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Abstract. Large RNA molecules often carry multiple functional do-
mains whose spatial arrangement is an important determinant of their
function. Pre-mRNA splicing, furthermore, relies on the spatial proxim-
ity of the splice junctions that can be separated by very long introns.
Similar effects appear in the processing of RNA virus genomes. Albeit
a crude measure, the distribution of spatial distances in thermodynamic
equilibrium therefore provides useful information on the overall shape
of the molecule can provide insights into the interplay of its functional
domains. Spatial distance can be approximated by the graph-distance in
RNA secondary structure. We show here that the equilibrium distribu-
tion of graph-distances between arbitrary nucleotides can be computed in
polynomial time by means of dynamic programming. A naive implemen-
tation would yield recursions with a very high time complexity of O(n11).
Although we were able to reduce this to O(n6) for many practical appli-
cations a further reduction seems difficult. We conclude, therefore, that
sampling approaches, which are much easier to implement, are also theo-
retically favorable for most real-life applications, in particular since these
primarily concern long-range interactions in very large RNA molecules.



1 Introduction

The distances distribution within an RNA molecule is of interest in various
contexts. Most directly, the question arises whether panhandle-like structures (in
which 3’ and 5’ ends of long RNA molecules are placed in close proximity) are
the rule or an exception. Panhandles have been reported in particular for many
RNA virus genomes. Several studies [1–4] agree based on different models that
the two ends of single-stranded RNA molecules are typically not far apart. On a
more technical level, the problem to compute the partition function over RNA
secondary structures with given end-to-end distance d, usually measured as the
number of external bases (plus possibly the number of structural domains) arises
for instance when predicting nucleic acid secondary structure in the presence of
single-stranded binding proteins [5] or in models of RNA subjected to pulling
forces (e.g. in atom force microscopy or export through a small pore) [6–8]. It
also plays a role for the effect of loop energy parameters [9].

In contrast to the end-to-end distance, the graph-distance between two arbi-
trarily prescribed nucleotides in a larger RNA structure does not seem to have
been studied in any detail. However, this is of particular interest in the analysis of
single-molecule fluorescence resonance energy transfer (smFRET) experiments
[10]. This technique measures the extent of non-radiative energy transfer be-
tween donor and acceptor positions that are labeled by fluorescent dies. This
efficiency of energy transfer, EFRET , strongly depends on the spatial distance R
according to EFRET = (1 + (R/R0)6)−1. The Förster radius R0 sets the length
scale, e.g. R0 ≈ 54 Å for Cy3-Cy5. FRET can measure spatial distance changes
on the 20− 100 Å scale, compared to 3.4 Å for two stacked pairs.

It would be desirable in this context to compute the distribution of spatial
distances for an equilibrium ensemble of 3D structures. Since this is not feasible
in practice despite major progress in the field of RNA 3D structure prediction
[11], we can only resort to considering the graph-distances on the ensemble of
RNA secondary structures instead. While a crude approximation of reality, we
shall see here that problem can be solved exactly using a dynamic programming
approach.

2 Theory

2.1 RNA Secondary Structures

An RNA secondary structure is a vertex labeled outerplanar graph G(V, ξ, E),
where V = {1, 2, . . . , n} is a finite ordered set (of nucleotide positions) and
ξ : {1, 2, . . . , n} → {A,U,G,C}, i 7→ ξi assigns to each vertex at position i (along
the RNA sequence from 5’ to 3’) the corresponding nucleotide ξi. We write
ξ = ξ1 . . . ξn for the sequence underlying secondary structure and use ξ[i . . . j] =
ξi . . . ξj to denote the subsequence from i to j. The edge set E is subdivided into
backbone edges of the form {i, i + 1} for 1 ≤ i < n and a set B of base pairs
satisfying the following conditions:



1. If {i, j} ∈ B then ξiξk ∈ {GC,CG,AU,UA,GU,UG}.
2. If {i, j} ∈ B then |j − i| > 3.
3. If {i, j}, {i, k} ∈ B then j = k
4. If {i, j}, {k, l} ∈ B and i < k < j then i < l < j.

The first condition allows base pairs only for Watson-Crick and GU base pairs.
The second condition implements the minimal steric requirement for an RNA
to bend back on itself. The third condition enforces that B forms a matching in
the secondary structure. The last condition (nesting condition) forbids crossing
base pairs, i.e. pseudoknots.

The nesting condition results in a natural partial order in the set of base
pairs B defined as {i, j} ≺ {k, l} if k < i < j < l. In particular, given an
arbitrary vertex k, the set Bk = {{i, j} ∈ B|i ≤ k ≤ j} of base pairs enclosing k
is totally ordered. Note that k is explicitly allowed to be incident to its enclosing
base pairs. A vertex k is external if Bk = ∅. A base pair {k, l} is external if
Bk = Bl = {{k, l}}.

Consider a fixed secondary structure G, for a given base pair {i, j} ∈ B, we
say a vertex k is accessible from {i, j} if i < k < j and there is no other pair
{i′, j′} ∈ B such that i < i′ < k < j′ < j. The unique subgraph Li,j induced by
i, j, and all the vertices accessible from {i, j} is known as the loop of {i, j}. The
type of a loop Li,j is unique determined depending on whether {i, j} is external
or not, and the numbers of unpaired vertices and base pairs. For details, see [12].
Each secondary structure G has a unique set of loops {Li,j |{i, j} ∈ B}, which is
called the loop decomposition of G. The free energy f(G) of a given secondary
structure, according to the standard energy model [13], is defined as the sum of
the energies of all loops in its unique loop decomposition.

The relative location of two vertices v and w in G is determined by the base
pairs Bv and Bw that enclose them. If Bv∩Bw 6= ∅, there is a unique ≺-minimal
base pair {iv,w, jv,w} that encloses both vertices and thus a uniquely defined loop
L{iv,w,jv,w} in the loop associated with v and w. If Bv \Bw = ∅ or Bw \Bv = ∅
then v or w is unpaired and part of L{iv,w,jv,w}. Otherwise, i.e. Bv∩Bw = ∅, there
are uniquely defined ≺-maximal base pairs {kv, lv} ∈ Bv \ Bw and {kw, lw} ∈
Bw \Bv that enclose v and w, respectively. This simple partition holds the key
to computing distance distinguished partition functions below.

It will be convenient in the following to introduce edge weights ωi,j = a if
j = i + 1, i.e., for backbone edges, and ωi,j = b for {i, j} ∈ B. Given a path p,
we define the weight of the path d(p) as the sum of the weights of edges in the
path. The (weighted) graph-distance dGv,w in G is defined as the weight of the
path p connecting v and w with d(p) being minimal. For the weights, we require
the following condition:

(W) If i and j are connected by an edge, then {i, j} ∈ E is the unique shortest
path between i and j.

This condition ensures that single edges cannot be replaced by detours of shorter
weight. Condition (W) and property (ii) of the secondary structure graphs im-
plies b < 3a because the closing base pair must be shorter than a hairpin loop.



Furthermore, considering a stacked pair we need b < b+ 2a, i.e. a > 0. We allow
the degenerate case b = 0 that neglects the traversals of base pairs.

2.2 Boltzmann Distribution of Graph-Distances

For a fixed structure G, dGv,w is easy to compute. Here, we are interested in
the distribution Pr[dGv,w|ξ] and its expected value dv,w = E[dGv,w|ξ] over the
ensemble of all possible structures G for a given sequence ξ. Both quantities can
be calculated from the Boltzmann distribution Pr[G|ξ] = e−f(G)/RT /Q where
Q =

∑
G e
−f(G)/RT denotes the partition function of the ensemble of structures.

As first shown in [14],Q and related quantities can be computed in cubic time, see
Appendix A. A crucial quantity for out task is the restricted partition function

Zv,w[d] =
∑

G with dG
v,w=d

e−f(G)/RT

for a given pair v, w of positions in a given RNA sequence ξ. A simple but
tedious computation (Appendix B) verifies that the Pr[dGv,w = d|ξ] = Zv,w[d]/Q
and dv,w = E[dGv,w|ξ] =

∑
d(Z

v,w[d]/Q)d. Hence it suffices to compute Zv,w[d]
for d = 1, . . . , n. In sections 2.3-2.5 we show that this can be achieved by a
variant of McCaskill’s approach [14].

For the ease of presentation we describe in the following only the recursion
for the simplified energy model for the “circular maximum matching” matching,
in which energy contributions are associated with individual base pairs rather
than loops. Our approach easily extends to to the full model by using separating
the partition functions into distinct cases for the loop types. We use the letter Z
to denote partition functions with distance constraints, while Q is used for quan-
tities that appear in McCaskill’s algorithm and are considered as pre-computed
here; they are defined more in detail in the Appendix A.

Before we continue with the calculation of the partition function, let’s first
look into problem formulation in more detail. For the FRET application, it is
well-known that the rate which with FRET occurs is correlated with the dis-
tance. Therefore, only a limited range of distance changes (e.g. 20Å− 100Å for
Cy3-Cy5) can be reported by the FRET experiments. Thus the more useful for-
mulation of our problem is not to use the full expected quantity for all positions.
Instead, we are interested in the average for all distances within some threshold
θd. As the space and time complexity will depend on the number of distances
we consider, we will parametrise our complexity by the number of nucleotides n
and the number of overall distances considered D = θd + 1, as well.

2.3 Recursions of Zv,w[d]: v and w Are External

An important special case assumes that both v and w are external. This is case
e.g. when v and w are bound by proteins. In particular, the problem of computing
end-to-end distances, i.e., v = 1 and w = n, is of this type. Assuming (W), the
shortest path between two external vertices v, w consists of the external vertices



and their backbone connections together with the external base pairs. We call
this path the inside path of i, j since it does not involve any vertices “outside”
the subsequence ξ[i..j].

For efficiently calculating the internal distance between any two vertices v, w,
we denote by ZIi,j [d] the partition function over all secondary structures on ξ[i..j]
with end-to-end distance exactly d. Furthermore, let QBi,j denote the partition
function over all secondary structures on ξ[i..j] that are enclosed by the base
pair {i, j} (see Appendix A). We will later also need the partition function Qi,j
over the sub-sequence ξ[i..j], regardless of whether {i, j} is paired or not.

Now note that any structure on ξ[i..j] starts either with an unpaired base or
with a base pair connecting i to some position k satisfying i < k ≤ j. In the first
case, we have dGi,j = dGi,i+1 + dGi+1,j where dGi,i+1 = a. In the second case, there
exists dGi,j = dGi,k + dGk,k+1 + dGi+1,j with dGi,k = b and dGk,k+1 = a. Thus, ZIi,j [d]
can be split as follows,

This gives the recursion

ZIi,j [d] = ZIi+1,j [d− a] +
∑
i<k≤j

QBi,kZ
I
k+1,j [d− b− a] (1)

with the initialization ZIii[0] = 1 and ZIii[d] = 0 for d > 0. For consecutive vertices
we have ZIi,i+1[a] = 1 and ZIi,i+1[d] = 0 for d 6= a. These recursions have been
derived in several different contexts, e.g. force induced RNA denaturations [6],
the investigate of loop entropy dependence [9], the analysis of FRET signals in
the presence of single-stranded binding proteins [5], as well as in mathematical
studies of RNA panhandle-like structures [3, 4].

In the following it will be convenient to define also a special terms for the
empty structure. Setting ZIi,i−1[−a] = 1 and ZIi,i−1[d] = 0 for d 6= −a allows
us to formally write an individual backbone edge as two edges flanking the
empty structure and hence to avoid the explicit treatment of special cases. This
definition of ZI also includes the case that i and j are base paired in the recursion
(1). This is covered by the case k = j, where we evaluate ZIj+1,j [d− b− a]. Since
d = b is the only admissible value here, this refers to ZIj+1,j [−a], which has the
correct value of 1 due to our definition. Later on, we will also need ZI under
the additional condition that the path starts and end with a backbone edge. We
therefore introduce ZI

′
defined as defined as

By our initialization of ZI , we can simply define ZI
′

by

ZI
′

i,j [d] = ZIi+1,j−1[d− 2a] (2)
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Fig. 1. Inside and outside paths.
The shortest path (violet arrows)
from v (green) to w (blue) is not
an inside path: inside emphasizes
that, in contrast to the shortest
path (cyan arrows) between the
red region and v, it is not con-
tained in the interval determined
by its end points.

Note that if ZI
′

i,j [d] is called with j = i+ 1, then we call ZIi+1,i[d− 2a]. The only
admissible value again is the correct value d = a.

This recursion requires O(Dn3) time and space. It is possible to reduce the
complexity in this special case by a linear factor. The trick is to use conditional
probabilities for arcs starting at i or the conditional probability for i to be single-
stranded, which can be determined from the partition function for RNA folding
[3], see Appendix C.

2.4 Recursions of Zv,w[d]: The General Case

The minimal distance between two positions that are covered by an arc can
be realized by inside paths and outside paths. This complicates the algorithmic
approach, since both types of paths must be controlled simultaneously. Consider
Fig. 1. The shortest path between the green and blue regions includes some
vertices outside the interval between these two regions. The basic idea is to
generalize Equation (1) to computing the partition function Zv,w[d]. The main
question now becomes how to recurse over decompositions of both the inside
and the outside paths.

Fig. 1 shows that the outside paths are important for the green region, i.e.,
the region that is covered by an arc. Hence, we have to consider the different
cases that the two positions v and w are covered by arcs. The set Ω of all
secondary structures on ξ can be divided into two disjoint subclasses that have
to be treated differently:

Ω0 v and w are not enclosed in a common base pair, i.e., Bv ∩Bw = ∅.
Ω1 there is a base pair enclosing both v and w, i.e., Bv ∩Bw 6= ∅.

Note that this bipartition explicitly depends on v and w. In the following, we
will first introduce the recursions that are required in Ω0 structures to compute
Zv,w[d].

Contribution of Ω0 structures to Zv,w[d] One example of this case is given
in Fig. 1 with the red and blue region, where v (vertex in green region) is covered
by an arc, and w (vertex in blue region) is external. Denote the ≺-maximal base



pair enclosing v by {i, j}. Since at most one of v and w is covered by an arc, we
know that j < w. Hence, every path p from v to w, and hence also the shortest
paths (not necessarily unique) must run through the right end j of the arc {i, j}.
More precisely, there must sub-paths p1 and p2 with d(p) = d(p1) + d(p2) + a

such that v
p
 w → v

p1 j − (j + 1)
p2 w, where i

p
 j denotes that p is a

shortest path from i to j and − denotes a single backbone edge. For the shortest

path from v to j, it consists either of a shortest path v
p′

 i and the arc {i, j},
or it goes directly to j without using the arc {i, j}.

How does this distinction translate to the partition function approach? If we
want to calculate the contribution of this case to the partition function Zv,w[d],
we have to split both the sequence ξ[i, w] and distance d as follows

a.)

where ZI
′

j,w[d2] is the partition function starting and ending with a single-stranded
base as defined in Equation (2), and ZB,vi,j [d`, dr] is the partition function con-
sisting of all structures of ξ[i, j] containing the base pair {i, j} with the property
that the shortest path from v to i has length d` and the shortest path from v to
j has length dr. In addition, d, dr and d2 must satisfy d = dr + d2.

The remaining cases for the contribution of the class Ω0 to Zv,w[d] are given
by all other possible combinations of v and w being single-stranded or being
covered by an arc, i.e.,

To simplify, we extend the definition of ZB,vi,j [d`, dr] by setting ZB,vv,v [0, 0] = 1 and
ZB,vv,v [d`, dr] = 0 for d` + dr > 0. This allows us to conveniently model all cases
where either v or w are external, i.e., a.), b.), and d.), as special cases of c.).

In case c.) we have to split the distance d into four contributions and we
require two splitting positions for the sequence for all combinations of i, j, v, w.
This would result in an O(n6D5) algorithm. A careful inspection shows, however,
that the split of the distances for the arcs into d` and dr is unnecessary. Since we
want to know only distance to the left/right end overall, we can simply introduce
two matrices ZB,v,`i,j [d] and ZB,v,ri,j [d] that store these values. These matrices can
be generated from ZB,vi,j [d`, dr] as follows:

ZB,v,`i,j [d] =
∑
dr

dr+b≥d

ZB,vi,j [d, dr] +
∑
d`
d`>d

ZB,vi,j [d`, d− b]

Analogously, we compute ZB,v,ri,j [d].



Overall, the contribution to Zv,w[d] for structures in Ω0 is given by

Zv,w0 [d] =
∑
d1,d2

d1+d2≤d

∑
i,j,k,l

i≤v≤j<k≤w≤l

Q1,i−1 · ZB,v,ri,j [d1]
·ZI′

j,k[d− (d1 + d2)]
·ZB,w,`k,l [d2] ·Ql+1,n

 (3)

Note that for splitting the distance, we reuse the same indices (e.g., the j in
ZB,v,ri,j [d1] ·ZI′

j,k[d− (d1 + d2)], where as for the remaining partition function, we
use successive indices (e.g.,the i in Q1,i−1 ·ZB,v,ri,j [d1]). This difference comes from
the fact that splitting a sequence into subsequences is done naturally between two
successive indices, whereas splitting a distance is naturally done by splitting at
an individual position. We have only to guarantee that the substructures which
participate in the split do agree on the structural context of the split position.
This is guaranteed by requiring that ZI

′
starts and ends with a backbone edge.

We note that the incorporation of the full dangling end parameters makes is
more tedious to handle the splitting positions.

This results in a complexity of O(n6D3) time and O(n3D) space. However,
we do not need to split in i, j, k, j simultaneously. Instead, we could split case
(c) at position j and introduce for all v ≤ j and k ≤ w the auxiliary variables

ZB,v,r1,j [d1] =
∑
i≤v

Q1,i−1 · ZB,v,ri,j [d1] ZB,w,`k,n [d2] =
∑
w≤l

ZB,w,`k,l [d2] ·Ql+1,n

ZIB,w,`j,n [d′] =
∑
k>j

∑
d2≤d′

ZI
′

j,k[d′ − d2] · ZB,w,`k,n [d2].

Finally, we can replace recursion (3) by

Zv,w0 [d] =
∑
v≤j

∑
d1≤d

ZB,v,r1,j [d1] · ZIB,w,`j,n [d− d1] (4)

We thus arrive at O(n4D2) time and O(n3D) space complexity for the con-
tribution of Ω0 structures to Zv,w[d], excluding the complexity of computing
ZB,vi,j [d`, dr].

Contribution of Ω1 structures to Zv,w[d] Ω1 contains all cases where v and
w are covered by a base pair. In the following, let {p, q} be the ≺-minimal base
pair covering v and w. In principle, this case looks similar to the overall case for
Ω0. However, we have now to deal not only with an inside distance, but also with
an outside distance over the base pair {p, q}. Thus, we need to store the partition
function for all inside and outside for each ≺-minimal arc {p, q} that covers v
and w, which we will call Y B,v,wp,q [dO, dI ]. Now in principle, we a similar recursion
as defined for Z0 in equation (3), with the additional complication that we have
to take care of the additional outside distance due to the arc {p, q}. Thus, we
obtain the following splitting:



Again we can avoid the complexity of simultaneously splitting at {i, j} and
{k, l} by doing a major split after j. Thus, we get the equivalent recursions as
in eqns.(5–7):

Y B,v,rp,j [d, dr] =
∑
p<i≤v

∑
d′

O≤d

ZI
′

p,i[d
′
O] · ZB,vi,j [

=̂ d`︷ ︸︸ ︷
d− d′O, dr] (5)

Y B,w,`k,q [d′`, d] =
∑
w≤l<q

∑
d′′

O≤d

ZB,wk,l [d′`,

=̂ d′
r︷ ︸︸ ︷

d− d′O] · ZI
′

l,q[d
′′
O] (6)

Y IB,w,`j,q [d′I , d] =
∑
j<k<q

∑
d′

`≤d
′
I

ZI
′

j,k[d′I − d′`] · Y
B,w,`
k,q [d′`, d] (7)

Overall, we get the following recursion:

Zv,wp,q [dO, dI ] =
∑
v≤j

∑
dr≤dI
d≤dO

Y B,v,rp,j [d, dr] · Y IB,w,`q,j [dI − dr, dO − d] (8)

Overall, we can now define Zv,w[d] by

Zv,w[d] = Zv,w0 [d] +
∑

{p,q}6={v,w}
dI≥d+b

Zv,wp,q [d, dI ] +
∑

{p,q}6={v,w}
d<dO+b

Zv,wp,q [dO, d]

This part has now a complexity of O(n4D2) space and O(n5D4) time. For practi-
cal applications, however, we do not need to consider all possible {p, q}. Instead,
there are only few base pairs that are likely to form and that cover v, w, espe-
cially for v, w where the internal distance of v, w is large enough such that an
outside path has to be considered at all. If we assume a constant number of such
long-range base-pairs, then the complexity is reduced by an n2-factor. For the
complexity in terms of distance, recall that D is typically small.

2.5 Recursions for ZB,v
i,j [d`, dr]

So far, we have used ZB,vi,j [d`, dr] as a black box. In order to compute these terms,
we distinguish the limiting cases a.) v = i, b.) v = j, c.) is external from the
generic case d.):



Starting from the limiting cases, we initialize ZB,vv,j [0, dr] as follows:

ZB,vv,j [0, dr] =


ZI

′

v,j [dr] for a ≤ dr < b∑
d′≥b Z

I′

v,j [d
′] for dr = b

0 otherwise

and analogously for ZB,vi,v [d`, 0]. Furthermore, ZB,vi,j [0, 0] = 0 for i 6= v 6= j.
Finally, we have the following recursion for i 6= v 6= j, d` > 0 and dr > 0:

ZB,vi,j [d`, dr] = Q̂bi,j ·
∑
k 6=l

i<k≤v
v≤l<j

∑
d′

`≤d`

d′
r≤dr

ZI
′

i,k[d` − d′`] · Z
B,v
k,l [d′`, d

′
r] · ZI

′

l,j [dr − d′r] (9)

where Q̂bi,j is the external partition function over all structures on the union
of the intervals ξ[1..i] ∪ ξ[j..n] so that {i, j} is a base pair. This is equivalent
to Q̂bi,j = Pr({i, j}) × Q/Qbi,j . The base pair probability Pr({i, j}), and the
partition functions Q and Qbi,j are computed by means of McCaskill’s algorithm.

Recursion (9) apparently has complexity O(n5D4) in time and O(n3D2) in
space. This can be reduced due to the strong dependency between d` and dr,
however. By construction we have |d`−dr| ≤ b since we can always use the bond
{i, j} to traverse from one end to the other. Furthermore, assuming integer values
for a and b, we can have only cb = 2b/ lcd(a, b) + 1 different values for (d` − dr)
This implies that the space complexity of ZB,vi,j [d`, dr] is O(n4cb). Instead of
ZB,vi,j [d`, dr], we store ZB,vi,j [d`, d` + dadd] for the cb possible values of dadd.

The dependency between d` and dr can also be used to reduce the time
complexity in Equ.(9). The problematic case is (d). Instead of using the variables
d` and dr in ZB,vi,j [d`, dr] we use the pair d`, dadd in ZB,vi,j [d`, d`+dadd]. Similarly,
we use d′`, d

′
add instead of d′`, d

′
r for the inner base pair, which then determines

completely the splitting the distances. The details are relegated to Appendix
D. Overall, this results in an recursion for ZB,vi,j [d`, d` + dadd] with complexity
O(n5c2b) time and O(n3Dcb) space.

3 Discussion and Applications

The theoretical analysis of the distance distribution problem shows that, while
polynomial-time algorithms exist, they probably cannot the improved to space
and time complexities that make them widely applicable to large RNA molecules.
We therefore resort to sampling Boltzmann-weighted secondary structures with
RNAsubopt -p [15] in which the dynamic programming routine is introduced
in [16]. As the graph-distance for a pair of nucleotides can be computed in
O(n log n) even large samples can be evaluated efficiently9.

9 The C++ program RNAgraphdist is available from http://www.rna.uni-
jena.de/supplements/RNAgraphdist/RNAgraphdist1.0.tar.gz



Fig. 2. Left: Distribution of graph-distances (a = b = 1) in Drosophila melanogaster
pre-mRNAs between the first and last intron position. To save computational re-
sources, pre-mRNAs were truncated to 100 nt flanking sequence. The black curve
shows the graph-distance distribution computed for the corresponding pairs of positions
on sequences that were randomized by di-nucleotide shuffling. Right: Graph-distances
(a = b = 1) within and between the 5’ and 3’ regions of the genomic RNA of human
Coronavirus 229E computed from a concatenation of position 1–576 and 25188–25688.
Secondary structures bring the 5’ TRS-L and 3’ TRS-B elements into close proximity.

Long-range interactions play an important role in pre-mRNA splicing and
in the regulation of alternative splicing [17, 18], bringing splice donor, acceptor,
branching site into close spatial proximity. Fig. 2(Left) shows for D. melanogaster
pre-mRNAs that the distribution of graph-distances between donor and accep-
tor sites shifted towards smaller values compared to randomly selected pairs of
positions with the same distance. Although the effect is small, it leaves a clear
statistical signal.

The spatial organization of the genomic and sub-genomic RNAs is important
for the processing and functioning of many RNA viruses. This goes far beyond
the well-known panhandle structures. In Coronavirus the interactions of the 5’
TRS-L cis-acting element with body TRS elements has been proposed as an
important determinant for the correct assembly of the Coronavirus genes in the
host [19]. The matrix of expected graph-distances in Fig. 2(Right) shows that
TRS-L and TRS-B are indeed placed near each other.

Our first results show that the systematic analysis of the graph-distance
distribution both for individual RNAs and their aggregation over ensembles of
structures can provide useful insights into structural influences on RNA func-
tion. These may not be obvious directly from the structures due to the inherent
difficulties of predicting long-range base pairs with sufficient accuracy and the
many issues inherent in comparing RNA structures of very disparate lengths.
Acknowledgements. This work was supported in part by the Deutsche Forschungs-
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Supplemental Material

The following Supplemental Material here is intended to provide some addi-
tional information and details that could not be included in the main text due
to length restrictions.

We hope that it is useful for the review process. The material will be made
available at the authors’ web site in case the manuscript is accepted.
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Fig. 1. Recursive decomposition of RNA secondary structures.

Appendix A: Proof of the O(n3) Complexity of McCaskill’s
Algorithm

Dynamic programming algorithms for secondary structure prediction are based
on a simple recursive decomposition: any feasible structure on the interval [i, j]
has the first base either unpaired or paired with a position k satisfying i < k ≤ j.
The condition that base pairs do not cross implies that the intervals [i+1, k−1]
and [k + 1, j] form self-contained structures whose energies can be evaluated
independent of each other. In conjunction with the standard energy model [1],
which distinguishes hairpin loops, interior loops (including stacked base pairs),
and multiloops, this leads to the recursions diagrammatically represented in
Fig. 1. This algorithmic approach was pioneered e.g. in [2, 3] and is also used in
the ViennaRNA Package [4].



Appendix B: Proof of the E[dG(v, w)] =
∑

d d× Zv,w[d]

Z

Proof of E[dG(v, w)] =
∑
d d×

Zv,w[d]
Z .

E[dG(v, w)] =
∑
G

dG(v, w)× Pr[G|ξ] =
∑
d

∑
G with dG(v,w)=d

d× e−f(G)/RT

Z

=
∑
d

d×
∑
G with dG(v,w)=d e

−f(G)/RT

Z
=
∑
d

d× Zv,w[d]
Z

Appendix C: Proof of Lemma 1

Lemma 1. The expected distance E[dGi,j ] can be calculated as:

E[dGi,j ] = (a+ E[dGi+1,j ]) ·
1 ·Qi+1,j

Qi,j
+
∑
i<k≤j

(b+ E[dGk+1,j ]) ·
Qbi,k ·Qk+1,j

Qi,j
(10)

Proof of Lemma 1.
Let G be a structure. For simplicity of notation, we write G = •G′ if the first

position is unpaired, and G = (. . .)jG′ is the first base is paired to some position
j, and G′ is the substructure of G starting from position j+ 1. Alternatively, we
may use the notation (i, j) ∈ G for the case where the position i and j are base
paired in G.

The expected length E[dG(i, j)] can be calculated as: follows:

E[dG(i, j)] =
∑

G struct. of ξ[i...j]

dG(i, j)Pr[G|ξ[i . . . j]]

=
∑

G=•G′

(a+ dG′(i, j))Pr[G|ξ[i . . . j]] +
∑
i<k≤j

∑
G=(...)kG′

(b+ dG′(i, j))Pr[G|ξ[i . . . j]]

def.
= ELsg +

∑
i<k<j

ELbp(k)

Now ELsg can be simplified as follows:

ELsg =
∑

G=•G′

(a+ dG′(i, j))Pr[G|ξ[i . . . j]]

=

( ∑
G=•G′

a · Pr[G|ξ[i . . . j]]

)
+

( ∑
G=•G′

dG′(i, j) · Pr[G|ξ[i . . . j]]

)

= a · Pr[G = •G′|ξ[i . . . j]] +

( ∑
G=•G′

dG′(i, j) · Pr[G|ξ[i . . . j]]

)
,



where Pr[G = •G′|ξ[i . . . j]] can be calculated as the probability of the first
position to be single-stranded in the sequence ξ[i . . . j], i.e.,

Pr[G = •G′|ξ[i . . . j]] =
1 ·Qi+1,j

Qi,j

We are also able to push the second term since∑
G=•G′

dG′(i, j) · Pr[G|ξ[i . . . j]] =
∑
G′

dG′(i, j) · Pr[•G′|ξ[i . . . j]]

Now we know that for every G′ we have that the Boltzmann weighted energy of
G′ is part of the partition function of Qi+1,j . Thus we get

=
∑
G′

dG′(i, j) · exp(−E(•G′)/kT )
Qi,j

=
∑
G′

dG′(i, j) · exp(−E(G′)/kT )
Qi+1,j

Qi+1,j

Qi,j

=
Qi+1,j

Qi,j

∑
G′

dG′(i, j) · exp(−E(G′)/kT )
Qi+1,j

= Pr[G = •G′|ξ[i . . . j]]
∑
G′

dG′(i, j) · Pr[G′|ξ[i+ 1 . . . j]]

= Pr[G = •G′|ξ[i . . . j]] · E[dG(i+ 1, j)]

Overall we get

ELsg = (a+ E[dG(i+ 1, j)]) · Pr[G = •G′|ξ[i . . . j]]

For the term ELbp(k), we have a similar reduction:

ELbp(k) =
∑

G=(...)kG′

(b+ dG′(i, j))Pr[G|ξ[i . . . j]]

=

 ∑
G=(...)kG′

b · Pr[G|ξ[i . . . j]]

+

 ∑
G=(...)kG′

dG′(i, j)Pr[G|ξ[i . . . j]]


= (b · Pr[G = (. . .)kG′|ξ[i . . . j]]) +

 ∑
G=(...)kG′

dG′(i, j)Pr[G|ξ[i . . . j]]

 ,

where Pr[G = (. . .)kG′|ξ[i . . . j]] = Qb
ik·Qk+1,j

Qi,j
.



Now∑
G=(...)kG′

dG′(i, j)Pr[G|ξ[i . . . j]] =
∑
G′

∑
G′′=(G′′′)k

dG′(i, j)Pr[G′′G′|ξ[i . . . j]]

=
∑
G′

∑
G′′=(G′′′)k

dG′(i, j)
exp(E(G′′)/kT ) exp(G′/kT )

Qij

=
∑
G′

∑
G′′=(G′′′)k

dG′(i, j)
exp(E(G′′)/kT ) exp(G′/kT )

Qij

=
∑
G′

dG′(i, j)

(∑
G′′=(G′′′)k

exp(E(G′′)/kT )
)

exp(G′/kT )

Qij

=
∑
G′

dG′(i, j)
Qbi,k exp(G′/kT )

Qij

Now we can again simply extend by Qk+1,j , getting

=
∑
G′

dG′(i, j)
Qbi,k ·Qk+1,j · exp(G′/kT )

Qij ·Qk+1,j

=
∑
G′

dG′(i, j)
Qbi,k ·Qk+1,j

Qij
· exp(G′/kT )

Qk+1,j

= Pr[G = (. . .)kG′|ξ[i . . . j]]
∑
G′

dG′(i, j)Pr[G′|ξ[k + 1 . . . j]]

= Pr[G = (. . .)kG′|ξ[i . . . j]] · E[dG(k + 1, j)]

Overall we get

ELbp(k) = (b+ E[dG(k + 1, j)]) · Pr[G = (. . .)kG′|ξ[i . . . j]]

and thus the second summand.

Appendix D: Recurrsions of different cases for ZB,v
i,j .

Now there are three sub-cases (see Figure 2). If −b < dadd < +b, then we know
that neither a shortest path v

p
 i nor v

p
 j uses the arc {i, j}. The left distance

is thus given by d` − d′`. Using the shortcuts dr = d` + dadd and d′r = d′` + d′add,
then the distance between l and j must be dr−d′r = (d`+dadd)− (d′`+d′add). If,
on the other hand, dadd = +b, then we know that there is at least one shortest
path that can be composed by using a shortest path v  i, followed by the arc
{i, j}. This of course implies that the shortest path v

p
 j is has exactly the

length d` + b, or is larger. For a sub-path l + 1
p′

 j this implies that the length
is greater or equal d = dr − d′r = (d` + b) − (d′` + d′add). Thus, we just have to



Fig. 2. Different cases for ZB,v
i,j [d`, d` + dadd]. The values that are choose to split d`

and dadd are indicated in green and blue. When the arc {i, j} is colored violet, then
there is a shortest path that does not use the distance marked in red but uses the other
direction together with the arc (i, j).

add all partition functions ZI
′

k,j [d
′] with d′ > d. This can be done efficiently by

using a precalculated matrix ZI
′≥
i,j [d], which is defined as

∑
d′≥d Z

I′

i,j [d
′]. Note

that ZI
′≥
i,j [d] can also be defined if we restrict in all recursion the distance d

to a threshold θd, since ZI
′≥
i,j [d] =

∑
d′≥d Z

I′

i,j [d
′] = Q′i,j −

∑
d′<d Z

I′

i,j [d
′]. In

which, where Q′i,j is Qi+1,j−1 if j > i+ 1, 1 if j = i+ 1 and 0 otherwise. Note,
furthermore, that all ZI

′

i,j [d
′] for d′ < d ≤ θd are calculated when we restrict the

distance to θd

Finally, if dadd = −b, then the shortest path l
p
 j has distance (d` − b) −

(d′` + d′add). For the shortest path k
p
 i, we know that it has length d` − d′`

or greater, which can be resolved by again using ZI
′≥
i,k−1[d` − d′`]. Overall, we

get the following optimized recursion for ZB,vi,j [d`, d` + dadd] with d` 6= 0 and



d` + dadd 6= 0:

ZB,vi,j [d`, d` + dadd] =

Q̂bi,j ·



∑
k 6=l

i<k≤v
v≤l<j

∑
d′

`≤d`

∑
d′
add

−b≤d′
add≤b

(
ZI

′

i,k[d` − d′`] · Z
B,v
k,l [d′`, d

′
` + d′add]

·ZI′

l,j [(d` + dadd)− (d′` + d′add)]

)
if −b < dadd < b

∑
k 6=l

i<k≤v
v≤l<j

∑
d′

`≤d`

∑
d′
add

−b≤d′
add≤b

(
ZI

′

i,k[d` − d′`] · Z
B,v
k,l [d′`, d

′
` + d′add]

·ZI
′≥
l,j [(d` + b)− (d′` + d′add)]

)
if dadd = b

∑
k 6=l

i<k≤v
v≤l<j

∑
d′

`≤d`

∑
d′
add

−b≤d′
add≤b

(
ZI

′≥
i,k [d` − d′`] · Z

B,v
k,l [d′`, d

′
` + d′add]

·ZI′

l,j [(d` − b)− (d′` + d′add)]

)
if dadd = −b
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