Fast Detection of Common Sequence Structure
Patterns in RNAs

Rolf Backofen and Sven Siebert

Friedrich-Schiller Universitat
{backofen,siebert}@inf.uni-jena.de
Ernst-Abbe Platz 2
07743 Jena, Germany

Abstract We developed a dynamic programming approach of comput-
ing common sequence/structure patterns between two RNAs given by
their sequence and secondary structures. Common patterns between two
RNASs are meant to share the same local sequential and structural prop-
erties. Nucleotides which are part of an RNA are linked together due
to their phosphodiester or hydrogen bonds. These bonds describe the
way how nucleotides are involved in patterns and thus delivers a bond-
preserving matching definition. Based on this definition, we are able
to compute all patterns between two RNAs in time O(nm) and space
O(nm), where n and m are the lengths of the RNAs, respectively. Our
method is useful for describing and detecting local motifs and for de-
tecting local regions of large RNAs although they do not share global
similarities. An implementation is available in C++ and can be obtained
by contacting one of the authors.

1 Introduction

RNAs are polymers consisting of the oy, hairpin loop
four nucleotides A,C,G and U which are
linked together by their phosphodiester bonds.
Bases which are part of the nucleotides form
hydrogen bonds within the same molecule
leading to structure formation. One ma-
jor challenge is to find (nearly) common
patterns in RNAs since they suggest func-
tional similarities of these molecules. For
this purpose, one has to investigate not
only sequential features, but also structural
features. Finding common RNA motifs is currently a hot topic in bioinformatics
since RNA has been identified as one of the most important research topics in
life sciences. RNA was selected as the scientific breakthrough of the year 2002
by the reader of the science journal.

Most approaches on finding RNA sequence/structure motifs are based on (lo-
cally) aligning two RNAs of lengths n. They use dynamic programming meth-
ods with a high complexity between O(n?) and O(n%) ([1], [9]). Hence, these
approaches are suited for RNAs with just moderate sizes. For that reason, we
want to use a general approach that is inspired by the DTALIGN [10] method for

Figure 1. Structure elements of an
RNA secondary structure.

multiple sequence alignments. The basic idea is to find exact patterns in large
RNAs first, and then to locally align only subsequences containing many exact
patterns by using a more complex approach like [1].

So far, the problem of finding local, exact common sequence/structure pat-
terns was unsolved. This is the problem which is considered in this paper. We can
list all patterns between two RNAs in time O(nm) and space O(nm), where n
and m are the lengths of the RN As, respectively. The key idea is a dynamic pro-
gramming method that describes secondary structures not only as base pairing
interactions but at a higher level of structure elements known as hairpin loops,
right bulges, left bulges, internal loops or multi-branched loops (see Figure 1).
The computation of RNA patterns is performed on loop regions from inside to
outside. Base-pairs which enclose loops occur in a nested fashion, i.e nested base-
pairs fulfill for any two base-pairs (i1,42) and (j1,j2) either iy < i < j1 < jo or
11 < J1 < J2 < ta.

A naive attempt is to consider all combinations
of positions i in the first RNA and positions j in the
second RNA and to extend these starting patterns by
looking at neighbouring nucleotides sharing the same
sequential and structural properties. If these proper-
Figure2. Alternative ties are fulfilled then the nucleotides are taken into
matching the pattern. At a first glance, this idea may work, but

the crucial point are the loops. Consider e.g. the case
shown in Figure 2. Suppose the algorithm starts at position 1 in the first RNA
and position 1 in the second RNA and is working towards the multiple loop in
the first RNA. The lower stem has been successfully matched. But now there is
no clear decision to match the upper part of the stem-loop of the second RNA
either to the left side or to the right side of the multiple loop. This decision
depends on how a common pattern is defined, of course, and how to reach a
maximally extended pattern. Therefore, the only solution is to make some pre-
computations of sequential and structural components of RNAs. Finally, we end
up in a dynamic programming approach which compares inner parts of RNAs
first, stores the results in different matrices and build up the solutions succes-
sively. Note, that it is also a mistake to compute common sequential parts first
and then to recompose these parts by their structural properties. This prob-
lem is obviously a computational intractable problem because of considering all
combinations of subsets of sequence parts.

Related Work: Wang et al.[13] published an algorithm for finding a largest ap-
proximately common substructure between two trees. This is an inexact pattern
matching algorithm suitable for RNA secondary structures. A survey of com-
puting similarity between RNAs with and without secondary structures until
1995 is given by Bafna et al.[2]. Gramm et al. [5] formulated the arc-preserving
problem : given two nested RNAs S; and Sz with lengths n and m (n > m),
respectively, does S; occurs in S such that S5 can be obtained by deleting bases
from S; with the property that the arcs are preserved ? This problem can not be
seen as biological motivated because the structure of Se would be found splitted

in S;. It has been shown by Jiang et al. [8] that finding the longest common
arc-preserving subsequence for arc-annotated sequences (LAPCS), where at least
one of them has crossing arc structure is MAXSNP-hard. Exact pattern match-
ing on RNAs has been done by Gendron et al. [4]. They propose a backtracking
algorithm, similar to an algorithm from Ullman [11] solving the subgraph iso-
morphism problem from graph theory. It aims at finding recurrent patterns in
one RNA.

The paper is organized as follows : In section 2, we introduce the reader
into definitions and notations of RNAs. In section 3, we define matchings be-
tween two RNAs such that they can be described by matching and matched
paths. In Section 4, a bond preserving matching is proposed which is used for
the dynamic programming matrices (section 5). The matrices are computed by
recursion equations in section 6. The pseudo code is given in section 7.

2 Definitions and Notations

An RNA is a tuple (S, P), where S is a string of length n over the alphabet
Y ={A,C,G, U} . We denote S(i) as the base at position i. P is a set of
base-pairs (i,i'), 1 < i < ¢’ < n, such that S(i) and S(i') are complementary
bases. Here, we refer to Watson-Crick base-pairs A—U and C—G, as well as
the non-standard base-pair G—U. In the following, we write ¢ —— i’ instead
of (i,i') € P meaning that the two bases S(i) and S(i’) are linked together by
a bond. For the rest of the paper, we restrict our set of base-pairs to secondary
structures holding the following property : for any two base-pairs (¢,7’) and (7, j)
either i < i’ < j < j' (independent) or i < j < j' < i’ (nested). The nestedness
condition allows us to partially order the bases of an RNA.

Definition 1 (Stacking Order). Let (S, P) be an RNA. The stacking order

of a base S(i) (abbr. as stordp(i)) is the number of bonds k —_— withk < i < l
plus one.

Hence, we are able to partition a secondary structure into structure elements
with the same stacking order. We call them loops. See e.g. Figure 1 for various
loop names. For our algorithmic approach, we have to look at neighbouring bases
belonging to the same loop. This is achieved by a function right (left) of an RNA
(S, P), with rightp(i) = j if (4, j) € P, and i + 1 otherwise. left p(i) is defined
analogously. The function right} (i) (resp. left%(i)) is a short term of applying
the right function (resp. left) to ¢ k-times. We define rbdp(z) (resp. lbdp(i))

to be true if there is a bond ¢ i’ (resp. ¢’ —_ i), false otherwise. Thus,

we can describe loops mathematically as follows. Let (S, P) be an RNA. The

1’ is the set of

loop (written loop(i —)) which is enclosed by a bond 4
positions {r | i < r < i’ A3k :r = right’(i)}.

3 Matchings

Suppose we are given two RNAs (S1, P1) and (S2, P2). The sets V3 = {i | 1 <
i <|S1|} and Vo = {j | 1 < j < |S2|} contains the positions of both RNAs.

Definition 2 (Matching). A matching M between two RNAs (S1,Pi) and
(S2, P2) is a set of pairs M = {(i,7) | i € Vi Aj € Vao} which describes a partial
bijection from Vi to Vo and satisfies the following conditions:

1. structure cond.: V(i,j) € M, rbdp, (i) < rbdp,(j)A lbdp, (i) < lbdp,(j)

2. base cond.: V(i,5) € M, S1(i) = S2(j)

The matching definition is applied to single bases. Since bases are sometimes part
of base-pairs, we may see them as units given as an additional bond condition:

3. bond cond.: for each {(4,5),(i’,5)} C M with i ===’ and J - j it
follows S1(2) = Sa(5) A S1(7') = Sa(j’)

The range of the first RNA is given as the set ran; (M) = {i | 35 : (4,4) € M}.
It describes the pattern found in the first RNA which is matched to the same
pattern in the second RNA. Given an element ¢ € ran; (M), we denote M (i) as
the uniquely determined element j with (i,5) € M. Similarly, given an element
j € rany(M), we denote M ~1(j) as the uniquely determined element i with
(t,7) € M.

The first two points of the definition can be easily written as a matching
predicate between two bases at positions i and j : match(i, j) = [S(i) = S(j)] A
[Ibdp, (1) < lbdp,(j)] A [tbdp, (i) < rbdp,(j)]- The bond condition provides a

structure conserving requirement based on base-pairs. It can be extended by a
P, . P
]

FTA[S1(3) = S2(§)] A [S1(i) = S2(5")]

The matching conditions are applied to single bases or base-pairs so far.
Now, we want to merge bases and base-pairs such that special relations among
them are fulfilled. They provide a definition for matchings. We make use of a
transition type function on two positions ¢ and i’ which is +1, —1 or 0 depending

bond checking such that the predicate of match(s j') is given as

i ==\l

on whether i =i +1,i=4 —1ori i'. A path in an RNA is a sequence of
positions i1 .. .4, such that the bases S(i;) and S(ij41) fori=1,...,k—1 are
connected due to the bond conditions or due to the backbone of this RNA.

Definition 3 (Matching/Matched Path). Let (S, Py) and (So, P2) be two
RNAs and M a matching between them. An M-matching path is a list of pairs
(t1,71) - - - (i, jk) € M such that 1.) i1 ...ix is a path in (S1,P1); 2.) j1...Jk is
a path in (S2, P2); and 3.) for each 1 <1 < k the transition types of (iy,i14+1)
and (i, ji+1) are equal. A matching is connected if there is a M-matching path
between any two pairs in M. A path in only one of the RNAs consisting of only
matched bases is called M-matched path.

Note the difference between matching paths and matched paths. A matched
path is a path occurring in one structure, but there must not be necessarily
a corresponding path in the other structure. Furthermore, the restriction of
matching paths to some structure clearly produces a matched path. But the
contrary is not true. There are matched paths, where the image of the path
(under the matching) is not a path in the other structure. To clarify this, consider

. - =- =- = -

Figure 3. Unpreserved bonds (backbone and secondary). a.) the backbone bonds :—1,4
is not preserved. b.) the bond ¢ —_ is not preserved. The matching is indicated by

blue and green nodes. In both cases, the the corresponding bases in the second structure
are connected with nodes (in red) that are not part of the matching.

the simplest matched paths, which are edges (backbone connections or bonds)
between matched bases. By definition, they are matched paths, but there might
not be a matching path associated with. This happens for bases which mark the
“ends” of the matching. The two cases for backbone edges and bond edges are
shown in Figure 3.

From the definitions of matchings, it is not clear whether they respect the
backbone order, i.e. ¢ < i’ implies M (i) < M(i'). One can show that this holds
for connected matchings. Since we will restrict ourself to matchings that preserve
bonds later, and the proofs are simpler for these kind of matchings, we omit the
proof for the general case here. We treat only the simple case for preserving the
stacking order for general connected matchings.

Proposition 1. Let (i1,51) ... (ik,jx) € M be a matching path. Then the path
preserves the relative stacking order, i.e. for all 1 <r < k we have stordp, (i1) —
stordp, (j1) = stordp, (i) — stordp, (j,).

4 Bond Preserving Matching

Py

As Figure 3b indicates, a matched bond ¢ i’ which does not correspond
to a matching path only occurs if we have a stem in the first structure that
is matched to a multiple loop in the second structure (or vice versa). This is
biologically unwanted, since it is very unlikely that this pattern could have been
generated by evolution. For that reason, we are interested in matchings that
preserve bonds.

Definition 4 (Bond-Preserving Matching). A connected matching M is
said to be bond-preserving if every matched bond in Py or Ps is also a matching

P P.
path, i.e. if {(i,5), (7', 5)} C M and i === i’ then j === j' and vice versa.

In the following, we will consider bond-preserving matchings. We say that
a connected, bond-preserving matching M is mazimally exrtended, if there is
no M’ such that M C M’'. We are interested in finding all (non-overlapping)
maximally extended matchings. For this purpose, we need to show some prop-
erties. We start with a proposition that allows us to decompose the problem of

finding a maximally extended matching into subproblems of finding maximally
extended loop matchings. The next proposition shows that the backbone order
is respected. And the third proposition shows that if we do not exceed a loop,
then maximally extended matchings (in this loop) are uniquely determined by
one element.

Proposition 2. Let i,i' € loop(r - s), and let M be a bond-preserving
matching with {(i,7), (i',7)} C M. Then any shortest matching path between

(i,7) and (', j") uses only elements of loop(r - s)U{r, s}.

Proposition 3 (Backbone Order). Let M be a connected matching, and
(4,7),(d',5") € M. Then i <" if and only if j < j'.

Proposition 4. Leti —_ and j — j' be two bonds, and let r € loop(i et
i") and s = loop(j i 7). Let M, M’ with i,i" & rani(M) U ran,(M') and
(r,s) € MNM'. Then rani (M) U loop(i —_ i) = rany(M') U loop(i —_ i’)
and rans (M) U loop(j ij’) = rany(M") U loop(j ij’).

5 Dynamic Programming Matrices

We want to find all non-overlapping, maximally extended, bond-preserving match-
ings. For overlapping matchings, we choose the one with maximal size. If there
are overlapping matchings of the same size, then only one is selected.

We use a dynamic programming approach by filling a matrix M(r, s), with
the following interpretation. We define an order < on elements as follows:

iz i<j if stordp, (¢) = stordp, (5)
(3 =
J stordp, (i) < stordp, (j) otherwise

For pairs (r, s) and (k,l) we define (r,s) < (k,1) if and only if » < k. Then

M is a maximally extended matching
M(r,s) =max{ |M||with (r,s) € M and there is no
(r', 8"y € M with (r',s") < (r,s)

contains the size of an maximal matching. For simplicity, we assume the maxi-
mum value over an empty set to be 0. Note that the size is stored only for the
left-most, bottom-most pair (r,s) in M. For calculating M (r, s), we will addi-
tionally need auxiliary matrices M"-¢"¢ M and M™, which are defined as
follows.

Definition 5 (Auxiliary Matrices). Let Ry = (S1, P1) and Ry = (S2, Ps) be
two RNAs. Let r (resp. s) be an element of loop(i —_ i) (resp. loop(j —— i)

Then M _lfOp (r,) is the size of the mazimal matching within the loops that contain
(r,s), and is extended to the right or above (r,s), i.e.

M C [i..d'] x [j..7'] is a connected
M'°P (1. s) =max { |M|| matching with (r,s) € M and
v(r',s") € M\{(i,7), (4, 5")} = (r;8) 2 (v, ")

P P,
— i and] =—— ' the matriz

In addition, we define for every i,j such that i
element M"(i e e) to be the mazimal matching that matches the
bonds i === i’ and j =—= ', i.c.
» , M Cli.d] x[j..5] is a
MO (e /| i ') =max { | M| | connected matching with
(i,4) € M and (i, ') € M

In addition, we define M"(i — i, j — j') to be the mazimal matching
containing the right partners i’ and j' of the bonds only, i.e.

b, b Meli+1.4]x[j+1.5]
M7 e /| j e 'Y =max { |M| | is a connected matching
with (i',7') € M

The first procedure calculates Mi‘"’p (r,s) for a matching of two loops asso-

ciated with the bonds i i and j =g, given that M2, M® and M"
is already calculated for all bonds that are contained in the two loops. For cal-

culating M (i i, —), we use additional auxiliary variables. The
variable RDist stores the loop distance to the right-end of the loop. Thus, for
given RDist, we consider elements r and s which have distance RDist to i’ and
j', respectively. Looking from the right end (i, ;') of the loop this implies that
r =left ;7" (i) and s = leftji" " (j').

First, we need to know whether there is a matching connecting (r, s) with
the right ends of the loop (i, j'):

Py

true if 3 connected matching M C [i..7'] x [j..5']
Reach"-"Y(RDist) = with (r,s) € M and (i',j') € M (1)
false otherwise

Since we don’t need the matrix entries any further, we only store the current
value in the variable Reach. In addition, we store the size of the matching that
used in the definition of Reach”-¢"¢(RDist). If Reach"-°"¢(RDist) is false,
then we use the size of the last entry Reach™¢"¢(RDist') with RDist' <
RDist and Reach™"4(RDist') = true. Technically, this is achieved by an array
Mr—e"d(RDist) with

M C [i.i'] x [j..5'] is connected matching
MT-"*(RDist) =max { |M||with (i/,j’) € M and for all (+',s') in (2)

M\{(4,%), (4,4")} we have (r,s) =< (+',5)

6 Recursion Equations

The auxiliary matrices and arrays can be easily calculated via the following
recursion equations. For M (r, s) we have

loo
MZ%(r,s) = (3)
MY (r,s) + MY (r' +1,5' +1) if match(r —_— 5 i s')
M7b(r s) + M9P(r+1,s+1) else if rbdp, () A rbdp,(s) A match(r, s)
1+ MYP(r+1,5s+1) else if match(r, s)
0 otherwise

Note that if » and s are the left

Py

ends of the bonds r " As
s’, but the bonds are not matchable,
then this case is covered by the third
case. Here, r + 1 and s + 1 are not in
the same loop as r,s. Therefore, we
Figure 4. Extension to next loop. consider the case where the maximal
matching extends to the next loop via
the left ends of two bonds. This case is depicted in Figure 4. r and s do match,
whereas the bonding partners 7’ and s’ do not match. The currently considered
loop is encircled. Since 41 and s+ 1 in the contiguous loop do match, we know
that we can calculate M'°°P(r, s) recursively by calculating M (r + 1, s + 1).
The next step is to define the auxiliary arrays Reach”-°"?(RDist) and
Mr—"d(RDist) for a given loop. RDist is the distance to the right end of the
closing bond. Consider the case where we want to match two loops associated

with the bonds i === i’ and j === j'. Let len be the minimum of the two loop
lengths, and 0 < RDist < len. Then
true if match(d’, j') 1 if match(i/,)

Reach™"4(0) = .
0 otherwise

. and M"-°"4(0) =
false otherwise

For 1 < RDist < lenyin, let r = leftg?m(i’) and s = leftgf)m(j’) be the two
positions with distance RDist to the right end of the considered loops. Then we
obtain Reach™¢"¢(RDist) = Reach"-“"4(RDist — 1) A match(r, s)
Mr_end(RDist) = {MLOOP(Z’, s) . if Reac'hr—end(RDist)
MT-"%(RDist — 1) otherwise.
O0<Rdist<lenmin
For the M matrix, there are two different cases as shown in Figure 5. In the
first case a.), the extensions from the initial matching (i,4') to the right, and the
extension from (j,7') to the left do not overlap, whereas they do overlap in the
second case b). For the second case, we do not know exactly how to match the
overlapping part. Hence, we have to consider all possible cuts in the smaller loop,

The matrix M7 (i —_ i,j — 4') then is simply max {MTe”d(RDist)}.

& @
& 0
@0 @
CO 6O
O
/6@

P P,
Figure 5. The two possible cases for M7 (; = j/ | j m—j')

marking the corresponding ends of the extensions from the left ends and from
the right ends of the loop. The extensions from the right ends are already cal-
culated in the M"—¢"? matrix. Only for the definition of the recursion equation,
we define M'-¢"4(L Dist) and Reach'-*"*(LDist) analogously to equations (2)
and (1), respectively. For the implementation, we need to store only the current
values M' ¢! and Reach!-°".

Now let len; ; (resp len; ;) be |loop(:
let lenmn = min{len; i/, len; ;- }. Then we have

Py

i")| (resp. |loop(i —_ i")]), and

MO (i i/ i 1) = max {Ml—e"d(LDist) + MT—e"d(RDist)}
0 < LDist < Lenprin
with rightﬁf”t(i) is not (4)

a left end of a bond

where RDist = len; — LDist if lenp,,, = len; i+, and len, ;+ (len; i —len; ji) —
LDist otherwise. The condition rightnglD st(i) is not a left end of a bond guaran-
tees that we do not cut in the middle of a bond, which is excluded since we are
considering bond-preserving matchings only. The term (len;;; — len; /) in the
second part of the definition of RDist is to compensate for the longer length of
the first loop!.

Finally, we consider the M (r,s) entries. Let r and s again be two bases of
the loops defined 4 2 i and j — j' with distance RDist to the right loop
ends i’ and j', respectively. The values of M (r, s) and Mloop(r,s) are equal for
all entries M(r,s) # 0. M(r,s) is zero if there is some (r',s") < (r,s) that is
matchable. This leads to the following equation: M(r, s) = 0 if —match(r, s) or
match(left , (), left g, (s)) or Reach™*"*(RDist), and M'?°P(r, s) otherwise.

7 Pseudo-Code

The main procedure consists of two for-loops, each calling a base-pair from the
first and second RNA, and performs the pattern search from inner to outer loops.
It calls the procedure START-LOOP-WALKING which initiates the calculation

¢ and

. . P ., . P .
of all matrices except NM'(; mmmm ;/ j wemmem ;') for two bonds i

P
! In the case that ; === ;’ is the smaller loop, then overlapping of the left and right
match extensions is already excluded by definition, and we do not need to compensate
for it

1: procedure START-LOOP-WALKING(3,14', 7, j)

2: reach = INtT-LoopP-MATRICES(7', 7,4, j')

3 (loop_size,loop_dist) := LOOP-WALKING (i, j', 1, 4,4, j', reach, true)
4: k:=1i

5: while £ > i+ 1 do

6: k= left g, (k)

7 InrT-Loop-Matrices(k, j', i, 5)

8: Loopr-WaLkinG(k, 5',4, 7,7, 5, false, false)

9: end while

10: l:=y

11: while [> j+1 do

12: l:=leftr, (1)

13: INIT-LooP-MATRICES(3', 1,4, §')

14: Loopr-WALKING (i, 1,4, 4,7, 5, false, false)
15: end while

16: return (loop _size,loop _dist)

17: end procedure

Figure 6. Starting points of loop walking

Py

J 4, assuming that all matrix entries for loops above are already calculated.
In addition, it calculates the loop length of the smaller loop and the distance
of the two loop lengths (which is done in sub-procedure CALC-REMAIN-LOOP-
LEN).

The real calculation of these matrices is done in the sub-procedure LooP-
WALKING, which traverses the loop from right to left (via the application of
left.(-) function). The function LOOP-WALKING has two modes concerning whether
we started the loop-traversal with both right ends ¢,4" or not. In the first mode
(initiated in line of START-L.OOP-WALKING), we calculate also the array M7"— "¢,
and move the M (r,s) down to (i’,5") for all (r,s) where Reach™ "¢ is true.
This part is done by the subprocedure LOOP-REACH. In the second mode, when
LooP-WALKING is called with only one right end (lines 8 and 14 of START-LOOP-
WALKING), then we know the right ends cannot be in any matching considered
there. Hence, we may not calculate the M7—°"? array.

The subprocedure MLOOP-RECURSION is just an implementation of recursion
Equation (3) for M'?°?. The sub-procedure INIT-LOOP-MATRICES just initializes
the matrices for the starting points. In most case, the initial values are 0 (since we
cannot have a match if we do not start with the right-ends due to the structure
condition). The only exception is if we start with both right ends, and these
rights ends do match. In this case, we initialize the corresponding matrix entries
with 1. The sub-procedure INIT-LOOP-MATRICES is listed in the appendix.

The next step is to calculate M (i — g — 4'), which is done by

the procedure LOOP-MATCHING. LOOP-MATCHING is called after START-LOOP-
WALKING is finished. In principle, this is just an implementation of the re-
cursion equation (4). Since we do not want want to maintain another array
M!-end(L Dist), we store only value for the current L Dist in the variable M'—"d,
The procedure maintains three neighbouring cells (r!,s!), (r,s) and (r",s").
(!, s!) correspond to LDist — 1, and (r,s) to LDist. The cut will be between
(r,s) and (", s"). The sub-procedure MLEND-RECURSION is in principle only an

1: procedure LOOP-WALKING(r, 8,4, J, %', j', reach, right _ends)

2 RDist =0

3 while r > i A s> j do

4 ri=r; s i=s; ri=leftg, (r'); s:=leftr,(s'); RDist=RDist+1
5: if BASE-MATCH(r, s) V BOND-MATCH(r",7,s", s) then

6 Mroopr-RECURSION(r", 1, 5", s")

7 M(r,s) .= M2°P(r,s); M(r',s'):=0

8 If right _ends then Loor-REACH(r, s,1, 7,1, 7', reach, RDist)

9: else

10: MYP(r,s) :=0; M(r,s):=0; reach:= false
11: If right _ends then M"-°"%(RDist) := M"—*"¢(RDist — 1)
12: end if

13: end while
14: If right _ends then return CALC-REMAIN-LOOP-LEN(r, s, 4, j, RDist)
15: end procedure

Figure 7. The procedure loop walking is going from one base to the next

implementation of the recursion equation for M'—¢"? under the condition that
that Reach!—¢"? is true. As it can be seen from the definition of M"—°"¢ in Equa-
tion (2), the recursion equation under this condition is in principle analogous to
the recursion equation for M'°" given in Equation (3).

1: procedure LoopP-MATCHING (4,4, 7,7 ,i_i _lens,lens_dist)

2 LDist :=0

3 if BOND-MATCH(4,4', 7, ') then

4 M- .= 0: Reach!'-"? := true

5: rTi=d; ri=i; rli=4; §":i=j; s:=j; s :=j

6: while " < i’ A 5" < j' A Reach!'=*"? := true do

7 rli=r ri=0" 0" = rightp (r"); sti=s; s:=5"; 5" = right, (s");
8: if BASE-MATCH(r, s) V BOND-MATCH(r",1,s", s) then

9: M'-¢"4 = MLEND-RECURSION(r!, 7,77, s', 5, 57, M'-°"4)
10: else Reach!-°"? := false endif

11: if Reach'-*"* A -BOND-MATCH(r!, 7, s',s) then

12: FiLL-MBB(i, 4, j, j, M'=“"? LDist,i_i' len,lens dist)
13: end if

14: LDist := LDist + 1

15: end while

16: else M*(i,5) := 0 end if
17: end procedure

Figure 8. Calculation of M®®

The maximally extended matchings are finally calculated from the M (r,s)
matrix by an usual traceback. The space complexity of the algorithm is O(nm).
The time complexity is O(nm) for the following reason. Every pair (r,s) with
1 <r < |S]and 1 < s < |Sq| is considered at most twice in START-LOOP-
WALKING and LoOP-WALKING, with an O(1) complexity for calculating the
corresponding matrix entries. Similarly, every pair (r,s) is considered at most
twice in LOOP-WALKING. Since there are O(nm) many pairs (r,), we get a total
complexity of O(nm).

8 Conclusion

We have presented a fast dynamic programming approach in time O(nm) and
space O(nm) for detecting common sequence/structure patterns between two
RNAs given by their sequence and secondary structures. These patterns are de-
rived from exact matchings and can be used for local alignments ([1]). The most
promising advantage is clearly to investigate large RNAs of several thousand
bases in reasonable time. Here, one can think of detecting local sequence/structure
regions of several RNAs sharing the same biological function.

References

1. Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA. Jour-
nal of Bioinformatics and Computational Biology (JBCB), 2004. accepted for
publication.

2. V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between rna
strings. In Proc. 6th Symp. Combinatorical Pattern Matching, pages —16, 1995.

3. David Eppstein. Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms & Applications, 3(3):1-27, 1999.

4. P. Gendron, D. Gautheret, and F. Major. Structural ribonucleic acid motifs iden-
tification and classification. In High Performance Computing Systems and Appli-
cations. Kluwer Academic Press, 1998.

5. Gramm, Guo, and Niedermeier. Pattern matching for arc-annotated sequences.
FSTTCS: Foundations of Software Technology and Theoretical Computer Science,
22, 2002.

6. 1. L. Hofacker, B. Priwitzer, and P. F. Stadler. Prediction of locally stable RNA sec-
ondary structures for genome-wide surveys. Bioinformatics, 20(2):186-190, 2004.

7. Matthias Hochsmann, Thomas Téller, Robert Giegerich, and Stefan Kurtz. Local
similarity in rna secondary structures. In Proceedings of Computational Systems
Bioinformatics (CSB 2003), 2003.

8. Tao Jiang, Guo-Hui Lin, Bin Ma, and Kaizhong Zhang. The longest common sub-
sequence problem for arc-annotated sequences. In Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching (CPM2000), 2000.

9. Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance
between RNA structures. Journal of Computational Biology, 9(2):371-88, 2002.

10. B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: finding local
similarities by multiple sequence alignment. Bioinformatics, 14(3):290-4, 1998.

11. J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,
23(1):31-42, January 1976.

12. Juris Viksna and David Gilbert. Pattern matching and pattern discovery algo-
rithms for protein topologies. In O. Gascuel and B. M. E. Moret, editors, Proceed-
ings of the First International Workshop on Algorithms in Bioinformatics (WABI
2001), number 2149, pages 98-111, 2001.

13. Jason Tsong-Li Wang, Bruce A. Shapiro, Dennis Shasha, Kaizhong Zhang, and
Kathleen M. Currey. An algorithm for finding the largest approximately common
substructures of two trees. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 20(8):889-895, 1998.

