
Local Alignment of RNA Sequences

with Arbitrary Scoring Schemes

Rolf Backofen1, Danny Hermelin⋆2,
Gad M. Landau⋆⋆2,3, and Oren Weimann4

1 Institute of Computer Science,
Albert-Ludwigs Universität Freiburg, Freiburg - Germany.

backofen@informatik.uni-freiburg.de
2 Department of Computer Science,
University of Haifa, Haifa - Israel.

danny@cri.haifa.ac.il, landau@cs.haifa.ac.il
3 Department of Computer and Information Science,

Polytechnic University, New York - USA.
4 Computer Science and Artificial Intelligence Laboratory,

MIT, Cambridge MA - USA.
oweimann@mit.edu

Abstract. Local similarity is an important tool in comparative analy-
sis of biological sequences, and is therefore well studied. In particular,
the Smith-Waterman technique and its normalized version are two estab-
lished metrics for measuring local similarity in strings. In RNA sequences
however, where one must consider not only sequential but also struc-
tural features of the inspected molecules, the concept of local similarity
becomes more complicated. First, even in global similarity, computing
global sequence-structure alignments is more difficult than computing
standard sequence alignments due to the bi-dimensionality of informa-
tion. Second, one can view locality in two different ways, in the sequential
or structural sense, leading to different problem formulations.

In this paper we introduce two sequentially-local similarity metrics
for comparing RNA sequences. These metrics combine the global RNA
alignment metric of Shasha and Zhang [16] with the Smith-Waterman
metric [17] and its normalized version [2] used in strings. We generalize
the familiar alignment graph used in string comparison to apply also
for RNA sequences, and then utilize this generalization to devise two
algorithms for computing local similarity according to our two suggested
metrics. Our algorithms run in O(m2

n lg n) and O(m2
n lg n+n

2
m) time

respectively, where m ≤ n are the lengths of the two given RNAs. Both
algorithms can work with any arbitrary scoring scheme.

1 Introduction

Ribonucleic acids (RNAs) are polymers consisting of the four nucleotides Ade-
nine, Cytosine, Guanine, and Uracil, which are linked together by their phos-
phodiester bonds. Bases which are part of the nucleotides form hydrogen bonds

⋆ Partially supported by the Israel Science Foundation grant 282/01.

Fig. 1. Three different ways of viewing an RNA sequence. In (a), a schematic 2-
dimensional description of an RNA folding. In (b), a linear representation of the RNA.
In (c), the RNA as a rooted ordered tree.

within the same molecule leading to structure formation. These hydrogen bonds
are referred to as base pairs, and the set of all base pairs is called the secondary
structure of the RNA. The role of RNA in biological systems was largely under-
estimated for a long time. Today, RNA enjoys increasing attention due to recent
developments such as the discovery of ribozymes (RNA-molecules with enzy-
matic properties), and the observation that non-coding RNA molecules play an
enormous role in cell control. As an example, research on non-coding RNAs has
been elected as the scientific breakthrough of 2002 by the readers of Science [6].

One major challenge of research on RNAs is to find common patterns since
these suggest functional similarities in the inspected molecules. For this purpose,
one has to investigate not only sequential features, but also structural features
for the following reasons. First, a major fraction of the function of an RNA is
determined by its secondary structure [15]. Second, it is known that the structure
of an RNA is often more conserved than its sequence during evolution [4]. Thus,
two RNA sequences with their corresponding secondary structure are aligned
using both sequential and structural information for scoring the alignment.

There have been quite a few approaches for defining alignments in terms of
RNAs. The first one is due to the seminal paper of Shasha and Zhang [16] which
represented RNA sequences as rooted ordered trees, and defined editing opera-
tions on trees which correspond to editing operations on RNA sequences. In this
way, an alignment of two RNA sequences corresponds to a sequence of editing op-
erations on two corresponding trees, and any tree editing algorithm can be used
to compute the optimal alignment of two RNAs. Furthermore, this approach al-
lows base pairs to be considered as whole entities, meaning that one can require
any base pair to either be deleted (resulting in a removal of two nucleotides)
or be aligned against another base pair in the opposite RNA. Since [16], there
have been attempts at extending either the set of edit operations on trees [1, 11],
or the set of allowed RNA alignments [13], in order to model certain biological
mutations that weaken and ultimately break bonds between base pairs. Usually,

these extensions introduce an increase in the time complexities of the algorithms
required to compute them.

In RNA sequences, as in many other biological applications, searching for
local similarities is at least as important as determining global similarity. In
contrast, most RNA sequence-structure alignment methods are global. To our
knowledge, there are only a few exceptions for this, namely [3, 5, 7, 10, 18]. These
can be divided roughly into two main categories, depending on the exact notion of
locality under consideration. The first category of [3, 7, 18] defines locality in the
structural sense, thus allowing large gaps in the sequences not to be considered
as relevant in the alignment score. The second category of [5, 10] defines locality
in the sequential sense, thus extending the well understood notion of locality in
strings to RNA sequences.

In this paper we introduce two sequentially-local metrics for RNA local
alignment. The first one is a natural extension of the Smith-Waterman metric
used in strings [17]. The second one is a a normalized variant of the first metric,
where one divides the alignment score of two local regions by the sum of their
lengths. This metric was suggested for string comparison by [2], and was dealt
also in [9].

Our results: We give two algorithms for computing the optimal local alignment
score of two RNA sequences of lengths m and n, m ≤ n. The first algorithm
computes in O(m2n lg n) time the optimal local alignment score according to
our extension of the Smith-Waterman metric. The second one computes the
optimal normalized local alignment score in O(m2n lg n + n2m) time. Both
algorithms work with any arbitrary scoring scheme.

Roadmap: The rest of this paper is organized as follows. We next introduce
notations and terminology that will be used throughout the paper. Following
this, in Section 2, we discuss the notion of alignment for RNA sequences. In
Section 3, we discuss local alignment and introduce two new local similarity
metrics that we will be dealing with throughout the paper. Section 4 then de-
scribes an adaptation of the familiar alignment graph used in string comparison
to an alignment graph for RNA sequences. This adapted graph is then used
in Section 5 to design two algorithms that compute the local alignment score
between a pair RNA sequences according to our two suggested metrics. Due to
space limitations, all proofs are omitted from this version of the paper.

Notations: An RNA sequence R is an ordered pair (S, A), where S = s1 · · · s|S|

is a string over the alphabet Σ = {A, C, G, U}, and A ⊆ {1, . . . , |S|}×{1, . . . , |S|}
is the set of hydrogen bonds between bases of R (i.e. the secondary struc-
ture). Any base in R can bond with at most one other base, therefore we have
∀ (i′1, i1), (i

′
2, i2) ∈ A, i′1 = i′2 ⇔ i1 = i2. Furthermore, following Zuker [19,

20], we assume a model where the bonds in A are non crossing, i.e. for any
(i′1, i1), (i

′
2, i2) ∈ A, we cannot have i′1 < i′2 < i1 < i2 nor i′2 < i′1 < i2 < i1.

We refer to a bond (i′, i) ∈ A, i′ < i, as an arc, and i′ and i are referred to as

the left and right endpoints of this arc. Also, we let |R| denote the number of
nucleotides in R, i.e. |R| = |S|.

We will require a notion similar to that of a substring for RNA sequences.
Therefore, for any 1 ≤ i′ ≤ i ≤ |R|, we let R[i′, i] = (S[i′, i], A[i′, i]), the
consecutive subsequence of R, be the RNA with S[i′, i] = Si′ · · ·Si and A[i′, i] =
A∩{i′, . . . , i}×{i′, . . . , i}. If (i′, i) ∈ A, then we say that arc (i′, i) wraps R[i′, i].
Also, for convenience purposes, we slightly abuse notation and let R[i + 1, i] =
(∅, ∅) denote the empty RNA for any 1 ≤ i ≤ |R|. Note that arcs of R with
one endpoint in R[i′, i] are absent in R[i′, i]. These arcs are said to be broken in
R[i′, i]. A position l ∈ {i′, ..., i} is considered an arc endpoint in R[i′, i], even if
it is an arc endpoint of an arc which is broken in R[i′, i].

This paper deals with comparing two RNA sequences. We denote these two
RNAs by R1 = (S1, A1) and R2 = (S2, A2) throughout the paper, and we set
|R1| = |S1| = n and |R2| = |S2| = m. Furthermore, we assume m ≤ n.

2 RNA Alignment

As in the case of strings, RNA alignment is analogous to the edit distance of
two RNAs, i.e. the minimum number of edit operations necessary in order to
transform one RNA into the other [16]. The edit operations defined for RNA
molecules are similar to those defined for strings, except that here we can per-
form editing operations on arcs as well as on unpaired nucleotides. The allowed
edit operations are therefore insertion, deletion, and relabeling of arcs and nu-
cleotides on either one of the given RNAs. Defining separate operations on arcs
and unpaired nucleotides captures the notion of arcs and unpaired bases being
different entities.

An alignment of R1 and R2 is another way of viewing a sequence of edit
operations on these two RNAs. Formally, it is defined as follows:

Definition 1 (Alignment). An alignment A of R1 and R2 is a subset of
{1, . . . , n} ∪ {−} × {1, . . . , m} ∪ {−} satisfying the following conditions:

– (−,−) /∈ A.
– ∀(i, j) ∈ A ∩ {1, . . . , n} × {1, . . . , m} : i and j appear exactly once in A.
– ∀(i′, j′), (i, j) ∈ A ∩ {1, . . . , n} × {1, . . . , m} : i′ < i ⇐⇒ j′ < j. That is,

any two pairs in A are non-crossing.
– ∀(i, j) ∈ A∩{1, . . . , n}× {1, . . . , m} : i is a left (resp. right) arc endpoint in

R1 ⇐⇒ j is a left (resp. right) arc endpoint in R2.
– ∀(i′, i) ∈ A1, (j

′, j) ∈ A2 : (i′, j′) ∈ A ⇐⇒ (i, j) ∈ A. That is, the left
endpoints of any pair of arcs are aligned against each other in A iff their
right endpoints are also aligned against each other in A.

In terms of editing operations, a pair (i, j) ∈ A ∩ {1, . . . , n} × {1, . . . , m} corre-
sponds to relabeling the ith nucleotide (unpaired or not) of R1 so it would match
the jth nucleotide of R2, while pairs (i,−) and (−, j) corresponds to deleting
the ith and jth nucleotides in R1 and R2. The first three conditions in the above

definition require any position in R1 and R2 to be aligned, and that (−,−) /∈ A,
since (−,−) does not correspond to any valid edit operation. The next condition
enforces the order of the subsequences to be preserved in A, and the last two
conditions restrict any arc to be either deleted or aligned against another arc in
the opposite RNA.

Let Σ′ = Σ ∪ {−}. A scoring scheme δ = (δ1, δ2) for alignments of R1 and
R2 is an ordered pair of two separate scoring functions δ1 : Σ′ × Σ′ −→ Z and
δ2 : Σ′2×Σ′2 −→ Z, one which measures the quality of aligning a single unpaired
nucleotide of R1 against another unpaired nucleotide of R2, and the other for
measuring the quality of aligning pairs of arcs of the two RNA sequences. Hence
δ2((S1[i

′], S1[i]), (−,−)) denotes, for example, the deletion of the arc (i′, i) ∈ A1.
We assume the scoring scheme is a similarity metric, and so a high score is given
for aligning similar arcs or similar unpaired nucleotides, while different penalties
are given in all other possible cases.

For brevity of notation, let us write δ1(i, j) to denote the value δ1(S1[i], S2[j])
if i, j 6= −, and δ1(S1[i],−) (resp. δ1(−, S2[j])) if j (resp. i) is the blank sym-
bol ‘−’. Also, we write δ2(i

′, i, j′, j) instead of δ2((i
′, i), (j′, j)). The score of an

alignment A of R1 and R2 with respect to δ is given by:

δ(A) =
∑

(i,j)∈A, i,j are not
arc endpoints

δ1(i, j) +
∑

(i′,j′),(i,j)∈A,

(i′,i)∈A1∧(j′,j)∈A2

δ2(i
′, i, j′, j).

Definition 2 (OPTδ(R
′

1, R
′

2)). Given two RNA sequences R′
1 and R′

2 and
a scoring scheme δ = (δ1, δ2), OPTδ(R′

1,R′
2) denotes the highest score of any

alignment of R′
1 and R′

2 with respect to δ.

2.1 RNA alignment via ordered tree editing

The non crossing formation formed by the arcs in both R1 and R2 conveniently
allows representing these RNAs as rooted ordered trees [16]. Each arc (i, i′) is
identified with a set of ordered children which are all unpaired bases i′′ such that
i < i′′ < i′, and arcs (l, l′) such that i < l < l′ < i′ (see Figure 1). In [16], Shasha
and Zhang suggested an algorithm for computing the edit distance between two
ordered trees. Their algorithm was later improved by Klein [14] to an O(m2n lg n)
algorithm, where m ≤ n denote the number of nodes in the two trees. (Recently,
Demaine et al. [8] presented an O(m2n(1+lg n

m
)) improvement to this algorithm.

Using their algorithm improves the results of this paper to O(m2n(1 + lg n
m

))
time for the Smith-Waterman metric, and O(n2m) for the normalized metric).

Not by chance, the edit operations defined for trees are analogous to the
ones defined for RNA sequences. For this reason, any tree editing algorithm
can be used to determine the global alignment score of two RNAs, with the
slight modification that a penalty of ∞ is assigned for relabeling a node which
corresponds to an unpaired nucleotide by a label corresponding to a base pair,
and vise versa. Furthermore, as a side effect of the recursions used in [14, 16],
these algorithms compute the optimal alignment between every pair of rooted
subtrees of the two given trees, assuming this alignment matches the roots of

the two subtrees. In our setting, this means that δ2(i
′, i, j′, j) + OPTδ(R1[i

′ +
1, i − 1],R2[j + 1, j − 1]) is computed between all pairs of arcs (i′, i) ∈ A1 and
(j′, j) ∈ A2 in a single execution of either algorithms. The importance of this
property will become apparent later on.

Definition 3 (OPT arc

δ
(R1[i

′, i], R2[j
′, j])). For a pair of arcs (i′, i) ∈

A1 and (j′, j) ∈ A2, we set OPT arc
δ (R1[i

′, i],R2[j
′, j]) = δ2(i

′, i, j′, j) +
OPTδ(R1[i

′ + 1, i − 1],R2[j + 1, j − 1]).

3 Local Alignment

While the metric described in the previous section is suitable for measuring
global similarity of two RNA sequences, in many applications two RNAs may
not be very similar when both considered as a whole, but may contain many
regions of high similarity. The goal is then to extract a pair of regions, one
from each RNA, which admits a strong degree of similarity. This is known as
local similarity. In the following section we introduce two metrics for measuring
local similarity between RNA sequences. These metrics are extensions of the
Smith-Waterman [17] and normalization [2] techniques used for strings.

A local alignment of R1 and R2, one which corresponds to a pair of contiguous
regions in the RNAs, is an alignment of two consecutive subsequences R1[i

′, i]
and R2[j

′, j]. Note that the last condition of Definition 1 implies that any arc
endpoint of a broken arc in each subsequence must be aligned with the blank
symbol ‘−’. However, we need to distinguish between this situation and a deletion
of an unpaired nucleotide. Therefore, we use δ2(l

′,−,−,−) (resp. δ2(−, l,−,−))
to denote the cost of aligning the left (resp. right) endpoint of a broken edge
(l′, l) in R1[i

′, i] against ‘−’, and symmetrically, δ2(−,−, l′,−) and δ2(−,−,−, l)
are used to denote the costs of aligning the endpoints of a broken edge (l′, l)
in R1[i

′, i] against ‘−’. Furthermore, we require that the total cost of aligning
the left and right endpoints of a broken edge (in two different alignments) be
equal to the cost of deleting this edge. That is, δ2(l

′,−,−,−) + δ2(−, l,−,−) =
δ2(l

′, l,−,−) and δ2(−,−, l′,−) + δ2(−,−,−, l) = δ2(−,−, l′, l).

3.1 Standard local alignment

The well known Smith-Waterman [17] technique for computing local similarity
between strings has been extensively studied in the literature. It is defined as the
highest scoring alignment between any pair of substrings of the input strings. The
simplicity of this definition has gained it wide applicability in many biological
settings [12]. In our terms, it is defined by:

max

{

OPTδ(R1[i
′, i],R2[j

′, j])

∣

∣

∣

∣

∣

1 ≤ i′ ≤ i ≤ |R1|,
1 ≤ j′ ≤ j ≤ |R2|

}

.

We refer to the Smith-Waterman metric as the standard local alignment score
of R1 and R2. The computational problem corresponding to this metric is then
defined as follows:

Definition 4 (The standard local alignment problem). Given two RNA
sequences R1 = (S1, A1) and R2 = (S2, A2), determine the standard local align-
ment score of R1 and R2.

3.2 Normalized local alignment

According to [2], the Smith-Waterman technique has two weaknesses that make
it non optimal as a local similarity measure. The first weakness is called the
mosaic effect. This term describes the algorithm’s inability to discard poorly
conserved intermediate segments, although it can discard poor prefixes or suffixes
of a segment. The second weakness is known as the shadow effect. This term
describes the tendency of the algorithm to lengthen long alignments with a high
score rather than shorter alignments with a lower score and a higher degree of
similarity.

One way to overcome these weaknesses is to normalize the alignment score
of two substrings by dividing it with their total length [2]. In our terms, the
normalized alignment score of R1 and R2 is defined by:

max

OPTδ(R1[i, i
′],R2[j, j

′])

|R1[i, i′]| + |R2[j, j′]|

∣

∣

∣

∣

∣

1 ≤ i ≤ i′ ≤ |R1|,
1 ≤ j ≤ j′ ≤ |R2|,
OPTδ(R1[i, i

′],R2[j, j
′]) ≥ I

.

Where I ∈ N is an integer regulating the minimum score (before normalization)
of solution alignments, predefined according to the application at hand. Note
that this additional parameter is necessary for preventing trivial solutions (e.g.
a single match) from being optimal.

Definition 5 (The normalized local alignment problem). Given two RNA
sequences R1 = (S1, A1) and R2 = (S2, A2), and an integer I, determine the
normalized local alignment score of R1 and R2.

4 An Alignment Graph for RNA Sequences

We next present an adaptation of the alignment graph that is used to describe
string alignment [12], to an alignment graph that describes alignments of RNA
sequences. Later, in Section 5, this adapted graph will be utilized for computing
the local similarity score of R1 and R2 according to our two suggested metrics.
We begin with a brief description of the alignment graph used for strings, and
then proceed to explain in further detail the modifications necessary for our case.

Let S1 and S2 be two strings over any given alphabet, and δ1 be a given scor-
ing function over this alphabet. The alignment graph for S1 and S2 is a weighted
directed graph with (|S1|+ 1)(|S2|+ 1) vertices, each indexed by a distinct pair
(i, j) ∈ {0, . . . , |S1|} × {0, . . . , |S2|}. For each vertex (i, j), the alignment graph
contains a directed edge from (i, j) to each of the vertices (i, j+1), (i+1, j), and
(i+1, j +1), provided these vertices exist. These edges are called the horizontal,
vertical, and diagonal edges of (i, j) respectively, and their weights are given

Fig. 2. Four different situations that occur when aligning RNA sequences.

by δ1(−, j), δ1(i,−), and δ1(i, j). In this way, the alignment graph captures the
standard dynamic programming used in string alignment.

The central property of the alignment graph of S1 and S2 is that any path
from say (i′, j′) to (i, j) corresponds to an alignment between S1[i

′ + 1, i] and
S2[j

′ + 1, j] with a score which equals the total sum of weights of the edges in
the path. Conversely, any alignment between S1[i

′ + 1, i] and S2[j
′ + 1, j] with

score w has a corresponding w-weighted path in the alignment graph.

Theorem 1 ([12]). An alignment of S1[i
′, i] and S2[j

′, j] has optimal score iff
it corresponds to the heaviest path from (i′, i) to (j′, j).

Let us now consider alignments of RNA sequences. The main difference when
aligning RNA sequences is that now we must consider arcs and unpaired nu-
cleotides as different entities which must be aligned separately. There are four
different cases that we should each address accordingly:

– Case 1 corresponds to arc deletions and is depicted in Figure 2(a). Note that
the path in the figure deletes the left and right endpoints in both arcs of the
RNAs, and therefore it corresponds to deleting the two arcs. Note that this
would also be the case even if the path had passed through the diagonal edge
that corresponds to aligning the right endpoints of the arcs.

– Case 2 corresponds to alignments which break arcs and is depicted in Fig-
ure 2(b). Such alignments must be penalized accordingly.

– Case 3 corresponds to alignments in areas which do not contain arcs. In
contrast to the previous case, these types of alignments do not break any
arcs, and therefore they should not be penalized.

– Case 4 corresponds to alignments which align arcs against each other.

Note that there are also alignments which combine the first two cases, by deleting
one arc and breaking the other.

We now turn to describe the necessary modifications for adapting the align-
ment graph to RNA sequence-structure alignment. We begin by focusing on the
first three cases in the example above. The last case will be dealt with sepa-
rately. For a given i ∈ {1, . . . , n}, we refer to the set of all edges connecting a
pair of vertices in {(i − 1, j), (i, j) | 0 ≤ j ≤ m} as the ith row of the alignment
graph. Hence, the ith row corresponds to all edges that represent an edit oper-
ation which involves the ith position of R1. The jth column, j ∈ {1, . . . , n}, is
defined symmetrically to be the set of all edges connecting pairs of vertices in
{(i, j − 1), (i, j) | 0 ≤ j ≤ m}.

Consider some position i in R1, along with the ith row corresponding to this
position in the alignment graph. If i is not an arc endpoint, then no modifications
are necessary on this row, since all editing operations on i are equivalent to those
in strings. Otherwise, when i is an endpoint, we wish to model the three cases
discussed above. For this, we first remove all diagonal edges. This is done to
ensure that i is not aligned against any position in R2, as we are only concerned
with arc deletions at the moment. Following this, we set the weights of all vertical
edges to the penalty of breaking the arc of which i is an endpoint of. If i a left
endpoint, we set these weights to δ2(i,−,−,−), and otherwise we set them to
δ2(−, i,−,−). This takes care of the second case described above. All other edges
in the row, i.e. the horizontal edges, are left untouched. For a position j in R2

the modifications are symmetric. Here the weights of the horizontal edges are
modified, while the vertical edges remain unmodified. We mention that all our
modifications could be done on the scoring scheme (by adding additional letters
to the alphabet which represent different types of arc endpoints) rather then on
the alignment graph.

After applying the above modifications to each column and row which cor-
responds to arc endpoints, we obtain the grid part of our adapted alignment
graph.

Lemma 1. Paths in the grid part are in bijective correspondence with align-
ments of consecutive subsequences of R1 and R2 in which all arcs are deleted.

What is left now, is to take care of alignments which align arcs against
each other, i.e. the last case in the example above. Consider a path, as in Fig-
ure 2(d), that corresponds to an alignment which aligns (i′, i) ∈ A1 against
(j′, j) ∈ A2. This path must pass through the nodes (i′ − 1, j′ − 1) and (i, j)
in the alignment graph (the two intersections of the shaded rows and columns).
This means that this path consists of a prefix which ends at (i′ − 1, j′ − 1), a
middle part from (i′ − 1, j′ − 1) to (i, j), and a suffix which starts at (i, j). As

was explained in Section 2.1, the optimal score of the middle part is given by
OPT arc

δ (R1[i
′, i],R2[j

′, j]), and it is computed in the preprocessing step. There-
fore, if this path is optimal, its weight equals OPT arc

δ (R1[i
′, i],R2[j

′, j]) plus
the combined weights of the suffix and prefix. We represent the middle part
of any optimal path that aligns (i′, i) against (j′, j) by adding a single edge
from (i′ − 1, j′ − 1) to (i, j) in the alignment graph, and setting its weight to
OPT arc

δ (R1[i
′, i],R2[j

′, j]) accordingly. We refer to this new edge as a shortcut
edge, and we add such shortcut edges for each pair of arcs in R1 and R2.

Theorem 2. An alignment of R1[i
′ + 1, i] and R2[j

′ + 1, j] is optimal iff it
corresponds to the heaviest path from (i′, i) to (j′, j) in the alignment graph of
R1 and R2.

5 Local Alignment Algorithms

We next describe two algorithms for computing local similarity of R1 and R2

according to the two metrics defined in Section 3. For simplicity, we focus only on
computing the score of an optimal alignment rather than computing an actual
alignment. One can easily obtain the latter within the same time and space
bounds in both algorithms.

As a consequence of Theorem 2, computing optimal local alignments of R1

and R2 reduces to computing locally optimal paths in the alignment graph of R1

and R2. Therefore, both our algorithms initially construct the alignment graph
of R1 and R2, and then perform all computations on this graph. For any edge
in the alignment graph, from say (i′, j′) to (i, j), we let w((i′, j′), (i, j)) denote
the weight of the edge. For any vertex (i, j) in the graph, we let Nin(i, j) denote
the set of vertices with an edge to (i, j), that is, the set of in-neighbors of (i, j).

5.1 Standard local alignment algorithm

For computing the standard local alignment score of R1 and R2, we define
s(i, j) to be the weight of the heaviest path, including the empty one, that ends
at vertex (i, j). Note that by Theorem 2, this value equals the highest scoring
alignment achievable by any pair of consecutive substrings R1[i

′, i] and R2[j
′, j]

with i′ ∈ {1, . . . , i} and j′ ∈ {1, . . . , j}. Therefore, the maximum s(i, j) over all
(i, j) ∈ {1, . . . , n} × {1, . . . , m} equals the standard local alignment score of R1

and R2.

Lemma 2. The recursion below correctly computes s(i, j):

s(i, j) = max

{

s(i′, j′) + w((i′, j′), (i, j)) where (i′, j′) ∈ Nin(i, j)

0

Time Complexity: Using standard dynamic programming, once the alignment
graph of R1 and R2 is constructed, we can compute s(i, j) for every i ∈ {1, . . . , n}

and j ∈ {1, . . . , m} in O(nm) time, since the in-degree of every vertex is at most
three. The preprocessing step takes O(m2n lg n) time [14], and therefore our
suggested algorithm solves the standard local alignment problem in O(m2n lg n+
nm) = O(m2n lg n) time.

5.2 Normalized local alignment algorithm

We next present an algorithm for computing the normalized local alignment
score of R1 and R2. This algorithm works by computing all optimal (in terms of
length) local alignments of any possible score, and which end at any possible pair
of positions in R1 and R2. For this purpose, it is convenient to slightly abuse the
graph-theoretic notion of path lengths, and define the length of any path from
(i′, j′) to (i, j) in the alignment graph as the value ∆((i′, j′), (i, j)) = j′−j+i′−i
rather than the number of edges in this path. In other words, the length of
any path from (i′, j′) to (i, j) is defined to be the combined lengths of the two
consecutive subsequences R1[i

′ + 1, i] and R2[j
′ + 1, j].

For computing the normalized local alignment score of R1 and R2, we define
sk(i, j) to be the length of the shortest path that ends at vertex (i, j) and has
weight equal to k, or ∞ if no such path exists. Note that the normalized score
of such a path is given by k/sk(i, j).

Lemma 3. The recursion below correctly computes sk(i, j):

sk(i, j) = min

{

sk′

(i′, j′) + ∆((i′, j′), (i, j))

∣

∣

∣

∣

∣

(i′, j′) ∈ Nin(i, j),
k′ = k − w((i′, j′), (i, j))

}

.

Notice that if our scoring scheme contains values which are not constant,
we could use a similar recursion in which the roles of lengths and scores are
reversed. This is done by defining sk(i, j) to be the weight of the heaviest
length k path that ends at vertex (i, j). The advantage of defining sk(i, j) as in
the presentation above is that one can stop the computation once a satisfying
solution is found.

Time Complexity: Let δmin and δmax be the minimum and maximum score
of a single edit operation in our given scoring scheme δ = (δ1, δ2). Notice that
|(m + n)δmax| and −|(m + n)δmin| are upper and lower bounds on the global

alignment score of R1 and R2. Set k̂ = |(m + n)δmax| and ǩ = −|(m + n)δmin|.
Using standard dynamic programming, once the alignment graph of R1 and R2

is constructed, we can compute sk(i, j) for every i ∈ {1, . . . , n}, j ∈ {1, . . . , m},

and k ∈ {ǩ, . . . , k̂}, in O(nm(k̂ − ǩ)) time, which is O(n2m) assuming δmax and
δmin are both constants. Also, The bounds on k follow from the integrality of
the scoring scheme. Note that if either δmax or δmin are not constants, or if the
scoring scheme is not integral, we can use the alternative definition of sk(i, j)
given above to obtain the same complexity bounds. With a preprocessing stage
of O(m2n lg n) time [14], our suggested algorithm therefore solves the normalized
local alignment problem in O(m2n lg n + n2m) time.

References

1. J. Alliali and M-F. Sagot. A new distance for high level RNA secondary structure
comparison. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 2(1):4–14, 2005.

2. A.N. Arslan, Ö. Eǧecioğlu, and P.A. Pevzner. A new approach to sequence align-
ment: normalized sequence alignment. Bioinformatics, 17(4):327–337, 2001.

3. R. Backofen and S. Will. Local sequence-structure motifs in RNA. Journal of
Bioinformatics and Computational Biology (JBCB), 2(4):681–698, 2004.

4. P. Chartrand, X-H. Meng, R.H. Singer, and R.M. Long. Structural elements re-
quired for the localization of ASH1 mRNA and of a green fluorescent protein
reporter particle in vivo. Current Biology, 9:333–336, 1999.

5. S. Chen, Z. Wang, and K. Zhang. Pattern matching and local alignment for RNA
structures. In international conference on Mathematics and Engineering Tech-
niques in Medicine and Biological Sciences (METMBS), pages 55–61, 2002.

6. J. Couzin. Breakthrough of the year. Small RNAs make big splash. Science,
298(5602):2296–2297, 2002.

7. K.M. Currey, D. Sasha, B.A. Shapiro, J. Wang, and K. Zhang. An algorithm
for finding the largest approxemately common substructure of two trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8):889–895, 1998.

8. E.D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An O(n3)-time algorithm
for tree edit distance. Technical Report arXiv:cs.DS/0604037, Cornell University,
2006.

9. N. Efraty and G.M. Landau. Sparse normalized local alignment. In 15th Combi-
natorial Pattern Matching conference (CPM), pages 333–346, 2004.

10. R. Giegerich, M. Höchsmann, S. Kurtz, and T. Töller. Local similarity in RNA
secondary structures. In Computational Systems Bioinformatics (CSB), pages 159–
168, 2003.

11. V. Guignon, C. Chauve, and S. Hamel. An edit distance between RNA stem-loops.
In 12th Symposium on String Processing and Information Retrieval (SPIRE), pages
335–347, 2005.

12. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Press Syndicate of the University of Cambridge, 1997.

13. T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371–88, 2002.

14. P.N. Klein. Computing the edit-distance between unrooted ordered trees. In 6th
European Symposium on Algorithms (ESA), pages 91–102, 1998.

15. P.B. Moore. Structural motifs in RNA. Annual review of biochemistry, 68:287–300,
1999.

16. D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245–1262, 1989.

17. T.F. Smith and M.S. Waterman. The identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

18. J. Wang and K. Zhang. Identiffying consensus of trees through alignment. Infor-
mation Sciences, 126:165–189, 2000.

19. M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science,
244(4900):48–52, 1989.

20. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133–148,
1981.

