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The currently fastest algorithm for RNA Single Strand Folding requires O (nZ) time and Θ(n2)

space, where n denotes the length of the input string and Z is a sparsity parameter
satisfying n � Z < n2. We show how to reduce the time and space complexities of this
algorithm in the sparse case. The space reduction is based on the observation that some
solutions for sub-instances are not examined after a certain stage of the algorithm, and
may be discarded from memory. The running time speed up is achieved by combining
two independent sparsification criteria, which restrict the number of expressions that need
to be examined in bottleneck computations of the algorithm. This yields an O (n2 + P Z)

time and Θ(Z) space algorithm, where P is a sparsity parameter satisfying P < n � Z �
n(P +1). For the base-pairing maximization variant, the time complexity is further reduced
to O (L Z), where L denotes the maximum number of base-pairs in a folding of the input
string and satisfies L � n\2.
The presented techniques also extend to the related RNA Simultaneous Alignment and
Folding problem. For an input composed of two strings of lengths n and m, the time and
space complexities are reduced from O (nmZ̃) and Θ(n2m2) down to O (n2m2 + P̃ Z̃) and
Θ(nm2 + Z̃) respectively, where Z̃ and P̃ are sparsity parameters satisfying P̃ < nm � Z̃ <

nm( P̃ + 3).
A preliminary extended abstract of this work previously appeared in Backofen et al. (2009)
[5]. Code implementations (in Java) may be downloaded from: http://www.cs.bgu.ac.il/
~zakovs/RNAfold/SparseFold.zip.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The structure of RNA is evolutionarily more conserved than its sequence and is thus key to its functional analysis [7].
Unfortunately, although massive amounts of sequence data are continuously generated, the number of known RNA struc-
tures is still relatively limited, since experimental methods, such as NMR and Crystallography, require expertise and long
experimental time. Therefore, computational methods for predicting RNA structures are of significant value [40,21,39].

RNA is typically produced as a single stranded molecule, which then folds upon itself to form a number of short base-
paired helices. This base-paired structure is called the secondary structure, or the folding of the RNA molecule. Secondary
structures rarely contain pseudoknots (i.e. crossing base pairs). Under the assumption that the structure does not contain
pseudoknots, a model was proposed by Tinoco et al. [31] to estimate the stability (in terms of free energy) of a folded
RNA molecule by summing all contributions from the stabilizing, consecutive base pairs and from the loop-destabilizing
terms in the secondary structure. Based on this model, dynamic programming algorithms were suggested for estimating
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Table 1
Time and space complexities of RNA folding algorithms. For SSF variants, n denotes the length of the input string. For SAF, n and m denote the lengths of the
two input strings. D(n) stands for the time complexity of computing the distance product of two n × n matrices, where the best current bound on D(n) is
O (n3 log3 log n/ log2 n) [8]. The sparsity parameters are bounded as follows: for SSF, L � n/2, P < n � Z � n(P + 1), and for SAF, P̃ < nm � Z̃ < nm( P̃ + 3).

Previous results Our results

Time Space Time Space

SSF base-pairing
maximization

Θ(n3) [26] Θ(n2) O (L Z) Θ(Z)

O (nZ) [34]
Θ(D(n)) [1]

SSF energy
minimization

Θ(n3) [41] Θ(n2) O (n2 + P Z) Θ(Z)

O (nZ) [34]
Θ(D(n)) [1]

SAF Θ(n3m3) [28] Θ(n2m2) O (n2m2 + P̃ Z̃) Θ(nm2 + Z̃)

O (nmZ̃) [38]
Θ(D(nm)) [37]

the most stable structures [33,26,41,1,34], applying various scoring criteria such as the maximal number of base pairs [26]
or the minimal free energy [41]. This optimization problem is denoted here as the RNA Single Strand Folding (SSF) problem,
and the time and space complexities of the classical algorithms for solving it are Θ(n3) and Θ(n2), respectively, where
n denotes the length of the input RNA string. Recently, these results were sped up to yield O (nZ) time and Θ(n2) space
algorithms [34], where Z is a sparsity parameter that satisfies n � Z < n2. On a more theoretical front, Akutsu suggested an
Θ(D(n)) time and Θ(n2) space algorithm for this problem [1], where D(n) is the time for computing the distance product
of two n × n matrices. The best current bound on D(n) is O (n3 log3 log n/ log2 n) [8]. An additional technique which also
allows to obtain a slightly sub-cubic running time was presented by Frid and Gusfield [14], resulting with an Θ(n3/ log n)

running time algorithm.
Another approach to RNA folding prediction is RNA Simultaneous Alignment and Folding (SAF) [28,25,18,38,35]. This ap-

proach consists of finding an optimal alignment between a set of RNA strings, where an alignment score is evaluated with
respect to some common folding of the input strings. However, as stated in [16], even for the simple case where the in-
put consists of only two strings, this approach requires “extreme amounts of memory and space” with time complexity of
Θ(n3m3) and space complexity of Θ(n2m2), where n and m are the lengths of the input RNA strings to be aligned. Thus,
most existing practical implementations of this algorithm [25,18,35] use restricted versions of the original problem. Since
these restrictions introduce another source of error, it is of utmost practical importance to the research on RNA to improve
both the space and time complexities of the full version of SAF. A first non-heuristic speedup, which does not sacrifice the
optimality of results, was recently described in [38]. This work extends the approach of [34] and yields an O (nmZ̃) time
and Θ(n2m2) space algorithm for the SAF problem, where Z̃ is a sparsity parameter that satisfies nm � Z̃ < n2m2. However,
experimental analysis of this algorithm indicates that the high memory requirements is a major bottleneck in practice, both
in constraining the lengths of the input strings, as well as in exhausting the benchmark machine’s memory, which in turn
results in a page-fault slowdown (for example, for n = m = 300, the data structure requires about 8 Gigabyte of memory).
Theoretical approaches for improving the running time of the SAF problem were recently presented [37,15]. Nevertheless,
these methods are not expected to yield a significant improvement to the running time in practice, and do not improve the
space complexity of the original algorithm.

Our contribution

The main contributions in this paper are as follows.

(1) Reducing the space requirements of the SSF problem in the sparse cases. The space requirement reduction is based on the
observation that some solutions for subproblems are not examined after a certain stage of the algorithm, and may be
discarded from memory. This yields an O (nZ) time and Θ(Z) space algorithm for this problem (Section 3).

(2) Reducing the time complexity of the SSF problem in the sparse cases. We describe a faster algorithm that exploits an additional
sparsity parameter P , satisfying P < n � Z � n(P + 1). By combining forward dynamic programming (previously used
in [17,32,22] for related problems) with the utilization of the triangle inequality property [34], we reduce the number
of sub-instance pairs that need to be considered by the algorithm and obtain an O (n2 + P Z) time and Θ(Z) space
algorithm (Section 4.1). For the base-pairing maximization variant of the problem we show that P = L � n/2, where
L denotes the maximum cardinality of a folding of the input string, and further reduce the running time to O (L Z)

(Section 4.2).
(3) Extending the time and space complexity reductions to the SAF problem. The presented sparsification techniques are adapted

to the SAF problem (Section 5). The time and space complexities of the sparse algorithm are O (n2m2 + P̃ Z̃) and
Θ(nm2 + Z̃), respectively, where P̃ � nm � Z̃ � nm( P̃ + 3).
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In addition to the optimal folding score computation, we show a trace-back procedure which outputs a corresponding
optimal secondary structure. Note that it is an interesting challenge in its own right to recover an optimal folding within the
time and space complexity bounds of the space-reduced algorithm, since due to the sparse representation only partial infor-
mation is kept. The presented strategy may be applied to various scoring schemes, including the base pairing maximization
and free energy minimization scoring schemes. The improved complexities are summarized in Table 1.

We note that the algorithms described here are practical in the sense that the hidden constants are small (i.e. no complex
data structures or subroutines are used, which might imply a long running time in practice). In the context of practical
contribution, we also point out that our space complexity improvements are more significant than the time complexity
improvements, since both Z and Z̃ were experimentally shown to be significantly less than n2 and n2m2, respectively [34,
38]. Furthermore, reducing the space complexity of the SAF problem is a key result in practice, as in the previous results
the space complexity typically dictated the computational bottleneck [16,38].

RoadMap: The rest of the paper proceeds as follows. Preliminary notation and definitions are given in Section 2. Section 3
presents the basic dynamic programming algorithm for the SSF problem, and shows how to improve its space complexity.
Section 4 introduces an additional sparsity property of the SSF domain, and shows how to utilize this property in order
to speed up the algorithm. In Section 5, the presented modifications are scaled up to the SAF domain. Section 6 presents
experimental results for the base-paring maximization variant of the SSF problem, and a concluding discussion summarizes
the paper in Section 7.

2. Preliminaries

RNA is typically produced as a single stranded molecule, composed as a sequence of bases (or nucleotides), which then
folds upon itself to a structural conformation. This structural conformation is stabilized by hydrogen bonds which are formed
between different bases in the sequence. There are four types of bases, denoted by the letters A, C, G , and U . Every base in
the sequence can form a bond with at most one other base, where bases of type C typically pair with bases of type G , A
typically pairs with U , and another weaker pairing can occur between G and U . Two bases which can pair with each other
are called complementary bases, and the bond which is formed between two complementary bases is called a base-pair. The
set of formed base-pairs is called the secondary structure, or the folding of the RNA molecule, as apposed to the tertiary
structure which is the actual three-dimensional molecule structure. Paired bases almost always occur in a nested fashion in
RNA secondary structures. Informally, this means that if we draw arcs connecting base pairs over an RNA sequence, none
of the arcs cross each other. When non-nested base pairs occur, they are called pseudoknots. In this work, we consider only
pseudoknot-free foldings. In what follows we give the basic formal definitions and notations for the RNA Single Strand Folding
problem (SSF).

An SSF instance is an RNA string S = s1s2 · · · sn , over the alphabet of base types {A, C, G, U }. Denote by |S| the length of
S , and call an instance S with |S| = 0 an empty instance. Denote by Si, j the substring (or sub-instance) of S between indices
i and j (inclusive), where Si,i−1 is defined to be an empty instance. For two sub-instances Si, j and Sk,l , say that Sk,l is a
sub-instance of Si, j if i � k � l � j, where it is a strict sub-instance if Sk,l �= Si, j .

Definition 1. A folding F of a sub-instance Si, j is a set of index pairs that satisfies the following:

1. For every (k, l) ∈ F , i � k < l � j.
2. There are no (k, l), (k′, l′) ∈ F , such that k � k′ � l � l′ .

Say that an index k is paired in a folding F if k appears in a base-pair in F , otherwise k is unpaired in F .
Let q be an index such that i < q � j. Say that a folding F of Si, j admits the split-point q if for every (k, l) ∈ F , either l < q

or k � q (see Fig. 1). In other words, a folding F admits the split-point q if q implies a partition of F into two independent
foldings: one for the non-empty prefix sub-instance Si,q−1, and one for the non-empty suffix sub-instances Sq, j . Denote by
Q i, j = {q: i < q � j} the set of all possible split-points with respect to Si, j .

We distinguish between two kinds of foldings. A folding F is called partitionable with respect to Si, j if it admits at least
one split-point in Q i, j . Otherwise, F is called co-terminus with respect to Si, j . Observe that in the case where Q i, j = ∅
(i.e. j = i or j = i − 1) the only possible folding is the empty folding, and it is a co-terminus folding for such instances by
definition. In the case where Q i, j �= ∅ (i.e. j > i), a folding is co-terminus if and only if it contains the base pair (i, j): On
one hand, a folding containing (i, j) clearly admits no split-point in Q i, j . On the other hand, if j is unpaired in F then F
admits the split-point j, and if F contains a base-pair (q, j) for some i < q < j, then F admits the split-point q (Fig. 1).

An SSF scoring scheme score is a function which evaluates the qualities of foldings with respect to instances, where
score(S, F ) > score(S, F ′) implies that the folding F is of better quality than F ′ , with respect to the instance S . Next, we
formally define the SSF problem.

Problem 1 (SSF). Let score be some SSF scoring scheme, and S an SSF instance with |S| = n. Let Di, j denote the set of all
possible foldings of the sub-instance Si, j .



Author's personal copy

R. Backofen et al. / Journal of Discrete Algorithms 9 (2011) 12–31 15

Fig. 1. Example of foldings. The left folding is a partitionable folding, admitting the split-points 6,7, and 9. The right folding is a co-terminus folding,
containing the base-pair (1,9) and admitting no split-points.

Fig. 2. A schematic illustration of the recursion of Eqs. (2.1), (2.2), and (3.1) (Lc is illustrated with respect to the base-pairing maximization scoring scheme,
where the notation s j = s̄i implies that the bases si and s j are complementary).

• The SSF-optimization problem is to calculate L(1,n), where

L(i, j) = max
F∈Di, j

{
score(Si, j, F )

}
.

• The SSF-search problem is to find a folding F ∗ of S that satisfies score(S, F ∗) = L(1,n) (call such folding optimal under
the scoring scheme score).

We call L(i, j) the solution for the sub-instance Si, j . We also distinguish between co-terminus and partitionable solutions,
where Lc(i, j) and L p(i, j) denote the maximum scores (or the solutions) of a co-terminus and a partitionable folding of the
sub-instance Si, j , respectively. Since every folding is either co-terminus or partitionable, we get the following equation:

L(i, j) = max
{

Lc(i, j), Lp(i, j)
}
. (2.1)

Many of the current popular folding prediction tools follow the same algorithmic framework. These tools use dynamic
programming for computing solutions for all sub-instances of the input instance S in a bottom-up manner, and then apply a
trace-back procedure over the dynamic programming table in order to report one or more optimal (or sub-optimal) foldings
of S . The tools differ mainly in the scoring schemes they define, as well as in some implementation aspects, though the
algorithms they apply are similar from a combinatorial point of view. Typical scoring schemes are based on folding free
energy [30,41,21], and on reductions to stochastic context free grammar parsing and parameter learning approaches [27,11,
12,3].

Note that for small trivial instances Si, j with j = i or j = i − 1, Q i, j = ∅ and thus such instances have no partitionable
folding by definition. We define in such cases that L p(i, j) = −∞. The only folding for such instances is the empty folding
which contains no base-pairs, and by definition it is considered a co-terminus folding with respect to these instances. We
assume that for trivial instances, the solution L(i, j) = Lc(i, j) can be computed explicitly in constant time, and for instances
with j > i, the scoring scheme sustains the following recursive equations:

Lc(i, j) = f
(
L(i + 1, j − 1), si, s j

)
, (2.2)

Lp(i, j) = max
q∈Q i, j

{
L(i,q − 1) + L(q, j)

}
, (2.3)

where f is a function that can be evaluated in constant time. That is, the co-terminus solution of Si, j can be obtained in
constant time from the solution of the internal sub-instance Si+1, j−1, combined with some local score expression due to the
addition of the base-pair (i, j). The partitionable solution can be obtained by examining all possible split-points q ∈ Q i, j ,
and summing the solutions of the prefix Si,q−1 and the suffix Sq, j . Fig. 2 illustrates the recursive score computation of
Eqs. (2.1), (2.2), and (2.3).
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Fig. 3. An OCT instance. Both optimal foldings of the presented string pair between the first and last bases of the string.

A simple example for a scoring scheme that follows the above equations is the base pairing maximization (bpm) scoring
scheme [26], which aims to find foldings with maximum number of base-pairs between complementary bases and no
base-pairs between non-complementary bases. Here, the computation of the co-terminus score is given by

Lc(i, j) =
{

L(i + 1, j − 1) + 1, s j and si are complementary,

−∞, otherwise.
(2.4)

Most scoring schemes follow similar recursive score computations (see the discussion in Section 7), and all techniques
presented in this paper, except for the “step encoding” technique of Section 4.2, may be easily extended to more realistic
scoring schemes by applying minor adjustments. The core property which yields the presented computational improvements
is the (inverse) triangle inequality property, which is common to most scoring schemes, thus allowing to reduce the complexity
in a family of RNA folding algorithms. This property is defined below:

Property 1 (Triangle inequality). A scoring scheme sustains the triangle inequality property if for every sub-instance Si, j and for every
split-point q ∈ Q i, j , L(i, j) � L(i,q − 1) + L(q, j).

Observe that any scoring scheme that follows Eqs. (2.1) and (2.3), sustains the triangle inequality property. In the rest of
this paper, we use L instead of L(1,n) whenever the context is clear.

3. Space efficient algorithm for SSF

In this section we show how to reduce the space requirement of algorithms for the SSF problem. We do so by observing
that a property that was previously suggested for reducing the time complexity of SSF algorithms, may also be utilized to
reduce their space complexity. Section 3.1 describes the technique to reduce the time complexity of the dynamic program-
ming implementation of the recursive computation, due to [34]. Section 3.2 shows how to extend this technique to reduce
also the space requirement of the algorithm by sparsifying the dynamic programming table. Section 3.3 shows how to solve
the search problem by tracing-back the sparse dynamic programming table.

3.1. Using OCT sub-instances for time complexity reduction

Note that the time complexity bottleneck in algorithms which implement the recursive computation of Eqs. (2.1), (2.2),
and (2.3) is dictated by the consideration of O (n) split-points q in the computation of L p(i, j), according to Eq. (2.3). In this
section, as well as in Section 4, we describe techniques that reduce the number of split-points that need to be considered
in the computation of L p(i, j), and thus improve the time complexity of such algorithms.

Based on the triangle inequality property, Wexler et al. [34] observed that it is sufficient to examine only a subset of the
split-points in order to compute L p(i, j). We present here a slightly different notation for the same concept, and supply a
proof for the main claim in [34] for completeness.

Definition 2 (OCT). A sub-instance Si, j is optimally co-terminus (OCT) if every optimal folding of Si, j is co-terminus (that is,
if L(i, j) = Lc(i, j) > L p(i, j), see Fig. 3).

Note that any sub-instance of length 1 is an OCT by definition, since it has no partitionable folding. For a sub-instance
Si, j with j > i, call a split-point q ∈ Q i, j for which L p(i, j) = L(i,q − 1) + L(q, j), an optimal split-point with respect to Si, j .

Lemma 1. (See Wexler et al. [34].) For every sub-instance Si, j with j > i, there is an optimal split-point q ∈ Q i, j such that Sq, j is an
OCT.

Proof. Let q be an optimal split-point with respect to Si, j such that |Sq, j| is minimal. If q = j, then Sq, j is an OCT. Otherwise,
let q′ be any index in Q q, j . From the selection of q and since |Sq′, j| < |Sq, j |, it follows that L(i,q − 1) + L(q, j) > L(i,q′ −
1) + L(q′, j). From the triangle inequality property we have that L(i,q′ − 1) � L(i,q − 1) + L(q,q′ − 1). Therefore, L(q, j) >

L(q,q′ − 1) + L(q′, j) for every q′ ∈ Q q, j , and since L p(q, j) = maxq′∈Q q, j {L(q,q′ − 1) + L(q′, j)} < L(q, j), it follows that Sq, j
is an OCT. �

Define the following subset of split-points with respect to Si, j :

Q oct
i, j = {q ∈ Q i, j: Sq, j is an OCT}.
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Fig. 4. A schematic illustration of Eq. (3.1). Only split-points that induce OCT suffixes are examined.

The following equation restates Eq. (2.3), based on Lemma 1, by restricting the split-points considered by the maximiza-
tion term to those in Q oct

i, j . Fig. 4 illustrates the modified computation of L p .

Lp(i, j) = max
q∈Q oct

i, j

{
L(i,q − 1) + L(q, j)

}
. (3.1)

We define the following sparsity measure of RNA strings.

Definition 3. For an SSF instance S , Z(S) is the number of substrings of S which are OCTs.

In the rest of this paper, we use Z instead of Z(S) whenever the context is clear. In the sparse case, only a small portion
of all Θ(n2) substrings of S are OCTs. Since every sub-instance of length 1 is an OCT, Z � n. For the minimum free energy
scoring scheme, an estimation of the expected value of a parameter related to Z can be found in [34]. This estimation
is based on a probabilistic model for polymer folding and measured by simulations, and it shows that on average Z is
significantly smaller than Θ(n2).

The standard dynamic programming algorithm for SSF performs a bottom-up computation of the recurrence. The al-
gorithm computes the upper triangle of a table Mn×n , where each cell M[i, j] stores the corresponding value L(i, j). The
entries of M are traversed in an order which guarantees that all values that are needed for the computation of M[i, j]
according to the recurrence formula are computed and stored in M prior to the computation of M[i, j]. Upon termination,
M[1,n] holds the value L(1,n). This algorithm requires Θ(n2) space in order to maintain the table M . For each of the
Θ(n2) sub-instances Si, j , the time complexity for computing the value of the corresponding entry M[i, j] is dictated by the
computation of L p(i, j). If this computation is conducted according to Eq. (2.3), Θ(n) operations are performed on average,
and thus the total time complexity is Θ(n3). Using the improvement of [34], the computation takes Θ(|Q oct

i, j |), and the total
time complexity reduces to O (nZ), since

n−1∑
i=1

n∑
j=i+1

∣∣Q oct
i, j

∣∣ �
n−1∑
i=1

n∑
j=i+1

∣∣Q oct
1, j

∣∣ �
n−1∑
i=1

Z < nZ .

3.2. Reducing the space complexity of the optimization problem

Our space reduction strategy is based on the observation that some of the values stored by the algorithm of [34] are not
necessary throughout the complete run of the algorithm. In the following lemma we characterize the values that need to
be maintained in memory for the computation of L(i, j).

Lemma 2. For a sub-instance Si, j , it is possible to compute L(i, j) by examining only values L(a,b) for strict sub-instances Sa,b of Si, j ,
which sustain that either a = i, a = i + 1, or Sa,b is an OCT.

Proof. Immediate from Eqs. (2.1), (2.2) and (3.1). �
Consider a dynamic programming algorithm that fills the table M by traversing its entries row by row from bottom

to top, and each row from left to right. Lemma 2 implies that at the stage where M[i, j] is computed, it is sufficient to
keep only the values in the currently computed ith row, the values in the recently computed (i + 1)th row, and values in
entries that correspond to OCT sub-instances of S . Thus, there is no need to maintain the complete table M in memory, but
rather, at each stage, entries which are guaranteed not to be further examined by the algorithm may be discarded. Such a
modification may be implemented by maintaining two Θ(n) arrays for the current and last computed rows, and in addition
an implementation of the sparse table M by using n OCT-lists. Each OCT-list corresponds to a column in M , and contains
solutions only for OCT sub-instances. Note that these OCT-lists are always updated by adding elements to their ends, and
the elements in these lists are always queried in a sequential manner. Thus, a simple implementation (such as a Linked List
implementation) can allow that both insertion and query time for the entries in the sparse representation of M would take
O (1) running time. This gives a total space complexity of Θ(n + Z) = Θ(Z). The modification does not affect the running
time of the algorithm, maintaining the time complexity of O (nZ).

Algorithm 1 gives the pseudo-code of the algorithm described above, and Fig. 5 illustrates its run. The time and space
complexities are summarized in the following lemma.

Lemma 3. Algorithm 1 computes L(1,n) for a given instance S of length n, in O (nZ) time and Θ(Z) space.
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Algorithm 1: Space efficient RNA folding
input : An RNA string S = s1s2 · · · sn

output: L(1,n)

for i ← n down to 1 do1
set explicitly the values of M[i, i − 1] and M[i, i] to the solutions for the corresponding trivial sub-instances;2
mark Si,i as an OCT;3
for j ← i + 1 to n do4

set M[i, j] ← maxq∈Q oct
i, j

{M[i,q − 1] + M[q, j]};5
compute Lc(i, j) = f (M[i + 1, j − 1], si , s j);6
if M[i, j] < Lc(i, j) then7

set M[i, j] ← Lc(i, j);8
mark Si, j as an OCT;9

discard from memory the values in all entries in row i + 1 of M that do not correspond to OCT sub-instances;10

return M[1,n];11

Fig. 5. An exemplification of Algorithm 1. The left figure shows the complete table M with respect to the RNA string S = ACAGUUGCA, and the base pairing
maximization scoring scheme. Grayed entries correspond to OCT sub-instances. The figure in the middle demonstrates a snapshot of the entries maintained
by the algorithm at the stage where M[2,7] is computed. At this stage, the algorithm examines the sum of M[2,6] and M[7,7] to compute Lp(2,7) (note
that Q oct

2,7 = {7}), and M[3,6] + 1 to compute Lc(2,7) (s7 and s2 are complementary bases). Since Lc(2,7) = 2 > 1 = Lp(2,7), the sub-instance S2,7 is
marked as an OCT. The right figure shows the computation of the next entry, M[2,8]. Here, the evaluation of Lp(2,8) examines the sum of M[2,6] and
M[7,8], and the sum of M[2,7] and M[8,8] (since Q oct

2,8 = {7,8}). Lc(2,8) = −∞, since s8 and s2 are not complementary.

3.3. Folding reconstruction

The previous section showed how to reduce the space requirement of the SSF optimization problem. In this section,
we explain how to reduce the space requirement for the search problem as well. The standard technique for reporting
an optimal folding applies a trace-back procedure over the full folding score table M , in O (n2) time (or in O (n) time, if
additional O (n2) pointers are maintained throughout the score computation phase) [13]. In this section we show how to
reconstruct an optimal folding given the sparse representation of M , without exceeding the time and space complexities of
our folding algorithm. Note that this is a challenging task, as the classical trace-back algorithm requires the availability of
the full table M , while our algorithm stores only partial information.

Assume that the full table M is given, with annotated OCT sub-instances. The basic recursive folding reconstruction
algorithm [13] could be modified as follows to utilize the OCT sub-instances:

1. For j � i, the only (optimal) folding of Si, j is the empty folding, and the algorithm halts without reporting any base-pair.
2. For j > i, if Si, j is an OCT, the algorithm reports the pair (i, j) and is called recursively on the sub-instance Si+1, j−1.
3. Otherwise, Si, j is partitionable, and therefore the algorithm finds an index q ∈ Q oct

i, j for which M[i, j] = M[i,q − 1] +
M[q, j] and then continues by computing an optimal folding of Si,q−1 and of Sq, j . An optimal folding of Si,q−1 is
obtained by calling the algorithm recursively with the sub-instance Si,q−1. As for computing an optimal folding of Sq, j ,
note that Sq, j is an OCT, and consider the two cases, where either q = j or q < j. If q = j, then there is no need for
another recursive call. Otherwise q < j, and an optimal folding of Sq, j is obtained by first reporting the base-pair (q, j)
and then calling the algorithm recursively with the sub-instance Sq+1, j−1.

When calling the above algorithm to compute the folding traceback of Si, j , recursive calls with three different sub-
instances could be initiated at the top level: Si−1, j−1, Sq+1, j−1 and Si,q−1, thus index j is eliminated from further consider-
ation as an end index. Therefore, each recursive call is performed with a different end index j, and altogether there are at
most n recursive calls in the whole computation. For a recursive call in which the end index is j, at most O (|Q oct

1, j |) opera-

tions are preformed in order to find an index q ∈ Q oct
i, j for which M[i, j] = M[i,q − 1] + M[q, j]. Since

∑
1� j�n |Q oct

1, j | = Z ,
the total running time is O (Z).
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We next address the challenge of reconstructing an optimal folding from the sparse table M computed in Section 3.2.
The algorithm described above cannot be applied directly in this case, due to the fact that when the algorithm needs to
find q ∈ Q oct

i, j for which M[i, j] = M[i,q − 1] + M[q, j], the values M[i, j] and M[i,q − 1] may have been discarded from
memory (while M[q, j] is maintained in memory since Sq, j is an OCT). In order to overcome this difficulty we adopt a
similar approach as of the algorithm of Hirschberg [19], namely performing on-demand value re-computations of discarded
entries. Thus, it remains to show how to recover such deleted entries.

Lemma 4. Given the sparse table M that contains folding scores for OCT sub-instances, there is an algorithm that recovers the set of
entries M[i, i], M[i, i + 1], . . . , M[i, j], for any given pair of indices i and j, in O (Z) time.

Proof. The entries of the form M[i, j′] which have been discarded from memory correspond to partitionable sub-instances,
where L(i, j′) = L p(i, j′), and thus may be recomputed based solely on Eq. (3.1). Observe that this computation examines
only entries of the form M[i,q − 1] for q � j′ , and M[q, j′] for OCT sub-instances Sq, j′ . Re-computing the entries of the
ith row from left to right guaranties that upon computing M[i, j′], all necessary values for the computation of L p(i, j′)
are already stored in M . For each i < j′ � j, there are O (|Q oct

1, j′ |) operations performed along this computation, due to the

consideration of split-points in the set Q oct
i, j′ . As before, summing this expression over all i < j′ � j accumulates to O (Z)

time complexity. �
We next show that, throughout the full run of the algorithm, the process of restoring row entries is applied once for every

reported base-pair. Consider the case where the trace-back algorithm is applied on Si, j and assume that the set of entries
M[i, i +1], M[i, i +2], . . . , M[i, j] was already restored. Note that a recursive call with a sub-instance of the form Si,q−1 does
not require the restoration of the entries M[i, i + 1], M[i, i + 2], . . . , M[i,q − 1], as (by the assumption) they have already
been restored and are maintained in M . The other two possible recursive calls with sub-instances of the form Si+1, j−1 or
Sq+1, j−1, do require re-computation of entries in M (in rows i +1 or q+1, correspondingly). However, observe that each call
of the latter kind is preceded by a detection of a base-pair. Since throughout the full run of the algorithm at most n/2 base
pairs are detected, we get that the row entry recovery only needs to be executed O (n) times (in addition to the recovery
of M[1,1], M[1,2], . . . , M[1,n] during initialization). Thus, according to Lemma 4, the entry recovery procedure contributes
an additional O (nZ) factor to the total time complexity of the trace-back algorithm, matching the time complexity of the
computation of M .

Furthermore, note that upon performing such a re-computation of an entry set, there is no need to further maintain the
values in M[i, i + 1], M[i, i + 2], . . . , M[i, j] in the case where Si, j is co-terminus, nor to keep the values in M[i,q], M[i,q +
1], . . . , M[i, j] in the case where Si, j is partitionable. This allows to discard these values from memory before the re-
computation of the entry set for the corresponding sub-instance, guaranteeing that at each stage, at most n recovered
entries are maintained in the sparse table M , in addition to the already existing OCT corresponding entries. Therefore, the
space complexity of the trace-back algorithm remains Θ(Z + n) = Θ(Z).

Algorithm 2 below implements the space efficient trace-back scheme. Its time and space complexities are stated in
Lemma 5.

Algorithm 2: Folding-Traceback (M)

input : A sparse table M that contains solutions for all OCT sub-instances of an instance S
output: An optimal folding of S

call Restore-entries (M,1,n);1
call Rec-Folding-Traceback (M,1,n);2

Procedure Restore-entries(M, i, j)
input : A sparse table M that contains solutions for all OCT sub-instances of an instance S , and two internal indices i and j
output: The table M after restoring values in the entries M[i, i], M[i, i + 1], . . . , M[i, j]
for j′ = i + 1 to j do1

if M[i, j′] is discarded then2
set M[i, j′] ← maxq∈Q oct

i, j′
{M[i,q − 1] + M[q, j′]};3

Lemma 5. Given the sparse table M that contains folding scores for all OCT sub-instance of an instance S, Algorithm 2 computes an
optimal folding of S in O (nZ) time and Θ(Z) space.

4. Reducing the time complexity

In this section we show how to further restrict the set of split-points which are examined in the computation of L p ,
thus reducing the bottleneck computation of the algorithm. We introduce an additional sparsity parameter P , satisfying
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Procedure Rec-Folding-Traceback(M, i, j)
input : A sparse table M that contains folding scores of all OCT sub-instances of an instance S , as well as folding scores for the sub-instances

Si,i , Si,i+1, . . . , Si, j for the two given indices i and j
output: An optimal folding of Si, j

if i < j then1
if Si, j is an OCT then2

output the pair (i, j);3
discard from memory the values in all non-OCT entries M[i, i], M[i, i + 1], . . . , M[i, j];4
call Restore-entries (M, i + 1, j − 1);5
call Rec-Folding-Traceback (M, i + 1, j − 1);6

else7
find q ∈ Q oct

i, j s.t. M[i, j] = M[i,q − 1] + M[q, j];8
discard from memory the values in all non-OCT entries M[i,q], M[i,q + 1], . . . , M[i, j];9
if q < j then10

output the pair (q, j);11
call Restore-entries (M,q + 1, j − 1);12
call Rec-Folding-Traceback (M,q + 1, j − 1);13

call Rec-Folding-Traceback (M, i,q − 1);14

Fig. 6. A schematic illustration of Eq. (4.1). The split-point i +1 is examined explicitly, as well as all split-points that induce a STEP-prefix-OCT-suffix pattern.

P < n � Z � n(P + 1), and show in Section 4.1 how to reduce the running time of the algorithm from O (nZ) to O (n2 + P Z).
In Section 4.2 we further reduce the time complexity to O (L Z) for the base-pairing maximization scoring scheme. Both
algorithms have the same space complexity as of Algorithm 1, which is O (Z).

4.1. An O (n2 + P Z) algorithm

Similarly to the previously presented technique, we next show another dominance relation which can be utilized to
further constrain the set of split-points examined in the computation of L p(i, j).

Definition 4 (STEP). Call a sub-instance Si, j , with j > i, a STEP, if L(i, j) > L(i, i)+ L(i +1, j) (i.e. none of the optimal foldings
of Si, j admits the split-point i + 1).

Observe that if Si, j is a STEP, it implies that i is paired in every optimal folding of Si, j . In the following lemma we
further restrict the split-points which need to be examined in a recursive computation of L p(i, j).

Lemma 6. For any sub-instance Si, j such that j > i, there is an optimal split-point q with respect to Si, j such that either q = i + 1, or
Si,q−1 is a STEP and Sq, j is an OCT.

Proof. According to Lemma 1, there is an optimal split-point q ∈ Q oct
i, j (where the suffix Sq, j is an OCT) such that L p(i, j) =

L(i,q − 1) + L(q, j). If the prefix Si,q−1 is a STEP, the lemma holds. Otherwise, L(i,q − 1) = L(i, i) + L(i + 1,q − 1), and
from the triangle inequality property, L p(i, j) = L(i, i) + L(i + 1,q − 1) + L(q, j) � L(i, i) + L(i + 1, j) � L p(i, j). Therefore,
L p(i, j) = L(i, i) + L(i + 1, j), and i + 1 is an optimal split-point with respect to Si, j . �

Define the following subset of split-points with respect to Si, j :

Q step-oct
i, j = {q ∈ Q i, j: Si,q−1 is a STEP and Sq, j is an OCT}.

The following equation restates Eq. (3.1), based on Lemma 6. Fig. 6 illustrates the modified computation of L p .

Lp(i, j) = max
q∈{i+1}∪Q

step-oct
i, j

{
L(i,q − 1) + L(q, j)

}
. (4.1)

Let P = P (S) denote the maximum number of STEP sub-instances of S ending at index j, taking over all 1 � j � n, i.e.

P (S) = max
1� j�n

∣∣{i: Si, j is a STEP}∣∣.
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Note that by definition, P < n. Also note that any OCT sub-instance of length greater than 1 is a STEP (though the
opposite is not necessarily true), thus there are at most nP OCT sub-instances of length greater than 1, and n OCT sub-
instances of length 1, and in total Z � n(P + 1). For the base-pairing maximization scoring scheme, Si, j is a STEP if L(i, j) >

L(i, i)+ L(i + 1, j) = L(i + 1, j). Note that L(i, j) is either L(i + 1, j) or L(i + 1, j)+ 1 (an optimal folding for Si, j may contain
at most 1 additional base-pair with respect to an optimal folding of Si+1, j) thus Si, j is a STEP if L(i, j) = L(i +1, j)+1. Since
L(i, j) is in the range 0,1, . . . , L, there are at most L STEP sub-instances ending at index j (and exactly L such sub-instances
for j = n), and P = L � n/2.

We next show a bottom-up algorithm that computes L according to Eqs. (2.1), (2.2), and (4.1). The presented algorithm
is similar to Algorithm 1, where a forward dynamic programming technique is applied in order to efficiently compute
Lp(i, j).

The new algorithm also scans and computes the entries of M in decreasing row index and increasing column index. It
maintains the following invariant: upon reaching entry M[i, j], the entry contains the value Lp(i, j). Before computing row i in
M , the entries M[i, i − 1] and M[i, i] are initialized explicitly with the solutions of the corresponding trivial sub-instances.
All entries M[i, j] for i < j � n are initialized with the corresponding values M[i, i] + M[i + 1, j]. This initialization is
equivalent to examining the split-point q = i + 1 in the computation of L p(i, j) according to Eq. (4.1) for all j > i. Note that
at this stage the invariant is sustained for the first entry in the row which is traversed by the algorithm — M[i, i + 1], since
Q step-oct

i,i+1 = ∅.
Based on the invariant, upon reaching M[i, j], the entry contains the value L p(i, j). The value L(i, j) can then be com-

puted by resolving the maximum between the current entry value, and the value of Lc(i, j) which is obtained from Eq. (2.2).
If Lc(i, j) > L p(i, j), Si, j is classified as an OCT. Then, if M[i, j] > M[i, i] + M[i + 1, j], Si, j is classified as a STEP, and the
split-point q = j + 1 is considered and forward-reflected to the computation of L p(i, j′), for all j′ > j such that S j+1, j′ is
an OCT. This forward computation updates the value of M[i, j′] to be the maximum among its current value, and that of
M[i, j] + M[ j + 1, j′]. Thus, the maximum expression of Eq. (4.1) is accumulated, and the maintenance of the invariant is
guaranteed.

Algorithm 3 below implements the described forward dynamic programming approach, combined with the space-
efficient approach described in Section 3.2. An illustration of its run is given in Fig. 7. The speedup obtained by this
algorithm is due to the fact that a split-point q is examined by the algorithm only if q = i + 1, or the prefix Si,q−1 is a
STEP and the suffix Sq, j is an OCT. Note that, for each one of the Z OCT sub-instances Sq, j , there are at most P sub-
instances Si,q−1 which may be corresponding STEP prefixes. Thus, the total run-time contribution due to the examination of
split-points inducing a STEP-prefix-OCT-suffix partition is O (P Z). Since additional O (1) operations are performed for each
one of the O (n2) sub-instances (the examination of the split-point i + 1 and the computation of Lc), the total running time
is O (n2 + P Z). The space complexity remains O (Z), as the space complexity of Algorithm 1.

Lemma 7. Algorithm 3 computes L(1,n) for a given instance S of length n, in O (n2 + P Z) time and Θ(Z) space.

Algorithm 3: Forward RNA folding
input : An RNA string S = s1s2 · · · sn

output: L(1,n)

for i ← n down to 1 do1
set explicitly the values of M[i, i − 1] and M[i, i] to the solutions for the corresponding trivial sub-instances;2
mark Si,i as an OCT;3
set M[i, j] ← M[i, i] + M[i + 1, j] for all i < j � n;4
for j ← i + 1 to n do5

compute Lc(i, j) = f (M[i + 1, j − 1], si , s j);6
if M[i, j] < Lc(i, j) then7

set M[i, j] ← Lc(i, j);8
mark Si, j as an OCT;9

if Si, j is a STEP then10
for all j′ s.t. S j+1, j′ is an OCT do11

set M[i, j′] ← max{M[i, j′], M[i, j] + M[ j + 1, j′]};12

discard from memory the values in all entries in row i + 1 of M that do not correspond to OCT sub-instances;13

return M[1,n].14

4.2. An O (L Z) algorithm for the base-pairing maximization variant

For the base-pairing maximization problem P = L, and the running time of the algorithm which was presented in
the previous section is O (n2 + L Z). In this section we further reduce the running time for this variant to O (L Z). While
in the worst case L Z = Θ(n3), in the sparse case L Z can get to be as low as Θ(n) (e.g. when L = O (1)), motivating
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Fig. 7. An exemplification of Algorithm 3. The left figure shows the initialization of row 3 in the table M , copying the values from row 4. The figure in the
middle demonstrates the computation of the entry M[3,5]. Upon reaching this entry, the entry value is 0, which corresponds to Lp(3,5). Since s5 and s3

are complementary bases, Lc(3,5) = M[4,4]+ 1 = 1 is evaluated, the entry value is updated to be 1, and S3,5 is marked as an OCT. Since M[3,5] > M[4,5],
S3,5 is classified as a STEP, and the splitting at q = 6 is considered for all sub-instances S3, j such that S6, j is an OCT. This forward computation updates the
values in M[3,6] and M[3,9]. The right figure shows the computation of the next entry, M[3,6]. Here there is no need to evaluate Lc(3,6) (since s6 and
s3 are not complementary), and S3,6 is also classified as a STEP (since M[3,6] > M[4,6]). Therefore, splitting at q = 7 is considered for all sub-instances
S3, j such that S7, j is an OCT, updating the values in M[3,7] and M[3,8].

this improvement. The time reduction is achieved by applying a step encoding [20] to the dynamic programming table,
representing each row in the table by its O (L) steps (see Fig. 9). Hence, in what follows we give corresponding step-
encoding formulation of the problem.

While in the standard formulation of the SSF problem sub-instances were defined with respect to a pair of indices i and
j in the input string S , in the step-encoding formulation sub-instances are defined by an index i in S and a score x. The
next definition gives the step-encoding equivalents of the entities L(i, j), L p(i, j), and Lc(i, j).

Definition 5. For 1 � i � n, 0 � x, and α ∈ {ε, p, c} (where ε denotes the empty word), define βα(i, x) to be the minimum
index j such that Lα(i, j) � x, or ∞ if there is no such j.

From the definition above, we get that

β(i, x) = min
{
βc(i, x), β p(i, x)

}
. (4.2)

Note the relation between the step-encoding formulation and the standard formulation, where L(i, j) is the maximum x
such that β(i, x) � j. Also, observe that for j > i, Si, j is an OCT if and only if there is some x � 1 such that j = βc(i, x) >

β p(i, x). The set Yi,x is the step-encoding equivalent of Q step-oct
i, j :

Yi,x = {
j: ∃q s.t. Si,q−1 is a STEP, Sq, j is an OCT, and L(i,q − 1) + L(q, j) = x

}
.

The following auxiliary function will be used in the computation of βc(i, x).

Definition 6. For σ ∈ {A, C, G, U } and 1 � r < n, define next(r, σ ) to be the minimum index r′ > r such that sr′ is comple-
mentary to σ , or ∞ if there is no such index r′ .

A straightforward O (n) time and space preprocessing allows to obtain values of queries of the form next(r, σ ) in O (1)

time. The description of this preprocessing is left out of this paper, and its implementation can be found with our online
code.

For x = 0, β(i, x) = i − 1 by definition. For x � 1, we now convert Eqs. (2.2) and (4.1) to their equivalent forms in the
step encoding formulation. Fig. 8 illustrates this recurrence.

βc(i, x) = next
(
β(i + 1, x − 1), si

)
, (4.3)

β p(i, x) = min
{
β(i + 1, x), min

j∈Yi,x

{ j}
}
. (4.4)

Proof. [Eq. (4.3)] Let j = βc(i, x), and j′ = β(i + 1, x − 1) (i.e. j is the minimum index such that there is a co-terminus
folding of Si, j of size x, and j′ is the minimum index such that there is (any) folding of Si+1, j′ of size x − 1). Then, we need
to show that j = next( j′, si).

First, we show that j � next( j′, si). Let F be a co-terminus folding of Si, j of size x, and consider the folding F ′ which is
obtained by removing the base-pair (i, j) from F . Then, F ′ is a folding of Si+1, j−1 of size x − 1, and in particular j′ � j − 1.
Since s j and si are complementary, it follows that j = next( j − 1, si) � next( j′, si).

Next, we show that j � next( j′, si). Any folding which is obtained by adding the base-pair (i,next( j′, si)) to an optimal
folding of Si+1, j′ is a co-terminus folding of size x for the sub-instance Si,next( j′,si) , and since j is the minimum index such
that there is a co-terminus folding of Si, j of size x, we have that j � next( j′, si). Thus, j = next( j′, si). �
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Fig. 8. A schematic illustration of the recursion of Eqs. (4.2), (4.3), and (4.4).

Proof. [Eq. (4.4)] Let j∗ = β p(i, x), and j′ = β(i + 1, x) (i.e. j∗ is the minimum index such that there is a partitionable
folding of Si, j∗ of size x, and j′ is the minimum index such that there is (any) folding of Si+1, j′ of size x). Then, we need
to show that j∗ = min{ j′,min j∈Yi,x { j}}.

First, we show that j∗ � min{ j′,min j∈Yi,x { j}}. From Lemma 6, there is an index q such that L(i,q − 1) + L(q, j∗) =
L(i, j∗) = x, and either q = i + 1 or Si,q−1 is a STEP and Sq, j∗ is an OCT. If q = i + 1, then since L(i,q − 1) = L(i, i) = 0,
we have that L(q, j∗) = L(i + 1, j∗) = x, and in particular j∗ � j′ . Otherwise, if Si,q−1 is a STEP and Sq, j∗ is an OCT, then
j∗ ∈ Yi,x and in particular j∗ � min j∈Yi,x { j}.

Next, we show that j∗ � min{ j′,min j∈Yi,x { j}}. By the definition of Yi,x , it is clear that for every j ∈ Yi,x there is a
partitionable folding of Si, j of size x, and therefore j∗ � min j∈Yi,x { j}. Also, j∗ � j′ since any folding of Si+1, j′ of size x is
also a partitionable folding of Si, j′ of size x, admitting the split-point i + 1.

Thus, j = min{ j′,min j∈Yi,x j}. �
We next show an explicit bottom-up dynamic programming algorithm that computes the recurrence in Eqs. (4.2), (4.3),

and (4.4). This algorithm adopts a forward dynamic programming approach, similarly to that of Algorithm 3, where the
number of sub-instances, as well as the dimensions of the data structure that stores solutions for these sub-instances, is
O (Ln) instead of O (n2).

The algorithm fills a table B of size O (nL), whose entries B[i, x] store solutions β(i, x) for sub-instances (S, i, x) (see
Fig. 9). It maintains the following invariant: upon reaching entry B[i, x], if β p(i, x) � βc(i, x), then the entry contains the value
β p(i, x).

Before computing row i in B , the entry B[i,0] is initialized with i − 1, and all entries B[i, x] for x � 1 such that B[i +
1, x] < −∞ are initialized with the corresponding values B[i + 1, x]. This initialization is equivalent to examining the value
β(i + 1, x) in the computation of β p(i, x) according to Eq. (4.4).

We show that the invariant is sustained at this stage for the entry B[i,1]. If β p(i,1) > βc(i,1) then the invariant is
sustained by definition. If β p(i,1) � βc(i,1), let j = β p(i,1) and consider any split-point q such that L(i,q − 1)+ L(q, j) = 1.
Note that L(i,q − 1) = 0, since otherwise it contradicts the definition of j. Thus Si,q−1 is not a STEP, and in particular
Yi,1 = ∅. In this case, β p(i,1) = β(i + 1,1) = B[i + 1,1], which is indeed the value of B[i,1] according to the initialization.

Based on the invariant, upon reaching B[i, x], the entry contains the value β p(i, x) if β p(i, x) � βc(i, x). The value of
βc(i, x) is then computed according to Eq. (4.3). If βc(i, x) < B[i, x], it follows that βc(i, x) < β p(i, x), and therefore the entry
B[i, x] is set to βc(i, x), and Si,B[i,x] is marked as an OCT. Else, βc(i, x) � B[i, x], and according to the invariant the entry
contains at this stage the value β(i, x) = β p(i, x).

Then, for all q such that B[i, x] � q − 1 < B[i + 1, x], the sub-instance Si,q−1 is a STEP with L(i,q − 1) = x, and therefore
for all j such that Sq, j is an OCT the algorithm updates the value of B[i, x + L(q, j)] to be the minimum between its current
value and j, thus accumulating the minimum according to Eq. (4.4), and guaranteeing the maintenance of the invariant.

As was shown for Algorithm 3, the number of operations due to the examinations of split-points in the computation of
Eq. (4.4) throughout the whole run of the algorithm is O (L Z). Other than that, there are O (1) operations for each of the
O (nL) sub-instance (S, i, x), and the total running time is O (nL + L Z) = O (L Z). The space complexity remains Θ(Z), as of
Algorithm 1.
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Algorithm 4: Step encoded RNA folding
input : An RNA string S = s1s2 · · · sn

output: L(1,n)

set B[n,0] ← n − 1;1
for i ← n − 1 down to 1 do2

set B[i,0] ← i − 1, B[i, L(i + 1,n) + 1] ← ∞;3
set B[i, x] ← B[i + 1, x] for all x s.t. B[i + 1, x] < ∞;4
for x ← 1 to L(i + 1,n) + 1 do5

if B[i, x] > next(B[i + 1, x − 1], si) then6
set B[i, x] ← next(B[i + 1, x − 1], si);7
mark Si,B[i,x] as an OCT;8

if x � L(i + 1,n) then9
for all q s.t. B[i, x] � q − 1 < B[i + 1, x] do10

for all j s.t. Sq, j is an OCT do11
set B[i, x + L(q, j)] ← min{B[i, x + L(q, j)], j};12

discard from memory the values in all entries in row i + 1 of B that do not correspond to OCT sub-instances;13

return L(1,n) - the maximum x such that B[1, x] < ∞;14

Fig. 9. An exemplification of Algorithm 4. This figure shows the table B with respect to the RNA string S = ACAGUUGCA, which is the step encoding of
the table M in Fig. 5. The left plot shows the complete table, were grayed entries B[i, x] correspond to OCT sub-instances Si,B[i,x] . The plot at the middle
demonstrates a snapshot of the entries maintained by the algorithm at the stage where row 3 is about to be computed, after the initialization. The right
plot shows the computation of the entry B[3,1]. Since βc(i, x) = next(B[4,0], s3) = next(3, A) = 5, the initial entry value 8 is replaced with the value 5,
and the sub-instance S3,5 is marked as an OCT. Then, all split-points q such the B[3,1] = 5 � q − 1 < 8 = B[4,1] are examined with respect to OCT suffixes
Sq, j . This computation updates the values in the entries B[3,2] and B[3,3].

Algorithm 4 gives the pseudo-code of the algorithm described above, and Fig. 9 illustrates its run. The time and space
complexities of the algorithm are summarized in the following lemma.

Lemma 8. Algorithm 4 computes L(1,n) for a given instance S of length n, in O (L Z) time and Θ(Z) space.

5. Simultaneous alignment and folding

The RNA Simultaneous Alignment and Folding problem (SAF) was defined by David Sankoff [28]. Similarly to the classical
sequence alignment problem, the goal of the SAF problem is to find an alignment of several RNA strings, and in addition
to find a common folding for the aligned segments of the strings. The score of a given alignment with folding takes into
account both standard alignment elements such as character matching, substitutions and indels, as well as the folding score.
For simplicity, our formulation assumes that the instance is composed of two strings, and uses a simple scoring scheme.
It is possible to extend this formulation to handle an arbitrary number of strings in the instance, as well as to incorporate
more complex scoring schemes (e.g. energy minimization), however this is beyond the scope of this paper.

Similarly to single RNA strand folding algorithms, the basic dynamic programming algorithm for the SAF problem [28]
computes the scores of all sub-instances of its input instance, and then combines these values to resolve the score of the
full input instance. Ziv-Ukelson et al. [38] have extended the results from [34] to the SAF problem, taking advantage of the
triangle inequality property to constrain the split-points that need to be examined to only those for which the suffix of the
partitioned instance is an OCT. Here, we further reduce the number of examined split-points by examining only split-points
that partition the instance according to the STEP-prefix-OCT-suffix pattern (in addition to a constant number of base-case
split-points), and apply a sparsifying technique similar to the one described in Section 3.2 in order to reduce the space
complexity of the algorithm.

The rest of this section proceeds as follows. In Section 5.1 the problem is formally defined, Section 5.2 shows the re-
cursive score computation by adjusting the techniques described above in the context of the SAF problem, and Section 5.3
shows an explicit score computation algorithm. Though the formulation of the SAF problem is a little more complex than
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that of the SSF problem, all computational techniques and results here are natural extensions of those in the previous
sections, thus detailed proofs are omitted.

5.1. SAF Formal problem definition

An input instance of the SAF problem is a pair of RNA strings S̃ = (S, S ′). We use n and m to denote the lengths of S
and S ′ , respectively. Call S̃ an empty instance if n = m = 0. Let S̃ i, j;i′, j′ denote the sub-instance S̃ i, j;i′, j′ = (Si, j, S ′

i′, j′ ) of S̃ .

For two sub-instances S̃ i, j;i′, j′ and S̃k,l;k′,l′ , say that S̃k,l;k′,l′ is a sub instance of S̃ i, j;i′, j′ if i � k � l � j and i′ � k′ � l′ � j′ ,
where it is a strict sub-instance if S̃k,l;k′,l′ �= S̃ i, j;i′, j′ .

Definition 7. An alignment of the sub-instance S̃ i, j;i′, j′ is a pair Ã = (A, A′), where A = a1a2 · · ·ar and A′ = a′
1a′

2 · · ·a′
r are

strings of the same length r over the alphabet {A, C, G, U ,–}, obtained by inserting gap characters “–” into Si, j and S ′
i′, j′ ,

respectively. Denote by | Ã| the length r of Ã.

Let Ãk = (ak;a′
k) denote the kth column of an alignment Ã. We assume that no column Ãk is composed of gap characters

only. A folding of an alignment is defined similarly to a folding of a single string, except for the fact that now each pair (k, l)
in a folding F represents a pair of indices of columns in the alignment. Call a pair ( Ã, F ), where Ã is an alignment of a
sub-instance S̃ i, j;i′, j′ and F is a folding of Ã, an alignment with folding of S̃ i, j;i′, j′ (see Fig. 10).

An SAF scoring scheme score is a function which evaluates the qualities of alignments with foldings, where score( Ã, F ) >

score( Ã′, F ′) implies that the alignment with folding ( Ã, F ) is of a better quality than ( Ã′, F ′). Typically, a scoring scheme
takes into account standard alignment-related expressions such as indels, base-matchings, and base-substitutions costs, as
well as folding-related expressions such as the number of base-pairs or folding energy. In addition, a scoring scheme may
also promote compensatory mutations by highly scoring pairs of the form (k, l) in the folding, such that the paired columns
Ãk and Ãl exhibit nucleotide complementarity between both pairs (ak,al) and (a′

k,a′
l), while ak �= a′

k and al �= a′
l . The RNA

Simultaneous Alignment and Folding problem (SAF) is defined as follows:

Problem 2 (SAF). Let score be some SAF scoring scheme, and S̃ = (S, S ′) an SAF instance with |S| = n and |S ′| = m. Let
D̃i, j;i′, j′ denote the set of all possible alignments with foldings of a sub-instance S̃ i, j;i′, j′ .

• The SAF-optimization problem is to calculate L̃(1,n;1,m), where

L̃
(
i, j; i′, j′

) = max
( Ã,F )∈D̃i, j;i′, j′

{
score( Ã, F )

}
.

• The SAF-search problem is to find an alignment with folding ( Ã∗, F ∗) for S̃ that satisfies score( Ã∗, F ∗) = L̃(1,n;1,m)

(call such an alignment with folding optimal under the scoring scheme score).

In this work, we assume that the scoring scheme is of the following form:

score( Ã, F ) =
∑

1�k�| Ã|
δ( Ãk) +

∑
(k,l)∈F

τ ( Ãk, Ãl).

Here, δ is a column aligning cost function, and τ is a column-pair aligning cost function. Typically, δ( Ãk) reflects the align-
ment quality of the kth column in Ã, giving high scores for aligning nucleotides of the same type and penalizing alignment
of nucleotides of different types or aligning a nucleotide against a gap. τ ( Ãk, Ãl) reflects the benefit from forming a base-
pair in both of the input strings S and S ′ between the bases corresponding to columns Ãk and Ãl of the alignment (if
gaps or non-complementary bases are present in these columns, it may induce a score penalty). In addition, compensatory
mutations in these columns may also increase the value of τ ( Ãk, Ãl) (thus it may compensate for some penalties taken into
account in the computation of δ( Ãk) and δ( Ãl)).

The set of split-points Q i, j;i′, j′ with respect to a sub-instance S̃ i, j;i′, j′ is the set of pairs

Q i, j;i′ j′ = {(
q,q′): i � q � j + 1, i′ � q′ � j′ + 1

}\{(i, i′
)
,
(

j + 1, j′ + 1
)}

.

A split-point (q,q′) ∈ Q i, j;i′, j′ implies a partition of S̃ i, j;i′, j′ into two sub-instances: a prefix sub-instance S̃ i,q−1,i′,q′−1 and
a suffix sub-instance S̃q, j,q′, j′ . Excluding the points (i, i′) and ( j + 1, j′ + 1) from Q i, j;i′, j′ guarantees that each one of the
sub-instances S̃ i,q−1,i′,q′−1 and S̃q, j,q′, j′ is a non-empty, strict sub-instance of S̃ i, j;i′, j′ . Say that an alignment with folding
( Ã, F ) of S̃ i, j;i′, j′ admits the split-point (q,q′) ∈ Q i, j;i′, j′ if there is some 1 � p � | Ã| such that:

• The suffixes apap+1 · · ·a| Ã| and a′
pa′

p+1 · · ·a′
| Ã| , excluding the gaps, are identical to the strings Sq, j and S ′

q′, j′ , respectively.

• For every (k, l) ∈ F , either l < p or k � p.
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Fig. 10. An SAF-instance, and a corresponding alignment with folding. The folding contains the column pairs (2,4), (7,15), and (9,12). Column 6 in the
alignment sustains the condition that for every (k, l) in the folding, either l < 6 or k � 6, and shows that the alignment with folding admits the split-
point (5,5). Columns 2,5,7, and 16 correspond to the split-points (1,0), (5,4), (6,6) and (11,15) respectively, which are also admitted by the alignment
with folding.

In other words, an alignment with folding admits a split-point (q,q′) if (q,q′) implies a partition of the alignment with
folding into two independent alignments with folding, one for the prefix sub-instance S̃ i,q−1,i′,q′−1 and one for the suffix
sub-instance S̃q, j,q′, j′ (see Fig. 10).

5.2. A recursive score computation

Again, we distinguish between two kinds of alignments with folding of a sub instance S̃ i, j;i′, j′ . An alignment with folding
( Ã, F ) is called partitionable if it admits at least one split-point, otherwise ( Ã, F ) is called co-terminus. Observe that a co-
terminus alignment with folding ( Ã, F ) either sustains that | Ã| � 1 and F = ∅ (in the cases where both input strings are
empty, one of the strings is empty and the other is of length 1, or both strings are of length 1 and the alignment contains
a single column), or | Ã| > 1 and (1, | Ã|) ∈ F .

Let L̃c(i, j; i′, j′) and L̃ p(i, j; i′, j′) denote the maximum scores (or the solutions) of a co-terminus and a partitionable
alignment with folding of S̃ i, j;i′, j′ , respectively (if Q i, j;i′, j′ = ∅, define L̃ p(i, j; i′, j′) = −∞). Then,

L̃
(
i, j; i′, j′

) = max
{

L̃c(i, j; i′, j′
)
, L̃ p(

i, j; i′, j′
)}

. (5.1)

For sub-instances of the form S̃ i,i−1;i′,i′−1 (empty sub-instances), S̃ i,i;i′,i′−1, and S̃ i,i−1;i′,i′ , there is no split-point by
definition, and L̃ p for such instances is −∞. Every such sub-instance has a single (co-terminus) alignment with folding,
yielding the following scores: L̃(i, i −1; i′, i′ −1) = score((ε;ε),∅) = 0 (where ε denotes the empty string), L̃(i, i; i′, i′ −1) =
score((si;−),∅) = δ(si;−), and L̃(i, i − 1; i′, i′) = score((−; s′

i′ ),∅) = δ(−; s′
i′ ). For sub-instances of the form S̃ i,i;i′,i′ there is

a single co-terminus alignment with folding ((si; s′
i′ ),∅), yielding the score L̃c(i, i; i′, i′) = score((si; s′

i′ ),∅) = δ(si; s′
i′ ), and

two partitionable alignments with foldings ((si−;−s′
i′ ),∅) and ((−si; s′

i′−),∅), both giving the same score L̃ p(i, i; i′, i′) =
score((si−;−s′

i′ ),∅) = score((−si; s′
i′−),∅) = δ(si;−) + δ(−; s′

i′ ). Call sub-instances as described above trivial.

A straightforward adaptation of Eqs. (2.2) and (2.3) gives the recursive computation of L̃c and L̃ p for non-trivial instances:

L̃c(i, j; i′, j′
) = max

⎧⎪⎨
⎪⎩

L̃
(
i + 1, j − 1; i′ + 1, j′ − 1

) + τ
((

si; s′
i′
)
,
(
s j; s′

j′
))

,

L̃
(
i + 1, j − 1; i′, j′

) + τ
(
(si;−), (s j;−)

)
,

L̃
(
i, j; i′ + 1, j′ − 1

) + τ
((−; s′

i′
)
,
(−; s′

j′
))

⎫⎪⎬
⎪⎭ , (5.2)

L̃ p(i, j; i′, j′) = max
(q,q′)∈Q i, j;i′, j′

{
L̃
(
i,q − 1; i′,q′ − 1

) + L̃
(
q, j;q′, j′

)}
. (5.3)

Next, we adopt the concept of OCT and STEP instances described in the previous sections to the context of the SAF prob-
lem. Call a sub-instance S̃ i, j;i′, j′ an OCT if every optimal alignment with folding of S̃ i, j;i′, j′ is co-terminus. Note that trivial
sub-instances S̃ i, j;i′, j′ with |Si, j| + |S ′

i′, j′ | � 1 have no partitionable alignments with foldings, an thus are OCTs by defini-

tion. A trivial sub-instance S̃ i,i;i′,i′ is an OCT if its co-terminus solution L̃c(i, i; i′, i′) = δ(si; s′
i′ ) is strictly greater than its

partitionable solution L̃c(i, i; i′, i′) = δ(si;−) + δ(−; s′
i′ ).

Call a sub-instance S̃ i, j;i′, j′ a STEP if L̃(i, j; i′, j′) > L̃(i,q − 1; i′,q′ − 1) + L̃(q, j;q′, j′), for (q,q′) ∈ {(i + 1, i′ + 1), (i +
1, i′), (i, i′ + 1)}. In other words, S̃ i, j;i′, j′ is a STEP if it has no optimal alignment with folding which admits a split-point
(q,q′), such that the prefix S̃ i,q−1,i′,q′−1 is trivial.

Define the subset of split-points Q step-oct
i, j;i′ j′ ⊆ Q i, j;i′, j′ with respect to S̃ i, j;i′, j′ :

Q step-oct
i, j;i′ j′ = {(

q,q′) ∈ Q i, j;i′, j′ : S̃ i,q−1;i′,q′−1 is a STEP and S̃q, j;q′, j′ is an OCT
}
.
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Similarly to the single strand variant, we show how to refine the computation of L̃ p(i, j; i′, j′):

L̃ p(
i, j; i′, j′

) = max
(q,q′)∈Q

step-oct
i, j;i′ j′ ∪{(i+1,i′+1),(i+1,i′),(i+1,i′)}

{
L̃
(
i,q − 1; i′,q′ − 1

) + L̃
(
q, j;q′, j′

)}
. (5.4)

Proof. The proof is a straightforward adaptation of the proof of Lemma 6 to the SSF variant. �
5.3. A space efficient algorithm for the SAF problem

We next apply the same space reduction technique presented in Section 3.2 to the SAF problem.

Lemma 9. For a sub-instance S̃i, j;i′, j′ , it is possible to compute L̃(i, j; i′, j′) by examining only those values L̃(a,b;a′,b′) corresponding

to strict sub-instances of S̃ i, j;i′, j′ which are either OCTs, trivial, or sustain that a = i or a = i + 1.

Proof. Immediate from Eqs. (5.1), (5.2) and (5.4), and the definition of Q step-oct
i, j;i′ j′ . �

Definition 8. For an SAF instance S̃ , Z̃( S̃) is the number of sub-instances of S̃ which are OCTs.

When context is clear, we write Z̃ instead of Z̃( S̃). A dynamic programming algorithm similar to the algorithm presented
in [38] can now be designed. The algorithm maintains a “super-table” N of size n × n, for which each entry Ni, j contains
an “internal table” of size m × m. We denote by Ni, j[i′, j′] the (i′, j′)-entry in the internal table Ni, j , where the value
of this entry corresponds to the solution for the sub-instance S̃ i, j;i′, j′ . According to Lemma 9, iterating over the rows of
the super-table N starting from row n and decreasing the row index i in each iteration, the algorithm needs to maintain
in memory only Θ( Z̃) scores of OCT sub-instances, in addition to scores in the most recently computed two rows i and
i + 1 of the super-table. Note that each internal table requires O (m2) space, thus the space required for maintaining two
rows in the super-table is O (m2n) (the asymmetry rises from the manner in which the entries in N are indexed, and the
order of the loops in lines 1 and 2 of Algorithm 5). Therefore, the total space complexity of the algorithm is O (m2n + Z̃)

(we can assume w.l.o.g. that m � n). The time complexity is dictated by the number of examined split-points along the
algorithm’s run. For every one of the Θ(n2m2) sub-instances S̃ i, j;i′, j′ , the algorithm examines explicitly the three split-

points (i + 1, i′ + 1), (i, i′ + 1), and (i + 1, i′), in addition to split-points in the set Q step-oct
i, j;i′ j′ . Here, each one of the Z̃ OCT

suffix sub-instances is examined against at most P̃ STEP prefix sub-instances, where P̃ denotes the maximum number of
STEP sub-instances S̃ i, j;i′, j′ , taken over all pairs j, j′ for 1 � j � n and 1 � j′ � m (note that P̃ � nm and Z̃ � nm(P + 3)).
Thus, the time complexity of the algorithm is O (n2m2 + P̃ Z̃).

Algorithm 5 below gives the pseudo-code for the algorithm described above. Fig. 11 illustrates its run, and Lemma 10
states its time and space complexities.

Algorithm 5: RNA alignment and folding

input : An SAF instance S̃ = (S, S ′), where |S| = n and |S ′| = m
output: L̃(1,n;1,m)

for i ← n down to 1 do1
for i′ ← m down to 1 do2

set Ni,i−1[i′, i′ − 1], Ni,i−1[i′, i′], Ni,i [i′, i′ − 1], and Ni,i [i′, i′] explicitly to the solutions for the corresponding trivial sub-instances;3

Mark S̃ i,i−1;i′,i′ and S̃ i,i;i′,i′−1 as OCTs. If L̃c(i, i; i′, i′) > L̃ p(i, i; i′, i′), mark S̃ i,i;i′,i′ as an OCT;4
for j ← i to n do5

for j′ ← i′ to m do6
for all (q,q′) ∈ {(i + 1, i′ + 1), (i + 1, i′), (i, i′ + 1)} do7

set Ni, j [i′, j′] ← max{Ni, j [i′, j′], Ni,q−1[i′,q′ − 1] + Nq, j [q′, j′]};8

compute L̃c(i, j; i′, j′) according to Eq. (5.2);9

if Ni, j[i′, j′] < L̃c(i, j; i′, j′) then10
set Ni, j [i′, j′] ← L̃c(i, j; i′, j′);11

mark S̃ i, j;i′, j′ as an OCT;12

if S̃ i, j;i′, j′ is a STEP then13
for all (p, p′) s.t. S̃ j+1,p; j′+1,p′ is an OCT do14

set Ni,p[i′, p′] ← max{Ni,p[i′, p′], Ni, j [i′, j′] + N j+1,p[ j′ + 1, p′]};15

discard from memory the values in all entries Ni+1, j [i′, j′] for all i � j � n and i′ � j′ � m which do not correspond to OCT instances;16

return N1,n[1,m];17
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Fig. 11. A schematic illustration of the data structure maintained by Algorithm 5. In order to compute the entry Ni, j [i′, j′], the algorithm needs to examine
the value in Ni+1, j−1[i′ + 1, j′ − 1] for the computation of L̃c(i, j; i′, j′) (marked with a � symbol), and the values in Ni, j[i′ + 1, j′], Ni+1, j [i′, j′], and
Ni+1, j [i′ + 1, j′] (marked with ⊗ symbols) for the computation of L̃ p(i, j; i′, j′). In addition, the algorithm examines entry-pairs Ni,q−1[i′,q′ − 1] and
Nq, j [q′, j′], such that the prefix S̃ i,q−1;i′,q′−1 is a STEP sub-instance, and the suffix S̃q, j;q′, j′ is an OCT sub-instance (marked with ⊕ symbols). The algorithm
maintains only entries in rows i and (i+1) of the super-table N (marked with “dot” symbols) and entries which correspond to OCT sub-instances (illustrated
by grayed entries in the upper triangle). All entries starting from the (i + 2)th row in the super-table that do not correspond to OCT sub-instances are
discarded from memory.

Lemma 10. Algorithm 5 computes L̃(1,n;1,m) of a given SAF instance S̃ with strings of lengths n and m, in time and space complex-
ities of O (n2m2 + P̃ Z̃) and O (m2n + Z̃), respectively.

6. Experimental results

The sparsification techniques presented in this paper were tested for the SSF base-pairing maximization problem. Four
algorithm variants were implemented: the naive folder which applies no sparsification, the OCT folder which applies the
sparsification technique of [34] (presented in Section 3), the STEP-OCT folder which applies the sparsification technique
presented in Section 4.1, and the STEP-ENC folder (for “step-encoding”) which applies the sparsification technique presented
in Section 4.2. All algorithms except for the naive algorithm maintain sparse dynamic programming tables. Java source code
for all four variants is available at http://www.cs.bgu.ac.il/~zakovs/RNAfold/SparseFold.zip.

Two experiments were conducted. In the first experiment, the performance of the sparse algorithms was measured for
randomly chosen sequences of different lengths. For each length l = 50,100,150, . . . ,1000, a set of 100 random sequences
was generated (assuming equal nucleotide distributions) and folded by all four algorithms. Fig. 12 illustrates the average
improvements of the sparse algorithms over the naive algorithm. The OCT, STEP-OCT, and STEP-ENC curves show the average
proportions of split-points examined by each one of the sparse algorithms, with respect to all Θ(n3) split-points examined
by the naive algorithm. The Z curve demonstrates the space reduction obtained by the sparse algorithms, by showing the
average proportions of maintained entries in the sparse tables with respect to all Θ(n2) entries maintained in the tables
which are used by the naive algorithm.

As can be seen, all sparse algorithms perform significantly better than the naive algorithm in terms of both time and
space complexities, where the STEP-ENC variant is consistently the fastest variant. For sufficiently long sequences, the pro-
portion of maintained entries is about 2%, where the proportion of split-points examined by the STEP-ENC algorithm is
about 1%.

The second experiment examines the behavior of the sparse algorithms for different values of L. A set of 10 000 random
sequences, each of length 500 bases, was folded by all four algorithms. The sequences where then divided into bins accord-
ing to their folding scores, where the ith bin corresponds to sequences for which the folding score is between 10i + 1 and
10(i + 1). The average performance of each one of the algorithms on all sequences in each bin was measured. In order to
increase the likelihood of obtaining sequences with low scores, the proportion of nucleotides of type A was biased and set
to j

10 000 for the jth sequence. Other than that, the sequences where randomly chosen.
Fig. 13 presents the average improvements of the sparse algorithms over the naive algorithm in this experiment, showing

the same entities measured in Fig. 12. The experiment demonstrates that, as expected, for lower values of L the computation
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Fig. 12. The performance of the sparse algorithms over sequences of different lengths. The OCT, STEP-OCT, and STEP-ENC curves illustrate the average
proportions of split-points examined by each one of the sparse algorithms with respect to all Θ(n3) split-points examined by the naive algorithm. The Z
curve illustrate the average proportions of entries maintained in the sparse tables with respect to all Θ(n2) entries maintained by the naive algorithm.

Fig. 13. The performance of the sparse algorithms over sequences of different scores. 10 000 random sequences (with biased ‘A’ proportion), each of length
500 bases, were divided into bins according to their folding scores (L). The OCT, STEP-OCT, and STEP-ENC curves illustrate the average proportions of split-
points examined by each one of the sparse algorithms with respect to all Θ(n3) split-points examined by the naive algorithm. The Z curve illustrates the
average proportions of entries maintained in the sparse tables with respect to all Θ(n2) entries maintained by the naive algorithm.

is more “sparse” and requires less split-point examinations and less memory usage. Notably, the STEP-ENC algorithm is
extremely efficient for most values of L, examining less than 0.5% of all split-points.

7. Concluding discussion

This paper presents several new techniques for sparsifying RNA folding algorithms, in order to reduce their time and
space complexities in practice. The space complexity improvement is obtained by a simple modification of an algorithm by
Wexler et al. [34], which used sparsification for improving the time complexity of RNA folding. This modification allows
the algorithm to maintain in memory only a small subset of solutions computed for sub-instances. The time complexity
improvement is obtained by using stronger sparsification criteria than that presented in [34]. Forward dynamic programming
is applied in order to avoid redundant computations. These sparsification techniques are described for both the SSF and SAF
problems. We show experimental results that demonstrate the applicability of these techniques with respect to the basic
SSF base-pairing maximization variant.
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The presented techniques may also be applied to more realistic scoring schemes than those presented here. For example,
the minimum free energy scheme (mf e) [41,24] scores differently stacked base-pairs and loop-closing base-pairs, thus the
computation of Lc(i, j) needs as an input both Lc(i + 1, j − 1) and L p(i + 1, j − 1). As a matter of fact, it even further
distinguishes between different types of loops and maintains several types of structure-constrained scores, in addition to co-
terminus and partitionable scores. Since the mf e scoring scheme still allows for the computation of Lc(i, j) to be conducted
in a constant time, the presented algorithmic framework for improving the time complexity still holds for this scheme.
In addition, since usually this computation examines only scores of sub-instances Si′, j′ of Si, j , where i′ < i + D for some
constant D , the space complexity improvement also scales up to the more realistic scoring schemes, where the algorithm
needs to maintain in memory scores of OCT sub-instances, and D rows of the full table. In the computation of L p(i, j), it is
possible that some energetic term Eq , reflecting coaxial stacking energy, is added when computing a score which corresponds
to a split-point q (i.e. L(i,q − 1) + L(q, j) + Eq). In such cases, the concept of OCT instances can be relaxed, where a sub-
instance Si, j is considered an OCT if Lc(i, j) > L(i,q − 1) + L(q, j) + Eq for every q ∈ Q i, j . Such a relaxation ensures that the
computation of L p(i, j) as defined in Eq. (4.1) would still yield a correct value, while avoiding many redundant computations.

The notion of forward computation for sparsifying dynamic programming was previously applied to several related prob-
lems. In [17], Graham et al. used forward computation in a sparse context free grammar recognition algorithm. There, for
every sub-sentence Si,q−1 that can be derived from a non-terminal A in the grammar, and for every CFG rule of the form
C → AB , the algorithm identifies all sub-sentences Sq, j which can be derived from the non-terminal B , and concludes that
Si, j can be derived from C . Jansson et al. [22] used forward computation for the problem of aligning an RNA sequence to a
structured sequence. Their computation also involves the examinations of different splittings of every sub-instance, where
the criterion for prefixes induced by such splittings is similar to the so called STEP criterion here, and the suffix criterion
was dictated from the input.

Other heuristic sparsification techniques were previously applied, mainly to the SAF problem. The FOLDALIGN software
package [18,32] is an example of one of several tools which apply heuristic sparsifications to the SAF problem, which are
somewhat (though weakly) related to those presented here. The FOLDALIGN algorithm allows the user to limit the solution
computations to only those sub-instances for which the length difference between the two strings is bounded, and in
addition, to restrict the computation to examine only split-points which are of bounded distance from the sub-instance’s
end-points. These two sparsification techniques considerably reduce both the time and space requirements of the algorithm,
but at the cost of potentially missing optimal solutions. In addition, this implementation also applies forward computation,
which sparsifies split-point examinations according to weaker criteria than those presented here. A split-point (q,q′) is
examined with respect to a sub-instance S̃ i, j;i′, j if the following two conditions hold. First, the suffix S̃q, j;q′, j has at least
one optimal solution (where optimality is conditioned by the assumption that no other heuristic sparsification is applied)
in which the right endpoint of the alignment is paired (to some other column of the alignment). This is a weaker criterion
than a symmetric definition of the STEP criterion, which requires that in all optimal solutions the right alignment endpoint is
paired. The second condition is that the prefix S̃ i,q−1;i′,q′−1 is required to have at least one optimal solution (again, optimality
is conditioned by the assumption that no other heuristic sparsification is applied), in which the left and right alignment
endpoints are paired to each other. This is a weaker criterion than the OCT criterion, which requires that in all optimal
solutions the two endpoints are paired to each other.

As a next step, we intend to extend our implementation of the presented techniques to additional RNA folding variants
(such as SSF variants with other scoring schemes, as well as to the SAF problem and to the RNA–RNA interaction problem [2,
9]). We also plan to further study the adaptation of these approaches to several related problems with similar combinatorial
properties. One family of problems which falls into this category is the family of context free grammar (CFG) recognition
and parsing problems [10,23,36,6]. It is well known that SSF can be viewed as a special case of the probabilistic CFG parsing
problem (see e.g. [27,13]), where the classical algorithms for these problems are of similar structure. Another example of a
problem with a structure which is similar to that of SSF is the problem of finding the maximum independent set in a circle
graph [29,4].
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