First, given the cassette boundaries for a genome, we applied our
classification methods to label each protein contained in it. Then,
we analyzed the proteins that were labeled as ‘unknown’, by per-
forming a clustering search against our database. In Figure 6a, our
method labeled two proteins as potentially new. One of them pre-
sented a good degree of similarity with a few Cas8 proteins (see our
Supplementary Material, Supplementary Figs S10–S12). Since this
family is very diverse, this result suggests that it may belong to a
new Cas8 subfamily and we labeled the respective gene as ‘putative
cas8’. In Figure 6b, our method labeled two genes as potentially
new. We did not find any convincing resemblance with the proteins
we had in our database. Thus, we believe that such proteins may
represent new protein families and we label the respective genes as
‘putative new cas gene’. See the Supplementary Material for more
details.

4.4 Occurrence of exchangeable modules
CRISPR cassettes are multi-module structures which are made up of
several functional modules each responsible for their own stage of
the immune response (Vestergaard et al., 2014), including adapta-
tion, processing and interference, in addition of optional accessory
modules. The genes comprising each module within a cassette are
separated from each other into distinct operons, such that the mod-
ules themselves are integral (Shah et al., 2011). Such a structure ena-
bles differential regulation of the expression of the different immune
stages, but also enables independent horizontal transfer of a module
within a cassette without affecting the functionality of the rest of the

Casboundary 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa984/5998667 by guest on 10 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa984#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa984#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa984#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa984#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa984#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa984#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa984#supplementary-data


Table 1. Performance of our method and CRISPRcasFinder for the identification of single and multi-module cassettes in terms of JS and CL

Method Single cassettes Multi-module cassettes

Separated set Overlapped set

JS CL JS CL JS CL

ERT 0.86 6 0.01 1.09 6 0.12 0.79 1.10 0.72 1.93

DNN 0.83 6 0.01 1.39 6 0.20 0.74 1.77 0.73 2.21

CRISPRcasFinder 0.70 4.87 0.13 30.52 0.10 19.88

Note: For multi-module cassettes, the prediction quality for boundary detection drastically drops for CRISPRcasFinder, whereas our tool has similar perform-

ance to the single cassette case.

Fig. 4. Examples of our method’s cassette prediction for the organism Thermotoga sp. RQ2. Specifically, it found two cassettes composed by single interference modules, repre-

sented by the orange and green arrows, and a multi-module cassette with two interference modules (blue and red arrows) and an adaptation module (purple arrows). See

Figure S3 for more details
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Fig. 3. Histogram containing 100 equally sized bins of the Jaccard Similarity and Loss for single cassette prediction using ERT (a, b) and DNN (c, d). The inner figures are the

zoom of the corresponding outer ones without considering the most dominant bin
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immune response. There have been previous reports of CRISPR cas-
settes from related organisms having undergone such shuffling of
modules (Garrett et al., 2011), although no systematic survey has
been made. The capability of our method to define the edges of both
Cas modules and cassettes was employed on a database of bacterial
and archaeal genomes (Section 3.1) and the identities of the detected
modules were compared in order to gauge the extent of modular ex-
change in natural CRISPR-Cas systems.

All cassettes consisting of no more than a single adaptation mod-
ule and a single interference module were included in the analysis.
Adaptation modules from different cassettes were aligned against
each other in order to determine their similarity degree (see the
Supplementary Material). The subtype of each cassette was deter-
mined by looking at the interference module. Finally, for each adap-
tation module, the subtype of its closest match from a different
cassette was recorded in Supplementary Table S2.

Subtypes with a high diagonal percentage close to 100 almost
never share their adaptation module with other subtypes of interfer-
ence modules. I-E and I-F are a good examples of such subtypes, and
this observation is consistent with that fact that the adaptation and
inferencence stages are coupled in systems of these subtypes, with
Cas3 being involved in both stages (Vorontsova et al., 2015; Westra
et al., 2012). On the contrary, and consistent with earlier reports
(Garrett et al., 2011; Vestergaard et al., 2014), subtypes I-A, I-B, I-D
frequently engage in modular exchange, probably because the adapta-
tion and interference stages are independent in these subtypes
(Plagens et al., 2012). Besides, most Type III systems have been
known for long to piggyback on adaptation and processing machi-
neries of co-occurring Type I systems (Haft et al., 2005; Hale et al.,
2009; Makarova et al., 2011) because they have no such modules of
their own, explaining their particularly low diagonal percentages.
The extremely low diagonal percentage (37) found for subtype I-U

suggests very frequent modular exchange comparable to Type III sys-
tems. This result indicates that the subtype co-functions with other
CRISPR-Cas systems belonging to subtypes as I-A, I-C and Type III.
This subtype may not have specific adaptation system of its own, like
Type III systems. Given that very little experimental data exists on
subtype I-U systems, these observations still need confirmation.

4.5 Automated annotation of Cas Cassettes and

modules
We made our method available as an open source tool in GitHub. It
was implemented in Python and is based on the method that integra-
tes our best ML models. Casboundary accepts a complete or partial
genome sequence as input, identifies the potential signature genes by
using Cas-specific HMM models (Makarova et al., 2020) (see
Section 3.1), and provides a full identification of the CRISPR cas-
settes. Next, it labels the genes of the cassette and, as a post-
processing step, it can also perform the decomposition of the identi-
fied cassette into modules.

Casboundary can be easily integrated with CRISPRcasIdentifier
(Padilha et al., 2020), a recent tool for the classification of CRISPR
cassettes. Casboundary outputs a set of Fasta files containing the
identified cassettes, which can be given as input to
CRISPRcasIdentifier.cAs a next step, CRISPRcasIdentifier can clas-
sify each cassette into its respective subtype and also predict poten-
tially missing proteins in it. By integrating these tools, the users have
a complete CRISPR detection and classification pipeline.

5 Conclusion

In this article, we introduce the first method for automated cassette
boundary detection, Cas protein annotation and classification. We

Fig. 5. Comparison of Cas type prediction F-scores between our models (using a combination of the specific HMM and protein properties features) and CRISPRCasFinder. For

a comparison between the runtime of Casboundary and CRISPRCasFinder, see Supplementary Table S3

Fig. 6. Examples of the application of our method for the identification of potentially new Cas proteins, which are marked in bold. In (a), our method predicted two proteins

as ‘new’, where one of them has some similarity with Cas8 proteins and may be a new subfamily of Cas8. In (b), our method predicted two proteins as ‘new’, which do not

have any similarity to other known Cas proteins and may indicate two new genes
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apply our method on the datasets from Makarova et al. (2015,
2020), which comprise single and multi-module cassettes.
Additionally, we also present two real study cases, where we analyze
the occurrence of exchangeable models and the prediction of poten-
tially new Cas protein classes.

With respect to boundary detection, the approach followed by
our method combines the information available for different genes
and a potential signature gene of interest. In our experiments, the
method obtains promising predictive performance results as meas-
ured by the JS and CL. For single cassettes, we obtain an average JS
of 0.86 and CL below 1.09 with the best ML model. For composite
cassettes, such a model reaches average JS (resp. CL) values of 0.79
(resp. 1.10) and 0.72 (resp. 1.93) for separated and overlapped cas-
settes, respectively.

Concerning the Cas protein classification, our method is not
only able to assign the Cas type labels for known Cas proteins but
also to label a Cas protein as a potentially new type. In our experi-
ments, where we simulate the occurrence of new Cas types by leav-
ing out either 1 or 3 subtypes, our models achieve F-scores above
0.9 for known cas types. Besides, we perform a real study case where
our method is able to suggest new putative cas genes. Moreover, we
conduct another study case to analyze the occurrence of exchange-
able models in CRISPR-Cas systems. Our analysis presents evidence
of the exchange of adaptation and interference modules in different
archea and bacteria CRISPR-Cas systems.

Finally, our method is available as an open source tool in
GitHub. At each run, it loads our best ML models and allows the
user to apply all the developed methods in an easy and pragmatic
way to new CRISPR cassettes.
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