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Abstract. The complexity of pairwise RNA structure alignment de-
pends on the structural restrictions assumed for both the input struc-
tures and the computed consensus structure. For arbitrarily crossing in-
put and consensus structures, the problem is NP-hard. For non-crossing
consensus structures, Jiang et al’s algorithm [1] computes the alignment
in O(n*m?) time where n and m denote the lengths of the two input
sequences. If also the input structures are non-crossing, the problem
corresponds to tree editing which can be solved in O(m?°n(1 + log 2))
time [2]. We present a new algorithm that solves the problem for d-
crossing structures in O(dm2nlog n) time, where d is a parameter that
is one for non-crossing structures, bounded by n for crossing structures,
and much smaller than n on most practical examples. Crossing input
structures allow for applications where the input is not a fixed structure
but is given as base-pair probability matrices.

Keywords: RNA, sequence structure alignment, simultaneous align-
ment and folding

1 Introduction

With the recent focus on non-protein-coding RNA (ncRNA) genes, in-
terest in detecting novel ncRNAs has rapidly emerged. A recent screen
on ncRNAs has detected more than 30000 putative ncRNAs in human
genome (3], most of them with unknown function. Since the structure
of RNA is evolutionarily more conserved than its sequence, predicting
the RNA’s secondary structure is the most important step towards its
functional analysis [4].



The secondary structure of an RNA molecule can be calculated from
its nucleotide sequence by determining a folding with minimal free en-
ergy [5-9]. Albeit this so-named thermodynamic approach is a success
story in the analysis of RNA, it is known that predicting the secondary
structure from a single sequence is error-prone, where the best available
approaches can correctly predict only up to 73% of the base-pairs [10].
This situation can be improved by taking phylogenetic information into
account, i.e., by predicting a common consensus structure from a whole
set, of evolutionary related RNA sequences.

There are several approaches for this problem (see [11] for an overview)
which increase both in computational complexity as well as in the average
quality. The simplest and fastest approach is to align the RNA sequences
using a multiple sequence alignment, and then to fold the complete align-
ment using approaches like RNAalifold [12] and Petfold [13]. This has
time complexity of O(k?n?) for the pairwise alignment, and O(n?) for the
final folding, which has to be applied only once on the complete alignment,
where k is the number of sequences.

The second approach is to predict for all k£ sequences the minimum
free-energy structure (with complexity O(n?)), and then to perform pro-
gressive sequence-structure alignment whose complexity is dominated by
the pairwise alignment steps. For a long time, the best complexity known
for the pairwise alignment step was O(n3log(n)) as given by the seminal
work of Klein [14]. Just recently this has been improved to O(n?) [2].
However, this approach crucially depends on the quality of the initial
structure prediction, which is error-prone.

Hence, the gold standard are Sankoff-like approaches [15-19] which
simultaneously align and fold the sequences. However, as stated in [11],
the Sankoff-approach requires “extreme amounts of memory and space”
with a space complexity of O(n*) and a time complexity of O(n®). In [19],
we improved this complexity to O(n?) time by aligning base-pair prob-
ability matrices. Basically, one is given two sets of weighted base-pairs
that are possibly crossing, and the goal is to find the best common nested
consensus structure for both sets, taking both base-pair weights and the
associated RNA sequences into account.

In this work, we want to shorten the gap between sequence-structure
alignment methods (with a complexity of O(n?)), and the Sankoff-like
approaches (with a complexity of O(n?) for alignment of base-pair prob-
ability matrices) for a practical application scenario. Basically, sequence-
structure alignment approaches use exactly one structure per sequence
as an input, whereas Sankoff-like approaches use all possible structures



as an input. However, in many practical cases, one has a mixture of both,
namely a main structure that allows for a small deviation. As shown in
the example in Fig. 1, the alternative structures together form a crossing
input structure, where the offset between crossing arcs is small. In this
paper, we introduce a measurement for this deviation (d-crossing), and
introduce an efficient algorithm with complexity O(n?log(n)) given that
the deviation is small (i.e., that the input base-pair probability matrix
is d-crossing for a small constant d). Note that the crossing structure
in Fig. 1 forms a two-page embedding (or is 2-colorable, as it is called
in [20]), but our approach is not restricted to this class of structures.

The fast available sequence structure alignment methods for non cross-
ing input structures as in Klein [14] (a formal definition of non-crossing
is given in Section 2) rely on a heavy path decomposition which was so
far only available for tree-like structures. Our approach generalizes this
to d-crossing structures.
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AAACAAACACAGGGGUUUUUGUUUUGUU

Fig. 1. (a) Two structures for the sequence AAACAAACACAGGGGUUUUUGUUUUGUU with sim-
ilar free energy. The stem in the second sequence is shifted by 5 nucleotides. (b) associ-
ated base-pair probability matrix (upper triangle) and minimum free energy structure
(lower triangle). The shifted stem is indicated by two parallel diagonals, a pattern often
seen in RNA-structures. (c¢) both nested structures together form a crossing input. The
outermost arcs of both structures are d-crossing for d = 5.
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2 Preliminaries

An arc-annotated sequence is a pair (S, P), where S is a string over the
set of bases {A,U,C,G} and P is a set of arcs (I,r) with 1 <[ <r < |S|
representing bonds between bases. We allow more than one arc to be
adjacent to one base, but require that |P| € O(|S]), that is, on average



each base is adjacent to only a constant number of arcs. We denote the
i-th symbol of S by S[i] and the substring from symbol i to symbol j with
S[i...j]. For an arc p = (I,r), we denote its left end [ and right end r by
p* and p&, respectively. The span of p is defined as span(p) = pR—pl41.

Two arcs p; and py in an arc-annotated sequence (S, P) are crossing
if plf < p% < p? < pg or plg < pr < p§ < plf‘. Two crossing arcs p; and po
are d-crossing if |p} —p¥| < d and |[pf —p}| < d. An arc p; is nested in an
arc po if pb < pt < p? < pR. An arc p; precedes an arc po if pit < p%. For
every two arcs, either the two arcs are crossing, one of the arc is nested in
the other, or one of the arc precedes the other. An arc-annotated sequence
(S, P) containing crossing arcs is called crossing, otherwise non-crossing
or nested. A d-crossing sequence is a crossing sequence in which every two
crossing arcs are d-crossing.

3 Problem Definition

An alignment A of two arc-annotated sequences (S1, Py) and (S, Ps) is
a set A = Anatch W Agap. The set Apaten € [1,7] X [1,m] of match edges
satisfies that for all (i,7),(¢,7) € A, (1) ¢« > ¢ implies j > j', and
(2) @ = 4" if and only if j = j'. Given Apaten, the set of gap edges is
implied as Agap == { (4, —)|i € [1,n] A $j.(i,7) € Amaten } U{(—,5)|j €
[1,m] A $i.(i,5) € Amaten }- A consensus structure for an alignment A
is a matching P C Py x P, that satisfies (p1,p2) € P = (p},ph) €
AN (PR, pY) € A. We require a consensus structure to be non-crossing
(formally {(p1,p2), (P}, P5)} € P = p1 and p) do not cross) and such that
each base is adjacent to at most one arc (i.e. {(p1,p2), (p},p5)} C P =
(p} = p" & pit = pY)).

Each alignment together with some consensus structure has an as-
sociated cost based on functions v; € [1,n] — N, 75 € [1,m] — N,
B € 1,n] x[1,m] — N, and o € ([1,n])? x ([1,m])? — N. 4(i) denotes
the cost to align position i of sequence k to a gap, (i, j) the cost for a
base match, i.e. cost to align position i of the first sequence to position
7 of the second sequence, provided arcs adjacent to ¢ and j are not con-
tained in the consensus structure, and a(p,, py) denotes the cost to match
arcs pg,pp in the consensus structure. The cost of an alignment A with
consensus structure P, denoted Cp(A), is

Y@+ Do e+ DD allig), @)+ Y B,
(i7_)€A (—,j)EA ((ivj)7(i/7j/))ep (irj)EA/

where A’ is the set of all edges (4, j) € A such that there is no edge (7', j') €
A for which ((4,7),(i,5") € P or ((¢,j),(i,j)) € P. Note that this



scoring scheme can easily be instantiated with the edit distance scoring
scheme of Jiang et al [1] if each base is adjacent to at most one arc. For
this case we set 1 (¢) = wq-+ 1 (i) (% —wa), 72(j) = wa+162() (% —wa).
ﬁ(lv.j) = X(Zaj)wm + (¢1(2) + 1/}2(.7))%7 and Oé((’i,j), (i/aj/)) = (X(Zv.j) +
x(#,7")) %= where 91, ¥2, X, Wq, Wy, W, Wy, and Way, are defined as
in [1]. However, we formulate the algorithm with the more general scoring
scheme, since «((i,7),(i’,j')) can be used to encode base pair weights
which is more suitable in the presence of several adjacent arcs per base
that represent alternative structures.

The RNA structure alignment problem is given two arc-annotated se-
quences (51, P1) and (S2, %), to find an alignment A and a consensus
structure P such that C'p(A) is minimal. For the remainder of this paper
we fix two arc-annotated sequences (51, Py) and (S2, ) with |Si] = n,
|Sa] = m, |Pi| € O(n) and |P2| € O(m) and assume that (51, Pp) is
d—crossing. We assume w.l.o.g. that P; contains an arc (1,n).

Arc annotated sequences are often classified as PLAIN, NEST, CROSS
or UNLIM, as originally proposed in [21]. We solve for our scoring scheme
the edit problem for a class that fully contains EDIT(NEST,NEST) and
partially contains EDIT(UNLIM,UNLIM) (namely those instances where one
structure is d—crossing and where on average each base is adjacent to only
a constant number of arcs).

4 The Algorithm Recursion

The algorithm consists of two stages. The first stage computes the optimal
costs to align certain fragments that are required for the second stage.

4.1 Stage 1

In the first stage, we compute a table M analogously to the recursion of
Jiang et al. [1]. The entry M[i, ¢, j, j'] represents the minimal cost of an
alignment between (Si[i...#], PLN[i,]?) and (S2[j... '], P> N [4,5]%).
The base cases where i = i — 1 and 7/ = 7 — 1 are initialized with
MTJi,i — 1,7,5 — 1] = 0, the other entries are computed recursively as
defined in Fig. 2. In the recursive computation, cases that rely on in-
valid items (i.e. where any of ,4’, j, 7' are not within their allowed range)
are implicitly skipped. While Jiang et al’s algorithm computes the entire
alignment based on this recursion, we only compute entries of M for short
fragments of the first sequence that have a length of at most 2d+2, i.e. for
1<i<n,i—1<i <min(i+2d+1,n),1<j<m,and j—1<j <m.



Mli,i', 4,51 =

Mli,i" —1,4,5' ]+ m (i) I

Mli,i',j,5" = 1] + 72 (7) 1
min{ Mli,i' —1,5,5 — 1]+ 3@, 5") I

for all p1 = (io,i") € P1, p2 = (Jo,j') € P> with i <io, j < jo v

M[i7i0 - 17.j7j0 - 1] +M[ZO+171/ - 17j0+ 17j/ - 1] +0£(p17p2)

Fig. 2. Recursion for the table M.

4.2 Stage 2

For non-crossing input structures, the correspondence of these structures
to trees allows for alignment methods that are asymptotically faster than
the recursion used in the first stage [2,14]. In our approach we apply a
similar technique, but since our input structures do not correspond to
trees, we select a subset Pr C P; of the arcs.

The arcs in Pr do not cross and at most one of them is adjacent to
each base. Hence, the arcs in Pr form a tree structure that guides the
recursive decomposition during the computation of the alignment.

Construction of Pr Define the inner d-range of p as I;(p) = [p" +
LpY +d—1] x p?* —d + 1,pR — 1]. For a set of arcs P C Py, the set
tree (P) is defined recursively as follows. If P = () or all arcs in P have
span at most 2d then tree (P) = ). Otherwise, let p be some arc in P with
maximum span (ties are broken arbitrarily), and

tree (P) ={p} U tree (PN [1,p" — 1) U tree (PN [p™ + 1,n]2) U
tree (PN [p~ +1,p" = 11%) \ L(p)) -
Lemma 1. Every arc in P crosses at most one arc in tree (P).

Proof. Let p; and pa be two arcs in tree (P), and assume w.l.o.g. that
pr < p%. We have that either ps is nested in p; or p; precedes po.

If py is nested in p; then by the definition of tree (P), either p5 —p} > d
or plf — pg{ > d. Suppose w.l.o.g. that p% — pr > d. Let p be an arc that
crosses py. If p& < pi then |p* — p| > py — pp > d, so p does not cross
pa. If p& > p¥ then p& < pt +d — 1 < pY and p? > pit > plt. Therefore,
po is nested in p, and in particular, p does not cross ps.

If p; precedes pp then pb > pt = pl + span(p1) — 1 > p¥ + 2d.
Therefore, for every arc p, either |pt — p%| > d, or [p¥ — pk| > d
conclude that p cannot cross both p; and ps. O



Lemma 2. An arc p € P satisfies p € Iy(p’) for at most one arc p' €
tree (P). If p does not cross an arc in tree (P) then p € I4(p') for a unique
arc p’ € tree (P).

Proof. To prove the first part of the lemma, let p; and p2 be two arcs in
tree (P) with pt' < pb. Either ps is nested in p; or p; precedes ps. If po
is nested in p; then either p% — pr > d or p{{ — pg > d. In the former
case, the intervals [p} 4+ 1,p} +d — 1] and [p% + 1, p% +d — 1] are disjoints,
and therefore I;(p1) N Ii(p2) = ¢. Similarly, I4(p1) N Ls(p2) = ¢ when
pt — pi > d or when p; precedes ps. Thus, p cannot be both in I;(p;)
and Id(pg).

We prove the second part of the lemma using induction on |P|. Let
P C P; be a nonempty set of arcs, and let p be some arc in P that does
not cross an arc in tree (P). Let p’ be the maximum span arc in P that is
chosen when computing tree (P). Recall that tree (P) = {p'} Utree (P*)U
tree (P?) Utree (P?) where P! = PN [1,p" — 12, P2 = PN [pR +1,n)?%,
and P3 = (Pn[p™ + 1,pR —1]%)\ Li(p'). If p € I4(p') we are done.
Otherwise, since p does not cross p’ and p ¢ I4(p’), we have that p is in
some set P’. Since |P!| < |P|, by the induction hypothesis there is an arc
p’ € tree (P") such that p € I(p”). O

We define Pp = tree (P1), and we call the arcs in Pp tree arcs. For every
p € P; we define T(p) to be the unique tree arc p’ such that p crosses
P, if such arc exists. Otherwise, T'(p) is the unique tree arc p’ such that
p € La(p').

Lemma 3. For every p € P1, [p* — T(p)*| < d and |p® — T(p)%| < d.

Proof. If p crosses T'(p) then the inequalities of the lemma are satisfied
since (S1, P1) is d-crossing. Otherwise, from Lemma 2, p € I;(T(p)), and
the inequalities of the lemma are satisfied by the definition of I;(-). O

Lemma 4. Let p € P, and let p' € Pr such that p' # p and p’ is nested
in T(p). Then, p' is nested in p.

Proof. Let p and p’ be two arcs satisfying the conditions of the lemma.
From the definition of T'(-), p cannot cross p’. Moreover, from Lemma 3
and the fact that span(p) > 2d, p’ cannot precede p, or vice versa. O

For every tree arc p € Pp we select a tree arc denoted hchild(p) such
that hchild(p) is nested in p and span(hchild(p)) is maximum (if there
is such an arc). For p € Pp and p # (1,n), define parent(p) to be the
minimum span tree arc that p is nested in. We define parent((1,n)) =
(1,n).



Recursion For each p € Pr we build two tables LP and RP. Intuitively,
one obtains the optimal alignments of the area below p or any arc cross-
ing p by first extending the optimal alignments of hchild(p) or any arc
crossing hchild(p) to the left (with LP) and then to the right (with RP).
We compute the tables in an order such that for each p, L? is computed
before RP and such that the tables of all p’ € Pr that are nested in p are
computed before the tables of p.

The table entries LP[i, i, j, j'] and RP[i,4’, j, j'] have the same seman-
tics as M[i,4', 7,7'] and only differ in the domains of the indices i, i, j,
j" and the recursions according to which they are computed. Let us first
assume that hchild(p) is defined for p. Then, LP[i,d’, j, j'] is defined for

max(p® — d, parent(p)*) < i < hchild(p)®
hchild(p)® < ' < min(hchild(p)® + d, p?)
I1<j<m
j—1<j <m.

and for RP[i,7,j,j'] the domains of j and j’ are the same, but ¢ and i’
must satisfy

max(p® — d, parent(p)*) < i < min(p® + d, hechild(p)¥)
hchild(p)? < i’ < min(p® + d, parent(p)?).

If hchild(p) is not defined for p, no LP table is computed and the RP tables
contain entries for

max(p" — d, parent(p)~) < i < p" +d
pr+d<i < min(pR +d, parent(p)R)

and j, j' restricted as in the table RP in the case where hchild(p) is defined.
The domains of i and i’ for the different cases are visualized in Fig. 3.

Computation of LP All entries LP[i,,7,7] with i > max(hchild(p)" —
d, p") are initialized as LP[i, 7, j, j'] = RMMA®)[; ¢/ j j']. All other entries
are computed according to the recursion shown in Fig. 5. Again cases
relying on invalid items are implicitly skipped. The last three cases of the
recursion are visualized in Fig. 4.

Computation of RP The computation of the RP tables is similar to the
computation of the LP tables, only that the fragments are extended to



hchild(p
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Fig. 3. Visualization of the domains for the different tables.

caseL (IV) caseL (V) case L (VI)
p p
P, P
i () p,
/\ /\
< dp NEEN =N RN
LP M| M Lp | RT®) I |
i i i i, i P .
case R (IV) caseR (V) case R (VI)
P P
P, p1 T(p) P\
/\ /\
PERIERN ar ] d) [ 2] N R
| M Re | RP M | RP RTP)
i, i i iy i i i

Fig. 4. Visualization of the recursion cases. The arc bounding the gray area denotes
hchild(p).



Li,d', 5,5 =

LP[Z+177'/7.75.]/}+71(7‘) I
LP[i,d, 5+ 1,5'T + 72(4) I
LPli+1,4,5+ 1,51 + B(i, j) I
for all p1 = (i,i0) € P1, p2 = (j,Jo) € P2 with 49 <7, jo < j',

and hchild(p) is nested in p; v

LPli+ 1,50 — 1,5+ 1,j0 — 1] + M[io + 1,4, jo + 1,5'] + a(p1,p2)

for all p1 = (i,40) € P1, p2 = (4, o) € P2 with ig <4', jo < j,

hchild(p) is not nested in p1, and span(pi) < 2d vV
Ml[i+1,i0 = 1,5 + 1, jo — 1] + LP[io + 1,4’ jo + 1, 5] + a(p1, p2)

min

for all p1 = (i,40) € P1, p2 = (4, jo) € P2 with io <7, jo < j’,
hchild(p) is not nested in pi1, and span(p1) > 2d VI
RVl 41,40 — 1,7+ 1, jo — 1] + L[io + 1,4, jo + 1,5 + a(p1, p2)

Fig. 5. The recursions for the table LP.

the right instead of to the left. If hchild(p) is defined, we initialize all
entries with 7/ < min(hchild(p)® + d, p?) as RP[i, 4, j, '] = LP[i,7, j,7'].
All other items are computed according to the recursion shown in Fig. 6.
If hchild(p) is not defined, we initialize all items with i/ = p" + d as
RP[i,4',4,5'] = Mli,,j,j']. The recursion for RP in this case includes
lines I, II, III, and V from Fig. 6.

Once the tables are computed, the actual alignment can be con-
structed using the usual backtrace technique.

4.3 Correctness

Let (A, P) be an optimal alignment and consensus structure for the frag-
ments corresponding to some table entry M[i, 4, j,5'], LP[¢,i,75, ], or
RP[i,i', j,7'] (note the swapped indices in the entry of LP). In all recur-
sions, lines I and II cover the cases where A aligns i’ or j’ to a gap. Line 111
covers the cases where (i, j') € A and no arcs of P are adjacent to i’ or
j'. Furthermore i and j’ can never be adjacent to arcs of the consensus
structure whose other end is outside of the current fragment (due to the
semantics of the table entries). Hence, the case that remains is where i’
and j' are one end of some arc of the consensus structure whose other
end is also contained in the current fragment. In the recursion for M, this
case is covered in line IV, and in the recursions for L and R this case
is further decomposed into subcases corresponding to lines IV to VI. In



RPli,i', 4,5 =

Rp[i,i/—l,j,j/]+’Y1(i) I
Rp[%ll?]?]li]‘]‘i»’}@(]) I
RP[’L7’L/—17]7]/—1}+B(’I,7J) 111

for all p1 = (i0,i’) € P1, p2 = (jo,j’) € P> with i <o, j < jo,

and hchild(p) is nested in p: v
Mli,io — 1,5,50 — 1]+ RPlio+ 1,4 — 1,50 + 1,5 — 1] + a(p1, p2)

for all p1 = (i0,4’) € P1, p2 = (jo,j’) € P> with i <o, j < jo,

hchild(p) is not nested in p1, and span(p1) < 2d A%
RP[iyio — 1,4,50 — 1] + M[io + 1,4 — 1,50 + 1,5 — 1] + a(p1, p2)

min

for all p1L = (io7i/) e P, p2 = (jo,j/) € P, with 7 < 1, 7 < Jo,
hehild(p) is not nested in p1, and span(p1) > 2d VI
RPlivio — 1,,j0 — 1]+ RT®Vlio + 1,4 — 1, jo + 1,5 — 1] + a(p1, p2)

Fig. 6. The recursions for the table RP.

all those cases, the fragment is decomposed in the arc match (p1,p2), the
fragment below the arc match and the fragment before it (or behind it, in
the case of the table L). This decomposition is correct since the consensus
structure is nested and hence cannot contain other arc pairs whose arcs
cross p; and ps2 to connect the fragments before and below (p1, p2). It re-
mains to show that in each case the table entries we recursively descend
to exist.

Fix an arc p € Pr for which hchild(p) is defined (the case where
hchild(p) is not defined is similar). Let p; = (ig,¢’) be an arc considered
in lines IV to VI of the recursion for RP.

Lemma 5. p; does not cross hchild(p).

Proof. Since the case i’ < min(hchild(p)® + d, p?) is handled by the ini-
tialization of RP, we have i’ > min(hchild(p)® + d, p?). Therefore, either
i’ > hchild(p)® + d or i/ > p®. In the former case we have from the as-
sumption that (S, P;) is d-crossing that p; does not cross hchild(p). In
the latter case we also have that p; does not cross hchild(p) since other-
wise, p1 would also cross p, contradicting Lemma, 1. O

By Lemma 5, either hchild(p) is nested in p; or hchild(p) precedes
p1. The case where hchild(p) is nested in p; is handled in line VI of the
recursion. In this case we have that either T'(p;) = p or p is nested in p;.
In both cases we have that ig < p* +d — 1 (due to Lemma 3). From this



inequality we obtain that (ig — 1) —i = (ip — p") + (p* —4) — 1 < 2d — 2,
so the entry MT[i,igp — 1,7, jo — 1] exists. Moreover, from the inequality
iop < p” 4+ d — 1 and the assumption that hchild(p) is nested in p; we
obtain that the entry RP[ig + 1,7 — 1, j0 + 1,5’ — 1] exists.

Now consider the case where hchild(p) precedes p; which is handled in
lines V and VI of the recursion. In both lines, the common entry RP[i, ig—
1,7,70 — 1] exists.

If span(py) < 2d then the entry M[ig + 1,7/ — 1,jo + 1,7’ — 1] exists
since (' — 1) — (ip + 1) = span(p1) — 3 < 2d — 3. If span(p;) > 2d then
we need to show that the entry RT(®V)[ig, ', jo,j'] exists. We have that
p — p® > span(hchild(p)) > 2d, and therefore p; does not cross p and
p1 ¢ Iq(p). Tt follows that T'(p1) # p. Therefore, T(py) is nested in p,
so the table RT(®) was already filled by the algorithm when the table
RP is filled. From Lemma 3 and Lemma 4 we conclude that the entry
RT(1) [io, ', jo, j'] exists. The correctness arguments for the recursion for
LP are analogous.

4.4 Time Complexity

Let df(i) (resp., df(i)) denote the number of arcs p in P with p® =i
(vesp., p& = i). Let d, (i) = df(i)+dE (i) + 1. In stage 1, the time complex-
ity for computing an entry MTi, i, 7, j'] is O((1 + df(i"))(1 + df(j"))) =
O(d(i")dy(5")). For fixed i’ and j’, the number of entries of the form
MTi, 7', 4,j'] that are computed by the algorithm is O(dm). Therefore,

the time complexity of stage 1 is O (Z;?:l D=1 dm~d1(i’)d2(j’)> =

O (dm Y5y dy () S5y da(')) = O(dnm?).

For p € Pr, the time complexity of computing an entry LP[i, i, j, j']
is O((1 + dl(i)(1 + dk(4))) = O(d,(i)dy(4)), and the time complex-
ity of computing an entry RP[i,i,7,5'] is O((1 + df(i"))(1 + df(5))) =
O(d(i")dy(5")). Consider some fixed arc p and fixed indices ¢ and j. Let
cz ; denote the number of computed entries of the form LP[i,d’, j, j'] or

RP[i',i,7', j]. Then stage 2 requires O (ZPGPT D D dl(i)dQ(j))
time.

For every p € Pr, cfj € O(dm) for all 7 and j. Assuming ¢ and j are
fixed, we now count the number of arcs p € Pr for which cf ; > 0. Let
po be the minimum span tree arc such that ¢ € [p](;, pOR]. If p is a tree arc
with cf ; > 0 then p satisfies one of the following:

1. p is nested in pg, p® < 4, and p® is maximal among all tree arcs that
satisfy the previous two conditions.



2. p is nested in pg, p& > i, and p" is minimal among all tree arcs that
satisfy the previous two conditions.
3. po is nested in p and i ¢ [hchild(p)¥, hchild(p)R].

There are at most two arcs of types 1 and 2 above. Let pg, p1,...,pr be
all the tree arcs of the third type, such that p; is nested in p;y1 for all
i. Since span(p;) < span(hchild(p;+1)), we have span(p;+1) > 2 - span(p;)
for all ¢ and therefore k < logy n. Thus, the time complexity of stage 2 is

O (1) Xy dmlogn- dy(i)dy(j) ) = O(dm*nlogn).

5 Conclusion

We presented an algorithm that computes the optimal sequence structure
alignment for a nested consensus structure and crossing input structures.
In practice, crossing input structures can be used to represent several sub-
optimal structures simultaneously, from which the alignment effectively
selects the most appropriate one. On the theoretical side, we generalized
the optimizations developed by Klein [14] to crossing input structures. In
future work, we will try to incorporate also the space optimization and
the optimization of Demaine et al [2].
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