
Sparse RNA Folding: Time and Space Efficient
Algorithms

Rolf Backofen1, Dekel Tsur2, Shay Zakov2?, and Michal Ziv-Ukelson2

1 Albert Ludwigs University, Freiburg, Germany
backofen@informatik.uni-freiburg.de

2 Department of Computer Science, Ben-Gurion University of the Negev, Israel
{dekelts, zakovs, michaluz}@cs.bgu.ac.il

Abstract. The classical algorithm for RNA single strand folding re-
quires O(nZ) time and O(n2) space, where n denotes the length of the
input sequence and Z is a sparsity parameter that satisfies n ≤ Z ≤ n2.
We show how to reduce the space complexity of this algorithm. The
space reduction is based on the observation that some solutions for sub-
problems are not examined after a certain stage of the algorithm, and
may be discarded from memory. This yields an O(nZ) time and O(Z)
space algorithm, that outputs both the cardinality of the optimal fold-
ing as well as a corresponding secondary structure. The space-efficient
approach also extends to the related RNA simultaneous alignment with
folding problem, and can be applied to reduce the space complexity of the
fastest algorithm for this problem from O(n2m2) down to O(nm2 + Z̃),
where n and m denote the lengths of the input sequences to be aligned,
and Z̃ is a sparsity parameter that satisfies nm ≤ Z̃ ≤ n2m2.

In addition, we also show how to speed up the base-pairing maximization
variant of RNA single strand folding. The speed up is achieved by com-
bining two independent existing techniques, which restrict the number
of expressions that need to be examined in bottleneck computations of
these algorithms. This yields an O(LZ) time and O(Z) space algorithm,
where L denotes the maximum cardinality of a folding of the input se-
quence.

Additional online supporting material may be found at:

http://www.cs.bgu.ac.il/~zakovs/RNAfold/CPM09_supporting_material.pdf

1 Introduction

The structure of RNA is evolutionarily more conserved than its sequence and is
thus key to its functional analysis [1]. Unfortunately, although massive amounts
of sequence data are continuously generated, the number of known RNA struc-
tures is still very limited since experimental methods, such as NMR and Crys-
tallography, require expertise and long experimental time. Therefore, computa-
tional methods for predicting RNA structures are of great value [2–4].

? To whom correspondence should be addressed.

RNA is typically produced as a single stranded molecule, which then folds
upon itself to form a number of short base-paired stems. This base-paired struc-
ture is called the secondary structure of the RNA. The secondary structure al-
most always does not contain pseudoknots (i.e. crossing base pairs). Under the
assumption that the structure does not contain pseudoknots, a model was pro-
posed by Tinoco et al. [5] to calculate the stability (in terms of free energy) of a
folded RNA molecule by summing all contributions from the stabilizing, consecu-
tive base pairs and from the loop-destabilizing terms in the secondary structure.
Based on this model, dynamic programming algorithms were suggested for com-
puting the most stable structures [6–10], applying various scoring criteria such
as the maximal number of base pairs [7] or the minimal free energy [8]. This
optimization problem is formally denoted RNA single strand folding, and the
time and space complexities of the classical algorithms for solving it are O(n3)
and O(n2), respectively, where n denotes the length of the input RNA sequence.
Recently, these were sped up to yield O(nZ) time and O(n2) space [10] algo-
rithms, where Z is a sparsity parameter that satisfies n ≤ Z ≤ n2. We note that
these algorithms are practical in the sense that the hidden constants are small.
On a more theoretical front, Akutsu suggested an O(D(n)) algorithm for this
problem [9], where D(n) is the time for computing the distance product of two
n× n matrices. The best current bound on D(n) is O(n3 log3 log n/ log2 n) [11].

Another approach to RNA folding is the simultaneous alignment with folding
(SAF for short) [12–16]. This approach consists of finding an optimal alignment
between a set of RNA sequences, where an alignment score is evaluated with re-
spect to some common folding of the input sequences. However, as stated in [17],
even for the simple case where the input consists of only two sequences, this ap-
proach requires “extreme amounts of memory and space” with complexity of
O(n2m2) space and O(n3m3) time, where n and m are the lengths of the input
RNA sequences to be aligned. Thus, most existing practical implementations of
this algorithm [13, 14, 16] use restricted versions of the original problem. Since
these restrictions introduce another source of error, it is of utmost practical
importance to the research on RNA to improve both the space and time com-
plexities of the full version of SAF. A first non-heuristic speedup, which does
not sacrifice the optimality of results, was recently described in [15]. This work
extends the approach of [10] and yields an O(nmZ̃) time and O(n2m2) space
algorithm for the SAF problem, where Z̃ is a sparsity parameter that satisfies
nm ≤ Z̃ ≤ n2m2. However, experimental analysis of this algorithm indicates
that the high memory requirements pose a major bottleneck in practice, both
in constraining the lengths of the input sequences, as well as in exhausting the
benchmark machine’s memory, which in turn results in a page-fault slowdown.

Our contribution

(1.) Reducing the space requirements of RNA folding problems. In this work
we focus on improving the space complexity of the base-pairing maximization
variant of the RNA single strand folding problem [6, 7, 9]. The space requirement
reduction is based on the observation that some solutions for subproblems are

Previous results New results
Time Space Time Space

Single strand
base-paring maximization

O(n3)[7]
O(nZ)[10]
O(D(n))[9]

O(n2) O(LZ) O(Z)

Single strand
energy minimization

O(n3)[8]
O(nZ)[10]

O(n2) O(nZ) O(Z)

Simultaneous alignment
with folding

O(n3m3)[12]

O(nmZ̃) [15]
O(n2m2) O(nmZ̃) O(nm2 + Z̃)

Table 1. Time and space complexities of RNA folding algorithms.

not examined after a certain stage of the algorithms, and may be discarded from
memory. This yields an O(nZ) time and O(Z) space algorithm for this problem.
In addition to the optimal folding cardinality computation, we show a trace-back
procedure which outputs a corresponding secondary structure. Note that it is
an interesting challenge on its own to recover an optimal folding within the time
and space complexity bounds of the space-reduced algorithm, since due to the
sparse representation only partial information is kept. The presented strategy
may also be extended to the score computation of a family of RNA folding
algorithms, which includes algorithms for the energy minimization variant of
the single strand folding problem [8, 10] (improving the space complexity from
O(n2) to O(Z)), as well as algorithms for SAF [12, 15] (improving the space
complexity from O(n2m2) to O(nm2 + Z̃)).

(2.) A sparse RNA single strand folding algorithm. We also describe a fast al-
gorithm for the base pairing maximization variant of RNA single strand folding
that exploits an additional sparsity parameter, based on the cardinality of the op-
timal folding. This is achieved by combining two independent techniques, which
were previously used to reduce the number of sub-instance pairs that need to be
considered by the algorithm. This combination yields the simultaneous exploita-
tion of two key properties emerging from the formal definitions of these folding
problems: the triangle inequality property, previously exploited in [10] and [15],
as well as the monotonicity and unit-step properties, previously utilized in [18]
for a related problem. The result is an O(LZ) time and O(Z) space algorithm,
where L denotes the maximum cardinality of a folding of the input sequence and
n ≤ Z ≤ n(L+ 1).

We note that the algorithms described here are practical in the sense that the
hidden constants are small. In the context of practical contribution, we also point
out that our space complexity improvements are more significant than the time
complexity improvements, since while the expected value of L is Θ(n) (assum-
ing uniform character distribution), both Z and Z̃ were experimentally shown
to be significantly less than n2 and n2m2, respectively [10, 15]. Furthermore,
reducing the space complexity of the SAF problem is a key result in practice,

as in the previous results the space complexity was typically the computational
bottleneck [17, 15].

Due to space constrains, figures, pseudocode and some omitted proofs are
differed to an online supporting material document at http://www.cs.bgu.ac.
il/~zakovs/RNAfold/CPM09_supporting_material.pdf.

2 Preliminaries

An RNA sequence is a sequence over the alphabet {A,C,G,U}. Each letter in an
RNA sequence is also called a base. The bases A and U are called complementary
bases, and so are the bases C and G 3. For a base σ ∈ {A,C,G,U}, denote by σ
the complementary base of σ. Fix henceforth an RNA sequence S = s1s2 · · · sn.
Denote by Si,j the subsequence si · · · sj of S, where Si,i−1 is defined to be an
empty sequence.

Definition 1. A folding F of a subsequence Si,j is a set of index pairs that
satisfies the following:
1. For every (k, l) ∈ F , i ≤ k < l ≤ j, and sl = sk.
2. There are no (k, l), (k′, l′) ∈ F , such that k ≤ k′ ≤ l ≤ l′.

A pair (k, l) ∈ F is called a base-pair. Say that index k is paired in a folding
F if k appears in a base-pair in F , otherwise k is unpaired in F . Call an index
q a branch point with respect to F if for all (k, l) ∈ F , either l < q or k ≥ q.
We distinguish between two kinds of foldings of Si,j : co-terminus foldings are
foldings that include the base-pair (i, j), and partitionable foldings are those who
do not include the base-pair (i, j). Note that for j > i, F is partitionable if and
only if F has a branch point i < q ≤ j. Denote by |F | the size of a folding F ,
i.e. the number of base-pairs in F . The single strand base-pairing maximization
problem was first addressed in [7]. The formal problem definition is given below.

Problem 1. Compute the maximum size of a folding of the instance sequence S.

Definition 2. For a subsequence Si,j, denote:
1. L (i, j) is the maximum size of a folding of Si,j.
2. Lp (i, j) is the maximum size of a partitionable folding of Si,j.
3. Lc (i, j) is the maximum size of a co-terminus folding of Si,j, or −∞ if there

is no such folding (if j ≤ i or sj 6= si).

Call a folding F of Si,j for which |F | = L (i, j), an optimal folding of Si,j . In
the rest of this paper, we use L instead of L (1, n) whenever the context is clear.

3 For the sake of clarity, we disregard the possible ”wobble” pairing between G and
U . All presented results may be easily extended to include G− U pairing as well.

3 RNA Folding via base-pairing maximization

In this section we describe a recursive solution for the single strand base-pairing
maximization problem, and present a technique for reducing its space complexity.
This technique also extends to the single-strand RNA folding algorithms that are
based on a thermodynamic model [2–4]. In addition, we suggest how to extend
the space-reduction technique and apply it to the SAF problem [12, 15].

3.1 A recursive solution

For a subsequence Si,j such that j ≤ i, the only possible folding is the empty
folding, and therefore L (i, j) = 0. The following equations show how to recur-
sively compute L (i, j) when j > i:

L (i, j) = max {Lp (i, j) , Lc (i, j)} . (3.1)

Lc (i, j) =
{
L (i+ 1, j − 1) + 1, sj = si,
−∞, sj 6= si.

(3.2)

Lp (i, j) = max
i<q≤j

{L (i, q − 1) + L (q, j)} . (3.3)

Note that the time complexity bottleneck in algorithms which implement the
recursive computation of Equations 3.1 to 3.3 is due to the consideration of O(n)
branch points q in the computation of Lp (i, j), according to Equation 3.3. In the
rest of this section, as well as in Section 4, we describe techniques that reduce
the number of branch points that need to be examined in this computation,
and thus improve the time complexity of such algorithms. Due to Equations 3.1
and 3.3, the following (inverse) triangle inequality is sustained in the base-paring
maximization problem:

Observation 1 (triangle inequality) For every subsequence Si,j and for ev-
ery i < q ≤ j, L (i, j) ≥ L (i, q − 1) + L (q, j) .

Based on the triangle inequality, Wexler et al. [10] observed that it is sufficient
to examine only a subset of the branch points in order to compute Lp (i, j). We
present here a slightly different notation for the same concept.

Definition 3 (OCT). A subsequence Si,j is optimally co-terminus (OCT) if
i = j, or if every optimal folding of Si,j is co-terminus (that is, if L (i, j) =
Lc (i, j) > Lp (i, j)).

Call an index q for which Lp (i, j) = L (i, q − 1) + L (q, j) an optimal branch
point with respect to Si,j .

Lemma 1 (Wexler et al. [10]). For every subsequence Si,j, there is an optimal
branch point q with respect to Si,j such that Sq,j is an OCT.

Define the following subset of branch points with respect to Si,j :

Qi,j = {i < q ≤ j : Sq,j is an OCT} .
The following equation restates Equation 3.3, based on Lemma 1, by restrict-

ing the branch points considered by the maximization term to those in Qi,j .

Lp (i, j) = max
q∈Qi,j

{L (i, q − 1) + L (q, j)} . (3.4)

We define the following sparsity measure of RNA sequences.

Definition 4. For a subsequence Si,j, Z(i, j) is the number of subsequences of
Si,j which are OCTs.

In the rest of this paper, we use Z instead of Z(1, n) whenever the context is
clear. In the sparse case, only a small portion of the O(n2) subsequences of S are
OCTs. In Section 4.1 we show that, in the base pairing maximization variant of
the problem, Z is bounded by n(L+ 1). For the minimum free energy problem
variant, an estimation of the expected value of a parameter related to Z, based
on a probabilistic model for polymer folding and measured by simulations, which
shows that that Z is significantly smaller than O(n2), can be found in [10].

Previous algorithms for the base-pairing maximization problem were pre-
sented by Nussinov and Jacobson [7] and by Wexler et al. [10]4. Both algorithms
are dynamic programming algorithms that perform a bottom-up computation of
the recurrence described in this section, where the Nussinov-Jacobson algorithm
uses Equation 3.3 for the computation of Lp (i, j), and the Wexler et al. algo-
rithm improves it by using Equation 3.4. These algorithms compute the upper
triangle of a table Mn×n, where each cell M [i, j] stores the value L (i, j). The
entries of M are traversed in an order which guarantees that all values that are
needed for the computation of M [i, j] = L (i, j), according to the recurrence for-
mula, are computed and stored in M prior to the computation of M [i, j]. Upon
termination, M [1, n] holds the value L. The time complexity of the algorithm
by Nussinov and Jacobson is O(n3), whereas that of the algorithm by Wexler et
al. is O(nZ). Both algorithms use O(n2) space.

3.2 A space efficient algorithm

Our space reduction strategy is based on the observation that some of the values
stored by the algorithm of Wexler et al. [10] are not necessary throughout the
complete run of the algorithm. In the following lemma we characterize the values
that need to be maintained in memory for the computation of L (i, j).

Lemma 2. For a subsequence Si,j, it is possible to compute L (i, j) by examining
only those values L (a, b), where i ≤ a < b ≤ j and b− a < j − i, which sustain
that either a = i, a = i+ 1, or Sa,b is an OCT.
4 [10] deals with the more realistic energy minimization variant of the problem. For

clarity, we project their notions on the simpler base-paring maximization variant
discussed here.

Proof. Immediate from Equations 3.1, 3.2 and 3.4. ut

Consider a dynamic programming algorithm which fills the table M by
traversing its entries row by row from bottom to top, and each row from left
to right. Lemma 2 implies that at the stage where M [i, j] is computed, it is
sufficient to keep only the values in the currently computed i-th row, the values
in the recently computed (i+ 1)-th row, and values in entries which correspond
to OCT subsequences of S. Thus, there is no need to maintain the complete
table M in memory, rather, at each stage, entries which are guarantied not to be
further examined by the algorithm may be discarded. This yields a total space
complexity of O(n+Z) = O(Z). Note that the computation of each entry M [i, j]
requires O(|Qi,j |) operations, due to the consideration of the branch point set
Qi,j (these sets are maintained as lists in order to allow an efficient traversal,

as explained in [10]). Since
n−1∑
i=1

n∑
j=i+1

|Qi,j | ≤
n−1∑
i=1

n∑
j=i+1

|Q1,j | ≤
n−1∑
i=1

Z < nZ, the

running time of the algorithm is O(nZ). Fig. 2 and Alg. 1 in the online support-
ing material illustrate and give the pseudo code of the above described algorithm.
Its time and space complexities are summarized in the following lemma.

Lemma 3. Given an RNA sequence S of length n, there is an algorithm which
computes L (1, n) in O(nZ) time and O(Z) space.

3.3 Folding reconstruction

In addition to computing the optimal folding score of a given RNA sequence,
it is often of interest to report at least one optimal folding. Some well known
standard techniques for reporting an optimal folding apply trace-back procedures
over the folding score matrix M , in O(n2) time [19]. In this section we show
how to reconstruct one optimal folding, without exceeding the time and space
complexities of our folding algorithm. Note that this is a challenging task, as the
classical trace-back algorithm requires the availability of the full table M , while
our algorithm stores only partial information.

Assume that the full table M is given, with annotated OCT subsequences.
The basic recursive folding reconstruction algorithm [19] could be modified as
follows to utilize the OCT subsequences:
1. For j ≤ i, the only (optimal) folding of Si,j is the empty folding, and the

algorithm halts without reporting any base-pair.
2. For j > i, if Si,j is an OCT, the algorithm reports the pair (i, j) and is called

recursively on the subsequence Si+1,j−1.
3. Otherwise, Si,j is partitionable, and therefore the algorithm finds an index
q ∈ Qi,j for which M [i, j] = M [i, q − 1] + M [q, j] and then continues by
computing an optimal folding of Si,q−1 and of Sq,j . An optimal folding of
Si,q−1 is obtained by calling the algorithm recursively with the sub-instance
Si,q−1. As for computing an optimal folding of Sq,j , note that Sq,j is an
OCT, and consider the two cases, where either q = j or q < j. If q = j,
then there is no need for another recursive call. Otherwise q < j, and an

optimal folding of Sq,j is obtained by first reporting the base-pair (q, j) and
then calling the algorithm recursively with the sub-instance Sq+1,j−1.

Time complexity analysis of the trace-back algorithm on the full table M . When
calling the above algorithm to compute the folding traceback of Si,j , recur-
sive calls with three different subsequences could be initiated at the top level:
Si−1,j−1, Sq+1,j−1 and Si,q−1, thus index j is eliminated from further considera-
tion as an end index. Therefore, each recursive call is performed with a different
end index j, and altogether there are at most n recursive calls in the whole com-
putation. For a recursive call in which the end index is j, at most O (|Q1,j |) oper-
ations are preformed in finding a q ∈ Qi,j for which M [i, j] = M [i, q−1]+M [q, j].
Since

∑
1≤j≤n

|Q1,j | ≤ Z, the total running time is O(Z).

We next turn to address the challenge of reconstructing an optimal folding
from the sparse table M computed in Section 3.2. The above described algorithm
cannot be applied directly in this case, due to the fact that when the algorithm
needs to find q ∈ Qi,j for which M [i, j] = M [i, q−1] +M [q, j], the values M [i, j]
and M [i, q − 1] may have been discarded from memory (while M [q, j] is main-
tained in memory since Sq,j is an OCT). In order to overcome this difficulty we
adopt a similar approach as of the algorithm of Hirschberg [20], namely perform-
ing on-demand value re-computations of discarded entries. Thus, it remains to
show how to recover such deleted entries.

Lemma 4. Given the sparse table M that contains folding scores for OCT sub-
sequences, there is an algorithm which recovers the set of entries M [i, i+1],M [i, i+
2], . . . ,M [i, j], for a pair of given indices i and j, in O(Z) time.

Proof. The entries of the form M [i, j′] which have been discarded from mem-
ory correspond to partitionable subsequences, where L (i, j′) = Lp (i, j′), and
thus may be recomputed based solely on Equation 3.4. Observe that this com-
putation examines only entries of the form M [i, q] for q < j′, and M [q, j′] for
OCT subsequences Sq,j′ . Re-computing the entries of the ith row from left to
right guaranties that upon computing M [i, j′], all necessary values for the com-
putation of Lp (i, j′) are already stored in M . For each i < j′ ≤ j, there are
O(|Q1,j′ |) operations performed along this computation, due to the considera-
tion of branch points in the set Qi,j′ . As before, summing this expression over
all i < j′ ≤ j accumulates to O(Z). ut

We next show that, throughout the full run of the algorithm, the process of
restoring row entries is applied to O(L) distinct start indices. Consider the case
where the trace-back algorithm is applied on Si,j and assume that the set of
entries M [i, i + 1],M [i, i + 2], . . . ,M [i, j] was already previously restored. Note
that a recursive call with a sub-instance of the form Si,q−1 does not require
the restoration of the entries M [i, i + 1],M [i, i + 2], . . . ,M [i, q − 1], as (by the
assumption) they have already been restored and are maintained inM . The other
two possible recursive calls with sub-instances of the form Si+1,j−1 or Sq+1,j−1,
do require re-computation of entries in M (in rows i+1 or q+1, correspondingly).

However, observe that each call of the latter kind is preceded by a detection of
a base-pair. Since throughout the full run of the algorithm only L base pairs are
detected, we get that the row entry recovery only needs to be executed L times
(in addition to the recovery of M [1, 1],M [1, 2], . . . ,M [1, n] during initialization).
Thus, according to Lemma 4, the entry value recovery contributes an additional
O(LZ) factor to the total time complexity of the trace-back algorithm.

Furthermore, note that upon performing such a re-computation of an en-
try set, there is no need to further maintain the values in M [i, i + 1],M [i, i +
2], . . . ,M [i, j] in the case where Si,j is co-terminus, nor to keep the values in
M [i, q],M [i, q+1], . . . ,M [i, j] in the case where Si,j is partitionable. This allows
to discard these values from memory before the re-computation of the entry set
for the corresponding sub-instance, guaranteeing that at each stage, at most n
recovered entries are maintained in the sparse table M , in addition to the al-
ready existing OCT corresponding entries. Therefore, the space complexity of
the trace-back algorithm remains O(Z + n) = O(Z).

Alg. 2 in the online supporting material implements the efficient trace-back
scheme.

Lemma 5. There is an algorithm which, given the sparse table M that contains
folding scores for all OCT subsequence of S, computes an optimal folding of S
in O(LZ) time and O(Z) space.

3.4 Extending the space reduction to Simultaneous Alignment with
Folding

The goal of the SAF problem is to find a multiple sequence alignment and a
common folding of the aligned sequences, which optimizes some score function.
For simplicity, we assume the problem instance consists of two sequences. Simi-
larly to single RNA strand folding algorithms, the basic dynamic programming
algorithm for the SAF problem [12] computes the scores for all sub-instances of
its input instance, and then combines these values to resolve the score of the full
input instance. Given an instance of the problem - a pair of RNA sequences S
and T , the algorithm maintains the scores of sub-instances (Si,j , Ti′,j′) in a four-
dimensional table N (see Fig. 3). For |S| = n and |T | = m, we depict N as an
n×n ”super table”, in which each entry Ni,j corresponds to an internal table of
size m×m, where the combined alignment-with-folding score of the sub-instance
(Si,j , Ti′,j′) is stored in the entry Ni,j [i′, j′]. The time-complexity of the basic
dynamic programming algorithm for the SAF problem is dictated by the need
to compute all O(n2m2) sub-instances, where each such computation involves
the consideration of a set of O(nm) competing branch point index pairs (i.e. all
(q, q′) such that i < q ≤ j and i′ < q′ ≤ j′). This yields a total time complexity
of O(n3m3).

Recently, [15] extended the approach of [10] and applied it to speed up
SAF by reducing the number of branch points that need to be considered in
the main recursion for the SAF score computation. Similarly to the concept of
OCT sequences, it is possible to define OCT-aligned sequence pairs, where the

pair (Si,j , Ti′,j′) is OCT-aligned if, in every optimal alignment-with-folding of
(Si,j , Ti′,j′) the bases si and ti′ are aligned to each other, the bases sj and tj′

are aligned to each other, and the common folding is co-terminus. Using this
formulation to describe the results of [15], it was shown that it is sufficient to
examine branch point pairs (q, q′) such that the sequences Sq,j and Tq′,j′ are
OCT-aligned, thus reducing the number of examined branch points and improv-
ing the running time of the algorithm. This extension yields an O(nmZ̃) time
and O(n2m2) space algorithm for the SAF problem, where Z̃ is the number of
OCT-aligned sub-instances, and nm ≤ Z̃ ≤ n2m2 (in practice, Z̃ is expected to
be significantly smaller than O(n2m2) [15]).

Applying an observation similar to Observation 2, an algorithm is suggested
here which, upon the computation of entry Ni,j [i′, j′], queries only those entries
which correspond to OCT-aligned sub-instances, in addition to entries in rows i
and i+1 of the ”super table” N . The space complexity of SAF is thus reduced to
O(nm2 + Z̃) (w.l.o.g. m ≤ n). In the extended version of this paper we describe
in detail how to extend the space-reduction technique described in Section 3.2 to
the four-dimensional matrix computed by the SAF algorithm [15]. An intuitive
explanation can be found in Fig. 3.

Lemma 6. There is an algorithm that computes the simultaneous alignment
with folding of two RNA sequences S and T in O(nmZ̃) time and O(nm2 + Z̃)
space, where n = |S|, m = |T |, and w.l.o.g. m ≤ n.

4 Utilizing step characterization

In this section we take advantage of a step characterization of the single strand
base-pairing maximization problem in order to improve the running time of
the algorithms which compute it. Based on this approach, in Section 4.1 we
describe an improvement to Alg. 1 which reduces its running time from O(nZ)
to O

(
n2 + LZ

)
, and then in Section 4.2 we further reduce it to O(LZ). Both

algorithms have the same space complexity as Alg. 1, which is O(Z).
Let Si,j be a subsequence of S. For L′ = L (i+ 1, j) or L′ = L (i, j − 1), it

is straightforward to show that L′ ≤ L (i, j) ≤ L′ + 1. Therefore, we get the
following observation:

Observation 2 For every 1 ≤ k ≤ n, the sequence L (k, k) , L (k, k + 1) , . . . , L (k, n),
as well as the sequence L (k, k) , L (k − 1, k) , . . . , L (1, k) are monotonically non-
decreasing with unit steps in the range 0− L.

The above observation implies a bound on Z, as follows.

Lemma 7. The value of Z satisfies n ≤ Z ≤ n(L+ 1).

Proof. Every OCT subsequence Si,j satisfies that either i = j, or L (i, j) >
L (i+ 1, j). Hence, according to Observation 2, there are at most L+1 OCT sub-
sequences that end with a given index j, and at therefore there are most n(L+1)
OCT subsequences of S. ut

4.1 An O(n2 + LZ) Algorithm

Similarly to the previously presented technique for restricting the set of ex-
amined branch points in the computation of Lp (i, j), we next show another
dominance relation which can be utilized to further constrain the set of branch
points examined in Equation 3.3.

Definition 5 (step sequence). Call a subsequence Si,j a step sequence if in
every optimal folding of Si,j the base i is paired.

Observe that Si,j is a step sequence if and only if q = i+1 is not a branch point
in any of the optimal foldings of Si,j , i.e. L(i, j) > L(i, i)+L(i+1, j) = L(i+1, j)
(hence the term “step”). Also note that any OCT subsequence of length greater
than 1 is a step sequence, though the opposite is not necessarily true. In the
following Lemma we further restrict the branch points which need to be examined
in a recursive computation of Lp (i, j).

Lemma 8. For any subsequence Si,j such that j > i, there is an optimal branch
point q with respect to Si,j such that either q = i + 1, or Si,q−1 is a step se-
quence and Sq,j is an OCT.

Proof. If q = i+1 is an optimal branch point with respect to S, the lemma holds.
Otherwise, Lp (i, j) > L (i, i)+L (i+ 1, j) = L (i+ 1, j). According to Lemma 1,
there is an optimal branch point i+ 1 < q ≤ j such that Sq,j is an OCT. There-

fore, L (i, q − 1)+L (q, j) = Lp (i, j) > L (i+ 1, j)
Obs. 1
≥ L (i+ 1, q − 1)+L (q, j).

It follows that L (i, q − 1) > L (i+ 1, q − 1), hence Si,q−1 is a step sequence. ut

Define the following subset of branch points with respect to Si,j :

Pi,j = {i+ 1} ∪ {i+ 1 < q ≤ j : Si,q−1 is a step sequence and Sq,j is an OCT} .

The following equation restates Equation 3.4, based on Lemma 8.

Lp (i, j) = max
q∈Pi,j

{L (i, q − 1) + L (q, j)}. (4.1)

We next show a bottom-up algorithm that computes L according to Equa-
tions 3.1, 3.2, and 4.1. The presented algorithm is similar to Alg. 1, where a
forward dynamic programming technique is applied in order to efficiently com-
pute Lp (i, j) (forward dynamic programming was also applied by Jansson et
al. [18] to a related problem).

The new algorithm also scans and computes the entries of M in decreasing
row index and increasing column index. It maintains the following invariant:
upon reaching entry M [i, j], the entry contains the value Lp (i, j). Before com-
puting row i in M , the entries M [i, i − 1] and M [i, i] are initialized with zeros,
and all entries M [i, j] for i < j ≤ n are initialized with the corresponding val-
ues M [i + 1, j]. This initialization is equivalent to examining the branch point

q = i + 1 in the computation of Lp (i, j) according to equation 4.1 for all j > i
(the branching at q = i+1 is handled separately from other branch points in Pi,j
since it does not follow the step sequence-prefix-OCT-suffix rule as the rest of
the group). Note that in this stage the invariant is sustained for the first entry in
the row which is traversed by the algorithm - M [i, i+ 1], since Pi,i+1 = {i+ 1}.

Based on the invariant, upon reaching M [i, j], the entry contains the value
Lp (i, j), and the value L (i, j) can be computed by resolving the maximum
between the current entry value and the value of Lc (i, j), which is obtained
from Equation 3.2. If Lc (i, j) > Lp (i, j), Si,j is classified as an OCT. Then, if
M [i, j] > M [i + 1, j], Si,j is classified as a step sequence, and the branch point
q = j + 1 is considered and forward-reflected to the computation of Lp (i, j′),
for all j′ > j such that Sj+1,j′ is an OCT, by updating the value of M [i, j′]
to be the maximum among its current value and that of M [i, j] + M [j + 1, j′],
thus accumulating the maximum according to Equation 4.1, and guaranteeing
the maintenance of the invariant.

Alg. 5 in the online supporting material implements the forward dynamic
programming approach described above, combined with the space-efficient ap-
proach described in Section 3.2. An illustration of its run is given in Fig. 4. The
speedup obtained by this algorithm is due to the fact that branch points are
examined by Equation 4.1 only if both the sequence prefix before the branch
point is a step-sequence and its suffix, as from the branch point on, is an OCT.
Note that, for each one of the Z OCT subsequences Sq,j which are examined
as suffices by Equation 4.1, Observation 2 shows that there are at most L se-
quences Si,q−1 which may be corresponding step-sequence prefixes, and thus the
total run-time contribution due to computation of values of the form Lp (i, j) is
O(LZ). Since the table M has O(n2) entries, where for each entry O(1) opera-
tions are performed in addition to the operations involved in the computations
of Lp (i, j), the total running time is O(n2 +LZ). The space complexity remains
O(Z), as the space complexity of Alg. 1.

Lemma 9. Given an RNA sequence S of length n, there is an algorithm which
computes L (1, n) in O(n2 + LZ) time and O(Z) space.

4.2 An O(LZ) Algorithm

In this section we further reduce the running time of the folding algorithm from
O(n2 + LZ) to O(LZ). We do so by applying a step encoding [21] to M , repre-
senting each of its rows by its O(L) steps (see Fig. 5). Hence, in what follows
we give corresponding step-encoding formulations, where a typical instance is
composed of a suffix Si,n of S and a folding cardinality x, which will be denoted
by the pair (Si,n, x). The goal is to compute the minimum index i− 1 ≤ j ≤ n
such that there is a folding of Si,j whose cardinality is x. The next definition
gives the step-encoding equivalents of the entities L (i, j) , Lp (i, j), and Lc (i, j).

Definition 6. For 1 ≤ i ≤ n, 1 ≤ x, and α ∈ {ε, p, c} (where ε denotes the
empty word), define βα (i, x) to be the minimum index j such that Lα (i, j) ≥ x,
or ∞ if there is no such j.

Note the relation between the step-encoding formulation and the standard
formulation, where L (i, j) is the maximum x such that β (i, x) ≤ j. Say that a
sub-instance (Si,n, x) is a β-OCT if β (i, x) = βc (i, x) < βp (i, x). The set Yi,x
is the step-encoding equivalent of Pi,j :

Yi,x = {i+ 1}∪
{
i+ 1 < q ≤ β (i+ 1, x− 1) :

Si,q−1 is a step sequence, and
(Sq,n, x− L(i, q − 1)) is a β-OCT

}
.

The following auxiliary function will be used in the computation of βc (i, x).

Definition 7. For σ ∈ {A,C,G,U} and 1 ≤ r ≤ n, define next(r, σ) to be the
minimum index r′ > r such that sr′ = σ, or ∞ if there is no such index r′.

We now convert Equations 3.1, 3.2 and 4.1 to their equivalent forms in the
step encoding. For all 1 ≤ i ≤ n and 1 ≤ x:

β (i, x) = min {βc (i, x) , βp (i, x)} . (4.2)
βc (i, x) = next (β (i+ 1, x− 1) , si) . (4.3)

βp (i, x) = min
{

min
q∈Yi,x

{β (q, x− L(i, q − 1))} , βc (i, x) + 1
}
. (4.4)

Formal proofs of the correctness of Equations 4.2 to 4.4, as well as the pseu-
docode of an algorithm that implements them, are included in the online sup-
porting material. This algorithm, denoted Alg. 6, adopts a forward dynamic
programming approach, similarly to that of Alg. 5. This allows for efficient com-
putation of Equation 4.4, where the number of sub-instances, as well as the
dimensions of the data structure that stores solutions for these sub-instances, is
O(Ln) (instead of O(n2)).

Lemma 10. Given an RNA sequence S of length n, there is an algorithm that
computes L (1, n) in O(LZ) time and O(Z) space.

Acknowledgments. The work of Shay Zakov and Michal Ziv-Ukelson was par-
tially supported by the Frankel Center for Computer Science at Ben Gurion
University of the Negev. Rolf Backofen received funding from the German Re-
search Foundation (DFG grant BA 2168/2-1 SPP 1258), and from the German
Federal Ministry of Education and Research (BMBF grant 0313921 FRISYS).

References

1. Consortium, A.F.B., Backofen, R., Bernhart, S.H., Flamm, C., Fried, C., Fritzsch,
G., Hackermuller, J., Hertel, J., Hofacker, I.L., Missal, K., Mosig, A., Prohaska,
S.J., Rose, D., Stadler, P.F., Tanzer, A., Washietl, S., Will, S.: RNAs everywhere:
genome-wide annotation of structured RNAs. Journal of Experimental Zoology
Part B: Molecular and Developmental Evolution 308(1) (2007) 1–25

2. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Research (13) (2003) 3406–15

3. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Research
(13) (2003) 3429–3431

4. Zuker, M.: Computer prediction of RNA structure. Methods Enzymol. 180 (1989)
262–288

5. Tinoco, I., Borer, P., Dengler, B., Levine, M., Uhlenbeck, O., Crothers, D., Gralla,
J.: Improved estimation of secondary structure in ribonucleic acids. Nature New
Biology 246 (1973) 40–41

6. Waterman, M., Smith, T.: RNA secondary structure: a complete mathematical
analysis. Mathematical Biosciences 42 (1978) 257–266

7. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure
of single-stranded RNA. PNAS 77(11) (1980) 6309–6313

8. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research 9(1) (1981)
133–148

9. Akutsu, T.: Approximation and exact algorithms for RNA secondary structure
prediction and recognition of stochastic context-free languages. Journal of Combi-
natorial Optimization 3 (1999) 321–336

10. Wexler, Y., Zilberstein, C., Ziv-Ukelson, M.: A study of accessible motifs and RNA
folding complexity. Journal of Computational Biology 14(6) (2007) 856–872

11. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In:
Proc. 39th Symposium on the Theory of Computing (STOC). (2007) 590–598

12. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protose-
quence problems. SIAM Journal on Applied Mathematics 45(5) (1985) 810–825

13. Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary
structure common to two RNA sequences. Journal of Molecular Biology 317(2)
(2002) 191–203

14. Havgaard, J., Lyngso, R., Stormo, G., Gorodkin, J.: Pairwise local structural
alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics
21(9) (2005) 1815–1824

15. Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA
co-folding. (2008) 174–185

16. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding
RNA families and classes by means of genome-scale structure-based clustering.
PLOS Computational Biology 3(4) (2007) e65

17. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA
structure prediction approaches. BMC Bioinformatics 5 (2004) 140

18. Jansson, J., Ng, S.K., Sung, W.K., Willy, H.: A faster and more space-efficient
algorithm for inferring arc-annotations of RNA sequences through alignment. Al-
gorithmica 46(2) (2006) 223–245

19. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press
(1998)

20. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Communications of the ACM 18(6) (1975) 341–343

21. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. JACM
24 (1977) 664–675

