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In this chapter we aim to introduce the topic of bioinformatics to an audience of com-

puter scientists, highlight an illustrative selection of those areas in bioinformatics to which
constraint techniques have been applied, and suggest where they may be applicable. Bioin-
formatics is an exciting and rapidly developing field, and we hope that we haven’t predicted
all the developments in the next few years – indeed we hope that readers of this chapter
will contribute to future applicatiions of constraints in bioinformatics!

One of the first issues that needs to be addressed is the what is meant by “bioinformat-
ics” – it is already almost a colloquial word in the scientific community, but its interpre-
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tation varies widely. The word bioinformatics has two obvious components – “bio-” and
“informatics”; we deal with each of these in turn.

At present the widely accepted interpretation of the “bio” part is molecular biology,
i.e. the study of the structure and activity of macromolecules essential to life. However are
other areas within biology which can be considered to be within the remit of bioinformat-
ics, for example the study of evolution, and genetics.

Informatics is a word which has only recently entered the English language, following
the French, German and Russian traditions which broadly agree that its meaning coincides
with “computer science”. Thus one definition of informatics is “the science of systematic
processing of information, using modeling and abstraction of the concrete realization”.

Thus, when considering both parts of the word, we consider the proper meaning to be
solving problems arising from biology using methodology from computer science, applied
mathematics and statistics. We have decided to focus our contribution on work in bioinfor-
matics that involves either the design of a variant of an existing algorithm from the domain
of computer science, or the design of a new algorithm.

An alternative term, more or less coinciding with bioinformatics is computational bi-
ology, used more in North America than in Europe. Waterman[107] considers that there
are three interpretations, all of which are valid:

One, that it is a subset of biology proper and any required mathematics
and computer science can be made up on demand; two, that it is a subset of
the mathematical sciences and that biology remains a remote but motivating
presence; three: that there are genuine interdisciplinary components, with the
original motivation from biology suggesting mathematical problems, which
suggest biological experiments.

A good overall introduction to Bioinformatics for computer scientists is [22]. Books
that concentrate more on the required mathematical/algorithmic basis of bioinformatics are
e.g. [107, 21, 59].

The amount and variety of biological data now available, together with techniques
developed so far have enabled research in Bioinformatics to move beyond the study of
individual biological components (genes, proteins etc) albeit in a genome-wide context to
attempt to study how individual parts cooperate in their operation [60]. Bioinformatics as
a scientific activity has now moved closer to the area of Systems Biology [65] which seeks
to integrate biological data as an attempt to understand how biological systems function.
By studying the relationships and interactions between various parts of a biological sys-
tem it is hoped that an understandable model of the whole system can be developed. For
example the determination that some interaction, and its strength, exists between two en-
tities is a first step to determining network structure and is a crucial step in the modelling
and analysis of networks such as gene regulation networks, metabolic pathways and sig-
nalling networks. The advent of the new high-throughput technologies (for example gene
expression arrays, mass spectrometry) has meant more challenges for computer scientists
in terms of the type and quantity of data available for analysis.

There are other fields which broadly apply principles from biology to derive novel
approaches in computer science, for example biocomputing, neural computing, genetic
algorithms, and evolutionary computing. These are not directly part of Bioinformatics,
other than being some of the techniques from computer science which can be applied to
biological data.
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Since it is rare to find researchers who are both computer scientists and biologists, it
is generally the case that effective research in bioinformatics requires the joint effort from
scientists in both fields. An important corollary is that in order to achieve such cooperation
all parties must use a common language and be prepared to learn about issues from the
other side. In fact many researchers from the biological and physical sciences working in
bioinformatics have acquired significant computing skills, and may have greater specialist
knowledge in mathematics and statistics than do many computer scientists. An illustration
of this is the heavy use of Hidden Markov Models in bioinformatics, a topic about which
most computer scientists know very little. It is the computer scientist’s task to apply the
approach of problem abstraction together with efficient algorithm design to the problems
from the biological domain.

A challenge for computer scientists who are involved in research in bioinformatics is
to achieve results that make a contribution to computer science. Of course this is not the
main motivation for biologists; moreover there are some exciting projects in bioinformatics
which in the short to medium term are unlikely to contribute to computer science.

1.1 What biologists want from bioinformatics

The great aim of research in bioinformatics is to understand the functioning of living or-
ganisms in order to “improve the quality of life”. This improvement will be achieved by
many means including drug design, identification of genetic risk factors, gene therapy, ge-
netic modification of food crops and animals, etc. Some of these, especially the last, are
proving to be controversial.

1.2 The Central Dogma

The study of proteins, how they interact with each other, and how genes are regulated is
central to the understanding of the basic principles of the functioning of living organisms.

Proteins comprise approximately 60% of the dry mass of a living cell, and are linear
heteropolymers that are constructed from a chain or sequence of monomers called amino
acids, of which twenty different types are involved in the composition of proteins. It is
widely accepted that the function of proteins (and RNA) is determined by their structure,
and it is known that in the majority of cases structure is uniquely determined by the se-
quence of amino acids, or nucleotides in the case of RNA. The case of prions is one ex-
ample of exception to the latter rule where misfolding causes prion disease [56]. More
generally, protein folding can be assisted by molecular chaperones and folding catalysts
. Folding catalysts accelerate specific steps in folding, whereas the main function of the
molecular chaperones seems to be in preventing off-pathway reactions that lead to protein
aggregation and possibly misfoilding. [52]

The central dogma of information flow in biology essentially states that the sequence of
amino acids making up a protein and hence its structure (folded state) and thus its function,
is determined by a two-stage process. The first stage is transcription – the process of
copying DNA to RNA by an enzyme called RNA polymerase, and the second is that of
translation – where messenger RNA is decoded to produce polypeptide chains according
to the rules specified by the genetic code. This code enables the 20 amino-acids which
form proteins to be coded by triples (codons) of the 4 bases of RNA.
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The central dogma states that once ‘information’ has passed into a protein it
cannot get out again. The transfer of information from nucleic acid to nucleic
acid, or from nucleic acid to protein, may be possible, but transfer from protein
to protein, or from protein to nucleic acid, is impossible. Information here
means the precise determination of sequence, either of bases in the nucleic
acid or of amino acid residues in the protein.

Francis Crick [25]

Although some proteins, for example transposases, can modify genetic material by
inserting DNA sequences, it is not the case that the amino-acid sequences of those proteins
is reverse-coded to make sequences of nucleotides.

Thus bioinformatics is concerned in a major way with the elicitation of DNA sequences
from genetic material, the annotation of delimited segments (e.g. with information about
their function), the control of gene expression (i.e. under what circumstances proteins are
transcribed from DNA), and the relationship between the amino acid sequence of proteins
and their structure. At present, the only physical methods to determine protein structure
are X-ray crystallography and NMR (nucleo-magnetic resonance), both of which are not
only very time-consuming, but cannot be applied to all classes of proteins. One of the holy
grails of bioinformatics is to develop computational methods to determine protein structure
from amino-acid sequence.

1.3 A classification of problem areas

The problem areas in Bioinformatics can be broadly divided into three classes:

Problems specifically related to the Central Dogma: This includes both those related
to a specific level of information (i.e., sequence, structure or function), and those that
encompass more than one level.

Problems related to data in general: With the exponential growth of knowledge in
(molecular) biology, there are rapidly growing problems such as storage, retrieval, and
analysis of the data. Hence there are issues of database design for biological resources,
representation and visualization of biological knowledge, and the application of data anal-
ysis methods such as data mining. A key underlying technique is that of abstraction of
the data; it is of course imperative that the operations over the abstract data preserve the
biological meaning of the operations on the original form of the data.

Simulation of biological processes: This means the prediction of dynamic behavior of
a biological system on the basis of its components. Examples include the simulation of
protein folding (molecular dynamics) or of metabolic pathways.

In the following we concentrate on the first class of problems, i.e. sequence, structure
and function, and select a subset of illustratory examples.
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1.4 Sequence related problems

1.4.1 Physical map

In this problem, one has a collection of short, known substrings of the DNA called probes
with the property that they occur exactly once in the DNA, and a set of fragments of the
DNA (called clones), which (ideally) cover a specific region of interest on the DNA. For
both the clones and the probes, the exact location on the DNA and the ordering of the
locations are unknown. The goal is to find the ordering of the probes and/or clones in the
DNA.

The first step is to check for every probe Pi and every clone Cj , whether Cj contains
the substring denoted by Pi. This is done by performing hybridization experiments. Hy-
bridization is the process of forming a (possibly imperfect) double helix out of two DNA
or RNA molecules. This can be used to determine which probes occurs in which clones.
The result is a matrix A = (aij), where aij is 1 if probe Pi is hybridizes with clone Cj ,
otherwise 0. Now if there were no errors in the hybridization experiments, then the order-
ing of the probes could be found be reordering the rows and columns of the matrix such
that the resulting matrix has the consecutive ones property. But since the experiments are
faulty, the problem of finding the ordering minimizing the errors is NP-complete (see e.g.,
[48, 20])

The ordering of the probes (denoted by a permutation π on the set of probe indices),
usually together with a good bound on the distance between to successive probes, consti-
tutes a physical map, which can be used for different purposes. One is to use this map
when sequencing the genome. The reason is that sequencing is done by splitting DNA into
fragments, which are sequenced in the sequel. The remaining problem is to generate the
original DNA-sequence out of sequenced fragments. This is usually done by searching for
overlapping fragments. The problem is that DNA contains so-called repeats. This are long
fragments of DNA which are repeated several times on the DNA. Clearly, such repeats may
not be used for the process of generating the original DNA sequence out of overlapping
fragments. One way to check this is to use a physical map.

In practical applications, the major problem is the occurrence of errors in the hybridiza-
tion experiments. False positives are entries aij = 1 although probe Pi is not contained
in clone Cj . Vice versa, false negatives are entries aij = 0, where Pi is contained in
clone Cj . In [20], Christof et al. considered a variant of the problem that uses additional
information stemming from end-probes. These are probes where it is known that they are
stemming from the end of the clones (but we do not know which is the left or right end).
Let Pi and Pk be the end probes for Cr, and let Pj be another probe different from Pi and
Pk that hybridizes with Cr (i.e., ajr = 1). Then we know that in the correct ordering π, the
value πj must be between πi and πk (i.e., either πi < πj < πk is true, or πj < πj < πi),
which gives rise to additional betweenness constraints. They presented an integer linear
programming approach for the above described problem, where a maximum likelihood
model is used as an objective function to model the errors in the matrix A. The idea be-
hind the maximum likelihood model is to search for the corrected matrixB that maximizes
the likelihood P [A|B], given probabilities for producing false positive and false negative
entries in A.
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1.4.2 Comparison and alignment

Overview

The goal of this activity is to compare two sequences, and in addition to return an align-
ment, i.e. some information regarding those parts which are very similar. When comparing
the sequences, additional information e.g. stemming from known structures may be used.
In general, sequence alignment is fast, whereas alignment involving structure is slow due
to its high complexity.

One of the first fields in bioinformatics was DNA sequence alignment. The reason for
the interest in sequence alignment stems from the fact that there are many different pro-
teins which have common ancestors, and that these homologous (i.e., related by evolution)
proteins have a similar structure and function. In addition, homologous proteins often have
similar sequences. Using a reverse reasoning, sequence similarity is used to detect the
homology of protein structures.

Clearly, the quality of this approach depends on the similarity measure used, which is
determined by a model of evolution. The usual approaches use a model with substitution,
deletion or insertion of a single amino-acid (see e.g. [107] for an overview). In this case,
sequence alignment can be performed in polynomial time using a dynamic programming
approach. There are also new approaches which deal with more complex models of evolu-
tion such as [10], who considers in addition duplication of substrings (tandem repeats). A
more complex problem is that of multiple sequence alignment [63], which is known to be
NP-complete.

On the level of structure comparison, there are many different problems that have been
considered. Protein threading extends sequence alignment by incorporating structural in-
formation. In this approach an alignment is made between two sequences, one with an
unknown structure and the other with a known structure, taking into account the known
structure [69]. Again, this problem has been shown to be NP-hard.

Another problem is to compare two different structures by superposing elements us-
ing translation and rotation to minimize the atomic coordinate Root Mean Square De-
viation (RMSD) [34]. Structures can also be compared at a higher level of abstraction
than atomic coordinates by using a topological approach based on secondary structure el-
ements [47] (see Section 1.5.4; this can be performed over topology graphs by detecting
maximal cliques [66] or by pattern discovery and structural alignment [44]).

Pairwise sequence alignment

Pairwise sequence alignment is the problem of determining the similarity of two sequences.
An alignment of two sequences a, b ∈ Σ∗ consists of two sequences u, v of the same length
that are generated from a, b via the insertion of gaps. Alignments are evaluated according
to scoring functions, which evaluates the number of inserted gaps, and the similarity of dif-
ferent letters ui and vi at the same position in the alignment (called substitutions). Multiple
sequence alignment is the generalization of the problem to several sequences.

There are different possibilities for constraint-based formalizations of sequence align-
ment. We will start with a formalization that is commonly used in standard approaches to
sequence alignment. We will start with the formal definition of an alignment.
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Definition 1 (Alignment and Alignment Distance). Let Σ be an alphabet with 6∈ Σ.
For every u ∈ (Σ ∪ { })∗ we define u|Σ to be the restriction of u to Σ (by deleting all
occurrences of in u). An alignment is a pair (a�, b�) with a�, b� ∈ (Σ ∪ { })∗ such that
|a�| = |b�| and there is no position i such that a�i = = b�i . An alignment (a�, b�) is an
alignment of (a, b) with a, b ∈ Σ∗ if

1. a�|Σ = a, and

2. b�|Σ = b.

Given a cost function w, we define the cost of an alignment by

w(a�, b�) =
|a�|
∑

i=1

w(a�i , b
�
i ).

The alignment distance of a, b is

D(a, b) = min{w(a�, b�) | (a�, b�) alignment of (a, b)}.

The alignment (a�, b�) is optimal if D(a, b) = w(a�, b�).

Instead of using distance-based scoring function, one can also use a similarity mea-
surement for evaluating alignments. Then, one searches for an alignment that maximizes
the similarity between the two sequences. As [93] have shown, one can transform each
distance-based (global) scoring scheme into a similarity-based, without changing the op-
timal alignment. Hence, we will consider only the distance-based scoring scheme in the
following.

The standard approach to solve the pairwise sequence alignment problem for two
sequences a, b is to use to define a dynamic programming matrix (Di,j), which stores
the cost of the best alignment between the prefixes a1 . . . ai and b1 . . . bj . I.e., Di,j =
D(a1 . . . ai, b1 . . . bj). This matrix can then be calculated using the following recursion
equation:

D0,0 = 0,

D0,j =
j
∑

k=1

w(−, bk),

Di,0 =
i
∑

k=1

w(ak,−),

∀i, j > 0 : Di,j = min







Di,j−1 + w(−, bj),
Di−1,j−1 + w(ai, bj),
Di−1,j + w(ai,−)







. (1.1)

Thus, the standard sequence alignment problem can be solved in quadratic time and
space. This changes if one considers different extensions of the original problem. One
extension is to consider parametric sequence alignment, where the cost parameter for dele-
tion δ = w(σ, ) and substitution µ = w(σ, σ′) are variable. The reason for considering
this parametric version is that it is hard to determine these parameter (especially the cost
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for deletion). Hence, one is interested in checking whether a given alignment is the same
for a complete range of parameters. Yap [109] considered a constraint-based approach
for this problem, where he directly encodes the entries of the dynamic programming table
Di,j as variables, and the recursion equations as constraints. He considered then different
possibilities of pruning in the case that δ and µ are not known (i.e., are not ground).

Other variants extend sequence alignment by considering additional conditions that
stem from information on the secondary or ternary structure of the associated molecule.
By and large one can say that the difference to sequence alignment is that the scoring
function evaluates not single positions in the alignment, but pairs of positions that are
related (or close) in the structure. This is especially useful when comparing two RNA-
sequences, where it is known that the structure is more conserved than the sequence. Both
global [86, 23, 73, 57, 55] and local [5] versions of the RNA sequence/structure align-
ment have been considered. The multiple RNA sequence/structure alignment problem is
even harder than the multiple sequence alignment problem, since successful heuristic ap-
proaches like progressive alignment can only be applied either in special cases (like the
PMMulti system [55]), or via the combination of sequence/structure and sequence align-
ment (like the MARNA-system [92]).

There many are other problems that extend sequence alignment (or related problems)
using additional information. Examples are the alignment methods used for the detection
of alternative spliceforms of proteins [41, 49, 54, 39], or the design of similar protein
sequence whose mRNA form a specific RNA-structure [8]. Currently, most of these prob-
lems are solved via special dynamic programming approaches. A first approach to apply a
general technique for sequence alignment under additional constraints has been presented
in [? ], where cluster tree elimination was used to efficiently solve pairwise sequence
alignment problems with additional constraints.

Multiple sequence alignment

The problem of multiple sequence alignment is to align not only two different sequences,
but any number of sequence. This is required to detect biologically important motifs.
Formally, a multiple alignment for n sequences S1, . . . , Sn is given by a character matrix

A = (Aij)1≤i≤n,1≤j≤K

over the alphabet Σ = Σ∪{ } with the property that Si can be obtained from Ai1 . . . AiK
by removing the gaps. In the general formalization, the jth column A1j , . . . , Anj of the
alignment is evaluated using an n-ary function w(A1j , . . . , Anj), and the distance D(A)
of an alignment A is given by

D(A) =
∑

1≤j≤K

w(A1j , . . . , Anj).

There is a special formalization of the scoring function that is used in most practical
applications, namely the sum-of-pairs score. The basic idea of this score is to evaluate an
alignment by the sum of all pairwise alignments, which was introduced by Carrillo and
Lipman [17]. Here, the distance of an alignment D(A) is given by given by

D(A) =
∑

i<i′

∑

1≤j≤K

wp(Aij , Ai′j),
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where wp : Σ′ × Σ′ → R is a usual pairwise cost function. Of course, this is equivalent to

D(A) =
∑

1≤j≤K

∑

i<i′

wp(Aij , Ai′j),

and is hence a special case of the general multiple sequence alignment problem, where the
cost for a column is given by

w(a1, . . . , an) =
∑

i<i′

wp(Aij , Ai′j)

Kececioglu [64, 63] introduced a graph-based formalization of multiple sequence align-
ment with sum-of-pairs cost function, the complete maximum-weight trace (CMWT) for-
malization. An ILP (integer linear programming) solution for this problem was presented
in [84, 62]. In CMWT, the letters of the strings Si = si1 . . . sini are considered to be the
set of vertices V = V1 ] . . . ] Vn1 of a complete n-partite graph G = (V,E) (i.e., G
satisfies that for every sij ∈ Vi and si′j′ ∈ Vi′ , we have e = (sij , si′j′) ∈ E if and only
if i 6= i′). G is called the complete alignment graph for the sequences S1, . . . , Sn. An
alignment graph G′ is a subgraph of the complete alignment graph. Alignment graphs can
be used to restrict the search for a multiple sequence alignment to a subset of all possible
alignments to reduce the search space. For example, let S1 be AACG and S2 be AGG. Then
the complete alignment graph for AACG and AGG is the 2-partite graph

.

With every edge e ∈ E, there is a positive weight w(e) associated. An alignment A
for the sequences S1, . . . , Sn realizes an edge e = (sij , si′j′) ∈ E of an alignment graph
G = (V,E) for the sequences S1, . . . , Sn if the jth character of Si and the j′th character
of Si′ are aligned in A. For example, consider the alignment

A A C G
A G G

.

Then this alignment realizes three edges, indicated by straight lines:

Given an alignment A, the set of all edges realized by A is called the trace of A. A set
T ⊂ E of edges is called a trace if it is the trace of some alignment A. Given the weight
function w, the weight of a trace T is

∑

e∈T w(e).

1Where ] is the disjoint union, and Vi is {si1, . . . , sini}.
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Definition 2 ((Complete) Maximum-Weight Trace). Let S1, . . . , Sn be sequences, let
G = (V,E) be the complete alignment graph for S1, . . . , Sn, and let w be a weight func-
tion. The complete maximum-weight trace problem is to find a trace T ⊂ E that has
maximal weight (under w). The maximum-weight trace problem is defined analogously
for an alignment graph G = (V,E) for S1, . . . , Sn.

A remaining problem is that not any subset of edges is a trace (i.e., not every subset
of E corresponds to a real alignment). Consider again the two sequences AACG and AGG,
and consider the following subset of edges indicated by straight lines:

.

By the definition of a realized edge, this set of edges would correspond to the alignment

A C A G
A G G

,

which is an alignment for the sequences ACAG and AGG instead of AACG and AGG. Hence,
this subset of edges is not a trace. The problem are the two crossing edges indicated in
grey above.

An ILP-formalization for the pairwise alignment characterizing traces was given in [73]2,
which is a follows. Let G = (V,E) be an alignment graph, and let e1, . . . , en be an enu-
meration of all alignment edges in E. We say that ek is in conflict with el iff ek and el
are crossing edges, i.e., ek = (s1i, s2j), el = (s1i′ , s2j′) with neither i < i′ ∧ j < j′ nor
i′ < i∧ j′ < j. Then one introduces for every edge ei a boolean variable xi, where xj = 1
implies that ei is contained in the trace. Furthermore, let wi = w(ei). Then the constraint
problem is

maximize
∑

ei∈E

wi · xi

subject to the following constraints:

xi ∈ {0, 1} (1.2)
xk + xl ≤ 1 ∀ek, el ∈ E s.t. ek is in conflict with el (1.3)

For the multiple sequence alignment step, the condition of non-crossing edges is not
so simple. Whether a pair of edges is conflicting might depend on other edges contained
in the trace. Consider the following two set of edges for three sequences ABC, ABD and

2In this work, structural condition where formulated in addition to the pure sequence alignment problem
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ABCD:

A B C D

A B C

A B D

A C D

A B C

A B D

B

The the first represents for example the following valid alignment:

A B C
A B D

A B C D
.

The second one does not represent a valid alignment, but we cannot identify pairs of con-
flicting edges.

Hence, we have to extend the definition for the multiple case. For the pairwise case,
a trace is nothing else than a set of edges which are strictly ordered in both components.
I.e., a trace is an ordered set of edges e1 = (s1i1 , s2j1), . . . , em = (s1im , s2jm) with the
property that ∀1 ≤ k < m : ik < ik+1 ∧ jk < jk+1. The corresponding definition for the
multiple alignment case is as follows.

Given sequences S1, . . . , Sn with Si = si1 . . . sini , one defines the extended alignment
graph G = (V,E,≺) for S1, . . . , Sn to be a triple such that (V,E) is an alignment graph
for S1, . . . , Sn, and ≺ is defined by

≺= {(sij , sij+1) | 1 ≤ i ≤ n ∧ 1 ≤ j < ni}.

With ≺∗, we denote the transitive closure of ≺. Note that ≺∗ is a strict partial order of V .
Using the extended alignment graph, one can characterize traces. A connected compo-

nent of a graphG = (V,E) is a⊆-maximal set V ′ ⊆ V such that for all vertices v, v′ ∈ V ′
there is a path of edges inE connecting v and v′. For any two subsetsX,Y ⊆ V , we define

X / Y if and only if ∃v ∈ X ∃v′ ∈ Y : v ≺ v′.

We define /∗ to be the transitive closure of /. For the sequences AACG and AGG the
extended complete alignment graph is

where we have indicated the edges for ≺ by arrows.
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Theorem 3. Let S1, . . . , Sn be sequences, and let G = (V,E,≺) be the extended align-
ment graph for S1, . . . , Sn. Then a subset T ⊆ E is a trace if and only if it does not
contain two edges sharing the same node, and /∗ is a strict partial order on the connected
components of G′ = (V, T ).

The question is of course how to enforce the above stated condition in a constraint-
based or ILP formalization. For the pairwise case, this is achieved by excluding all con-
flicting edges with the constraint given in (1.3), thus forcing a strict partial order on the
edges. Following [62], then every pair of conflicting edges for the pairwise case corre-
sponds in the extended alignment graph to a mixed cycle. This is a cycle in the extended
alignment graph that uses at least one alignment edge and at least one edge from the ≺-
order. Such a mixed cycle is called critical if in every sequence, all the nodes used by
the cycle occur consecutively in the sequence. Then condition (1.3) is replaced in [62]
by excluding all critical mixed cycles, which then gives an ILP-formalization for multiple
alignment.

The main problem with the above formulation is that in general, one has to add ex-
ponentially many cycle constraints. For this reason, Prestwich et al. proposed in [83] an
alternative ILP model, which is transformed to linear pseudo-Boolean (PB, a generalization
of SAT which significantly improves expressiveness) form. The model is of polynomial
size, and therefore better suited to a generic SAT solver.

Pairwise alignment with conditions: example protein threading

The previous formalization is based on a graph based model of sequence alignment, where
one has Boolean variables for every possible alignment edge. The major drawback of this
approach is that it uses a huge number of variables. E.g., for pairwise sequence alignment,
this model requires quadratically many variables.

Another possible formalization for pairwise sequence alignment that requires less vari-
ables has one variable Xi for each position 1 ≤ i ≤ |S1| of the first sequence S1. The
domain of each variable is the set {1, . . . , |S2|} of positions in the second sequence. In
principle, Xi = j is interpreted as “position i of the first sequence is aligned with position
j of the second one”.

The next step is to encode gaps. An unaligned position j in the second sequence, which
correspond to a gap in the first one, are already encoded by the fact that there is no i with
Xi = j. In addition, one has to encode that a position i in the first sequence is aligned with
a gap in the second sequence. One possible way to encode this is by allowing Xi−1 = Xi,
which is then interpreted as position i is aligned with a gap. On the other hand, position i is
matched (i.e., aligned with some position j in the second sequence) if and only if Xi = j
and Xi > Xi−1. Note that this kind of encoding was considered in [? ].

In the following, we will consider a special instance of pairwise sequence alignment
with additional conditions using a formalization similar to the one described above, namely
protein threading. The additional conditions stem from information about the structure of
one sequence. For protein threading, we have a sequence s with known structure, and we
want to determine the structure of a sequence s′ that is homologous (i.e. related via evo-
lution) to s via an appropriate pairwise alignment. The idea is to use the known structure
of s to guide structure prediction for s′ by simultaneously aligning s′ with s and with the
known structure of s.
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The basic approach for protein threading is to identify first parts of the structure of
s that are more likely to be conserved. This is called a core model for s, and consists
usually of secondary structure elements. The secondary structure of a sequence consist
of structural elements of high local order. There are two main elements considered for
protein threading, namely α-helices (a helical structure) and β-sheets (two or more strands
of the protein sequence that are regularly connected). It is assumed that the core models are
highly conserved in their length as well as in their interactions. The stretches between two
core elements are called loops, and the lengths of these loops can vary in the homologous
sequence s′. This is captured by the definition of a core model.

Definition 4 (Core Model). Let s be a sequence. A core model for s is a tuple (m,~c,~λ,~lmin),
where ~c = (c1, . . . , cm) is the sequence of lengths for the core elements in s, and ~λ =
(λ0, . . . , λm) is the sequence of lengths for the loops between the core elements such that

|s| = λ0 +
∑

1≤i≤m

(ci + λi).

The sequence ~lmin = (lmin
0 , . . . , lmin

m ), consists of the minimal length required to connect
the corresponding ends of the core elements (i.e., the minimal length of the loop regions)
with ∀1 ≤ i ≤ m : lmin

i ≤ λi.

Note that the value λ0 is the length of the initial loop (i.e., the N-terminal loop), while
λm is the length of the final loop (i.e., the C-terminal loop).

Given a core model (m,~c,~λ,~lmin) for s, we define the ith core region of s to be the set
of positions

Ci =
{

λ0 +
∑

1≤j<i

(cj + λj) + k

∣

∣

∣

∣

1 ≤ k ≤ ci
}

.

The jth position of the ith core is denoted by Ci,j . Figure 1.1 illustrates a core model with
4 core regions, where the lengths of the core regions is given by the vector (4, 3, 4, 3).

In the following, we will define a threading of sequence s′ through the core model
for s to be a mapping of the core positions to consecutive positions of s′. Since we are
using consecutive regions, a threading is uniquely determined by the mapping of the first
position of every core region. Furthermore, this implies that there are no gaps allowed in
core regions. All gaps in the alignment must occur in the loop regions. In inserting and
deleting positions in the loop regions, one must obey the length restrictions imposed by
the core model. Recall here that lmin

i is the minimal length needed to connect Ci and Ci+1

according to stereochemical restrictions (depending, e.g., on the distance between the last
position in Ci and the first position of Ci+1 in the structural model of s).

Definition 5 (Threading). Let MC = (m,~c,~λ,~lmin) be a core model for a sequence s.
Let s′ be a sequence. A threading of s′ through the core model MC for s is a vector

~t = (t1, . . . , tm) ∈ Nm

such that

1 + lmin
0 ≤ t1 (1.4)

∀1 ≤ i < m : (ti + ci + lmin
i ) ≤ ti+1 (1.5)
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Figure 1.1: Core model. It is supposed that the grey parts of the given structure are the
conserved regions. The define the core of the structure. This leads to the definition of 4
core elements.

and

tm + cm + lmin
m ≤ |s′|+ 1 (1.6)

In the following, we set c0 = 0 for convenience. The conditions (1.4)–(1.6) are called
ordering constraints. These constraints imply so-called spacing constraints, which consti-
tute a domain for the ith value of an arbitrary threading

∀1 ≤ i ≤ m :



1 +
∑

j<i

(cj + lmin
j ) ≤ ti ≤ |s′|+ 1−

∑

j≥i

(cj + lmin
j )



 (1.7)

The next part is to score the threading. The first step is to define the interactions that
are determined by the given structure. Thus, the interaction graph describes which core
regions contain core positions that are ‘neighbors’ in some biochemical sense, i.e. that
are core positions that interact in the folded structure. Albeit the interactions have to be
defined on the level of amino acids, one usually combines all interactions between two
core regions into one single interaction. How this complex interaction is evaluated is then
hidden in the scoring function.

Definition 6 (Interaction Graph). Let s be a sequence with a core model MC = (m,~c,~λ,~lmin).
An interaction graph I for MC is a graph (V,E), where E ⊆ V 2 and V is the set of all
core regions, i.e.

V = {Ci | 1 ≤ i ≤ m}.

Definition 7 (Scoring Function). Let s be a sequence with core model MC = (m,~c,~λ,~lmin)
and interaction graph I. A scoring function g for s, MC , and I consists of two functions
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g1 ∈ N2 and g2 ∈ N4 with the property that

g2(i, j, k, l) 6= 0⇔ (Ci, Cj) ∈ I. (1.8)

Given a threading ~t of s′ to s under the core model MC , the score of f(~t) of ~t is defined by

f(~t) =
m
∑

i=1

g1(i, ti) +
m
∑

i=1

m
∑

j>i

g2(i, j, ti, tj).

This is the form of scoring function that is most often used in protein threading, where
only pairwise interactions are considered. But in general, higher-order interactions could
be admitted. To include these, one must extend the definition of interaction graph to that of
an interaction hypergraph. Furthermore, one must introduce 2n-ary functions gn in order
to implement n-ary interactions. If the core model has m regions, then n ≤ m. Hence, the
fully general form of scoring function is

f(~t) =
∑

i1

g1(i1, ti1) +
∑

i1

∑

i2>i1

g2(i1, i2, ti1 , ti2) + . . .

+
∑

i1

∑

i2>i1

. . .
∑

im−1>im

gm(i1, i2, . . . , im, ti1 , ti2 , . . . , tim).

Lathrop and Smith [69] solved the threading problem using a branch-and-bound ap-
proach, working on sets of possible threadings T, which are described by finite domains
for the ti’s. Reformulating the scoring function slightly, we get the following tight bound
using the scoring function itself:

lb(T) = min
~t∈T

m
∑

i=1

[

g1(i, ti) + g2(i− 1, i, ti−1, ti) +
m
∑

|i−j|>1

1
2
g2(i, j, ti, tj)

]

.

Of course, it is NP-hard to calculate lb(T). For that reason, they introduced the following
following relaxed scoring function for a set of threadings T:

lbpoly(T) = min
~t∈T

m
∑

i=1













g1(i, ti)
+ g2(i− 1, i, ti−1, ti)

+ min
~u ∈ T

ui = ti

∑

|i−j|>1

1
2
g2(i, j, ti, uj)













,

The relaxation is given by the fact that for the calculation of g2, for every i a different
threading ~u can be used. Thus, there is no dependencies anymore for the calculation of
the g2 terms (with the exceptions of the terms g2(i− 1, i, ti−1, ti)), which implies that the
bound can be calculated in polynomial time using dynamic programming.

1.4.3 Search and pattern discovery

In both sequences (DNA and RNA) and structure (RNA and protein), there are function-
ally significant regions that are repeated in different entities; these regions can be often
described by patterns. A need has arisen to be able to search through genome or protein
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databases (which may be very large), and identify entries which match the pattern. Ob-
viously, this has a parallel in formal language theory, see for example Searls’ excellent
discussion in [87]. In reality, biological data is noisy, and in the case of string languages,
stochastic approaches have been developed using for example Hidden Markov Models [33]
and stochastic context-free grammars [71]. It is of interest to note here that although Dy-
namic Bayesian Networks [43] can represent Hidden Markov Models, the use of DBNs in
bioinformatics for sequence analysis remains an under-exploited area.

Although patterns can be constructed by hand, its preferable to use a mechanized (ma-
chine learning) approach, i.e., pattern discovery [15, 85]. Finding gene expression sites in
DNA may require context sensitive patterns.

One active research field is to design appropriate pattern languages and associated dis-
covery mechanisms which are able to express significant properties of structures as op-
posed to strings [47, 58].

Pattern discovery can also be performed over protein structures [45] and metabolic
pathways.

Sequence pattern matching

The basic biochemical properties of DNA and RNA permit some constraints to be exploited
in pattern matching over nucleotide sequences:

• The first property is that of the total ordering of the nucleotides in a sequence, by
convention from the 5′ to the 3′ end, which can be exploited in pattern matching
algorithms.

• The second property is the name associated with a nucleotide. A DNA nucleotide
consists of a base – adenine, cytosine guanine, or thymine — plus a molecule of
sugar and one of phosphoric acid; such nucleotides are often known by the initial
letter of the base that they contain, a, c, g or t. In the case of RNA, thymine is
replaced with uracil (u). Thus the names of nucleotides are drawn from a restricted
alphabet of size 4: a, c, g, t in the case of DNA, and a, c, g, u in the case of RNA,
and patterns can be defined with characters drawn from (a subset of) the alphabet.

• Thirdly, two nucleotides can interact due to the Watson-Crick base pairs: in the case
of DNA, a-t and c-g, with both pairs being of roughly equal strength. RNA pairs
are a-u, c-g, as well as the weaker g-u, and some other even weaker pairs. This
base paring can cause nucleotide sequences to adopt particular conformations due to
long-range interactions. This pairing can be exploited both in formal models of the
conformations, and also associated techniques to compute over these models.

Protein sequences comprise amino-acids which have properties corresponding to the
first two above: firstly that they are totally ordered (in this case from the N terminus to the
C terminus), and secondly that there are 20 amino acids, i.e. the names are drawn from an
alphabet of 20 names (or corresponding letters).

Eidhammer et al. [35] have defined patterns in sequences as consisting of a logical
expression on components, where a component is a description of a string of symbols, and
a set of constraints. An input string S matches a pattern P if every component in P is
matched by some substring of S, such that all the constraints are satisfied and the logical
expression evaluates to True.
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Sequential Patterns
Tandem repeat αα acg acg
Simple repeat αβα acg aaa acg
Multiple repeat αβαβ1α acg aa acg uu acg

Structural Patterns
Stem loop αβαrc acg aa cgu
Attenuator αβαrcβ1α acg aa cgu au acg
Palindrome, even ααr acg gca
Palindrome, odd αxαr acgagca
Pseudoknot α1βα2β1 α

rc
1 β2α

rc
2 acg aa ucu gc cgu aua aga

Table 1.1: Patterns in nucleotide sequences, from [35]

Sequential patterns can be defined using the following constraints:
(1) length of a substring to match a specific component;
(2) distance in the input string between substrings to match the different components

of a pattern;
(3) contents of a substring to match a component;
(4) positions on the input string where a particular component can match;
The patterns in the PROSITE data base [9] are examples of the sequential class; thus

[AC]-x(2,3)-D describes a pattern comprising three components, the first being an A or a
C, the second of length 2 or 3 and the last being a D.

Structural patterns have in addition at least one correlation constraint, between two
substrings matching different components, e.g. the substrings should be identical, or the
reverse of each other. Examples are repetitions or palindromes, and can correspond to
conformations that the sequence can adopt.

Example patterns in nucleotide sequences identified from the literature by Eidhammer
et al [35] are given in Table 1.1 below. Pattern components (strings) are indicated by letters
from the Greek alphabet: α, β, . . . (with or without indices) and x is a wildcard. The reverse
of a component α is indicated by αr, and αc is the complement of α. These annotations
can be combined: αrc is the reverse complement of α. Strings corresponding to pattern
components are underlined.

The CLP version of the Eidhammer et al. system is now no longer available for general
use. from the paper describing it. A related but more sophisticated, and faster approach
by Thebault e al. is described in [100]. They use a CSP approach, representing structured
RNA motifs which interact with other molecules. These motifs occur on more than one
sequence and which are related together by possible hybridization. Together with pattern
matching algorithms, constraint satisfaction techniques have been implemented in a proto-
type software system called “MilPat” (http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl) and
can be applied to search for tRNA and snoRNA genes on genomic sequences.

Another related approach using CSP is by Morgante et al [82]; the software system
SMaRTFinder can be downloaded from http://bioinf.dimi.uniud.it/software/software/smartfinder.
The algorithm locates structured models which are sequences of simple motifs and distance
constraints. It combines standard pattern matching procedures with a constraint satisfac-
tion solver, and can search for partial matches. A significant feature of their approach is
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that the (potentially) exponentially many solutions are represented in compact form as a
graph. The time and space necessary to build the graph are linear in the number of occur-
rences of the component patterns.

Staden’s program [97] is an early system which permits search for structural patterns in
sequences. A pattern comprises elements, called motifs. There are nine classes of motifs,
the simplest of which is just a string of characters. Two other classes include structures:
inverted repeat or stem-loop and (direct) repeat. Logical operators AND, OR and NOT
can be used to specify whether each motif must be present, is an alternative to another, or
must be absent. Constraints can be specified on the length of a motif, the distance between
two motifs and the contents of a motif; for the structure classes, constraints can be given
on an individual part of the structure, e.g. on the loop of a stem-loop. Percentage match
and scoring matrices can be used in searching. In Staden’s system there is no possibility to
define general correlations or relations between parts.

An example of a pattern which can be decribed in Staden’s language is

tata(〈(at OR cg),−5,−2〉 AND 〈tt(〈¬ga,−3, 3〉), 2, 6〉)

which describes a pattern whose ‘root’ motif is the string tata, with two further required
motifs. The first of these is between 5 and 2 bases upstream of the tata motif, and can be
either at or cg. The second is a tt motif located between 2 and 6 bases downstream of the
tata motif, and there must not be a ga motif within 3 bases upstream or downstream of the
tt.

As can be seen, the language permits motifs to be overlaid on each other. Although this
may seem counter-intuitive when describing biochemical sequences, there are situations
when such overlays occur during processing of nucleotides, for example ’cassette genes’
[50].

Other languages and associated systems are: SCRUTINEER [90], RNAmot [40], RNAMo-
tif [75] (http://www.scripps.edu/mb/case/casegr-sh-3.5.html), OVERSEER [91], Palingol
[12], PatScan [32] (http://www-unix.mcs.anl.gov/compbio/PatScan/HTML/patscan.html),
and PALM [53]. However GENLANG (Searls [89, 88]) is the most general system which
has been implemented for searching for structural patterns in nucleotide sequences. It uses
an indexed language which has an expressive power between context-free and context-
sensitive languages. String variables are used to define structures and constraints on the
length and contents of the string variables can be specified.

Eidhammer et al. [35] have defined a constraint-based structure description language
for biosequences, and give an algorithm plus associated program to solve the structure
searching problem as a CSP as well as an implementation in the constraint logic program-
ming language clp(FD) [27]. The language is able to describe two-dimensional structure
of biosequences, such as tandem repeats, stem loops, palindromes and pseudo-knots.

1.4.4 Phylogenetic trees

If we have any set of species that are related, then the relationship between these species
(resp. entities) is called a phylogeny. When constructing a phylogenetic tree, the task is
to set up a tree to show how the different species have evolved from a common ancestor.
In addition, the trees generated are often labelled. The labels indicate the time when the
species evolved from a common ancestor, or any other measure of the distance between the
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different species. Note that the construction phylogenetic trees is not necessarily applied to
species, but to any kind of entities where we can set up some sort of distance information
(e.g., phylogenetic trees can be constructed for languages). In this case the tree constructed
may not be rooted.

The problem of constructing phylogenetic trees can be formulated in different ways.
The first one is to have a finite set of species or entities S = {e1, . . . , en}, and a distance
matrix (dij)i,j∈[1..n] containing the pairwise distances between the entities. The problem
is to construct a tree, where the edge are labelled by distances and the nodes are labelled
entities (using new entities for the inner nodes). The tree is correct if for each two enti-
ties ej , ek from S, the distance in the tree (by summing up the edges distances along the
path connecting them) out of the ordinal set in the tree is djk. Trees can be constructed
from pairwise distances by variety of methods, including UPGMA (unweighted pair group
method using arithmetic averages) [96].

Another formulation of the phylogenetic tree construction problem is parsimony [38].
Here, one has a set S of sequences (DNA or protein), and a method for calculating costs
for relating any two sequences (not restricted to S). The task is then to find a tree, where
the leafs are labelled by elements of S and the inner nodes are labelled by other sequences.
Furthermore, the tree should have minimal costs according to the given method (i.e., the
sum of distances between any two sequences that are directly connected in the tree should
be minimal).

Since one, or in the case of parsimony several, optimal trees can be generated by tree
building algorithms, an approach such as the bootstrap method [37] is commonly used
to assess the significance of some phylogenetic feature and thus give some measure of
confidence for the tree.

Although the concept of ‘constraints’ is widely used in the phylogentic literature, for
example in the application to parsimony and maximum likelihood in terms of constraints
over edge parameters between substitution sites, [98], almost no work has been done by the
computational constraint community. However, related work certainly exists, for example
the work by Gent et al [42] on the application of constraint programming to supertrees.

1.5 Structure related problems

1.5.1 Structure prediction

Here one is concerned about the relation between sequence and structure. The sequence
can either be from a protein, in which case the problem is sometimes referred as the protein
folding problem; a more simple variant is that of RNA folding.

Now for natural protein sequences, the protein folds into one stable structure (which is
believed to be a structure where the free energy has a global minima), which is completely
determined by its amino acids sequence. This native structure determines the function
of a protein. Since it is very easy to determine the sequence of a protein, the structure
prediction problem consists of determining the structure from a given sequence. This is one
of the holy grail of bioinformatics, since protein structure prediction is a very important but
notoriously hard problem. It is subject of many ongoing attempts to solved this problem
by a variety of methods (see for example the CASP competitions [18] [99]) Note that
for artificial sequences, the sequence usually does not determine the structure (i.e., the
artificially designed protein will not fold to a stable structure in general).
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Proteins have a high level of local organisation (called secondary structure), which con-
sist of α-helices, β-strands and turns). For that reason, there are approaches for predicting
secondary structure first, before the overall tertiary structure is determined, as well as ap-
proaches with try to predict tertiary structure directly. It is presently believed that protein
structure prediction cannot be done purely on the level of secondary structure alone.

A problem related to the protein folding problem is the inverse protein folding, which
consists of the following. Given a three-dimensional structure, generate a sequence that
will fold uniquely into the given structure. Naively, this can be solved using structure
prediction (generate a sequence, then predict the structure, and compare the result with
the given structure). Clearly, this problem is of interest for drug design, although inverse
protein folding is not used in drug design yet. The reason simply that the problem is
unsolved (see e.g. [51], where this problem is treatment for lattice proteins).

For RNA, secondary structure is usually related to base pair bonding, and structure
prediction is possible on this level (under some restrictions) taken into account thermody-
namical energies [112].

1.5.2 Structure-prediction for lattice models of proteins

Introduction

To tackle protein structure prediction and related problems simplified protein models have
been introduced. These simplified models have been successfully used by several groups
in the international contest on automated structure prediction. The most important class of
simplified models are the so-called lattice models. The simplifications commonly used in
this class of models are: 1.) monomers (or residues) are represented using a unified size 2.)
bond length is unified 3.) the positions of the monomers are restricted to lattice positions,
and 4.) a simplified energy function.

Apart from their use in structure prediction, they have became a major tool for investi-
gating general properties of protein folding. They constitute a genotype (protein sequence)
versus phenotype (protein conformation) mapping that can be dealt with using computa-
tional methods. Thus, they can be used to investigate evolutionary processes. An example
is [14], where so-called neutral networks have been investigated. The edges of the net-
work are pairs of sequences which differ only in one sequence positions, but have the same
minimal energy conformation. Thus, a neutral network represents all protein sequences
encoding the same protein conformation. The question is whether one can switch between
two different neutral networks using only a small number of amino-acid substitutions. If
this is the case, then this suggest a way evolution could have produced the diversity of
protein conformations found in nature.

The simplest model is the HP-model, which is an important representative of lattice
models. It has been introduced by Lau and Dill in [70]. In this model, the 20 letter al-
phabet of amino acids is reduced to a two letter alphabet, namely H and P. H represents
hydrophobic amino acids, whereas P represent polar or hydrophilic amino acids. In natural
proteins, the hydrophobic amino-acids tend to be in the middle of the protein (forming a
compact hydrophobic core), whereas the hydrophilic ones tend to be on the surface of the
protein, thus interacting with the surrounding water. This is modeled in the energy func-
tion for the HP-model, which is given by the matrix as shown in Figure 1.2(a). It simply
states that the energy contribution of a contact between two monomers is −1 if both are H-
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(a)
H P

H -1 0
P 0 0

(b)

Figure 1.2: Energy matrix and sample conformation for the HP-model

monomers, and 0 otherwise. Two monomers form a contact in some specific conformation
if they are not connected via a bond, and the euclidian distance of the positions is 1. A con-
formation with minimal energy (also called optimal conformation) is just a conformation
with the maximal number of contacts between H-monomers. Just recently, the structure
prediction problem has been shown to be NP-complete even for the HP-model [11, 24].

A sample conformation for the sequence PHPHPPHHPH in the two-dimensional lattice
with energy −2 is shown in Figure 1.2(b). The white beads represent P, the black ones H
monomers. The two contacts are indicated via dashed lines.

So far, most of the existing approaches are heuristic methods like the hydrophobic zip-
per [28], the genetic algorithm by Unger and Moult [103], the chain growth algorithm
by Bornberg-Bauer [13], or monte-carlo approaches with simulating annealing like [7],
which is a monte-carlo method applicable for any regular lattice. There are only two ap-
proaches available that are able to prove optimality of the found conformations, namely the
constraint-hydrophobic core construction (CHCC) [111], and the constraint-based protein
folding method [4], which we will describe here in more detail. It is the first methods that
is applicable to two different lattices (the cubic lattice, and the face-centered-cubic lattice),
and to different energy functions (namely the HP-model and its extension HPNX, which
also encodes charged amino acids). Using this constraint-based approach, we were able to
find minimal energy conformations (and prove their optimality) for sequences up to length
300. In contrast, the CHCC method, which is not based on constraint programming, was
only applied to sequences up to length 86. In the following, we will handle only the cu-
bic lattice, albeit the face-centered-cubic lattice (FCC) is more suited for modeling protein
conformations, but is also more complex.

A simple constraint-based formalization

A sequence is an element in {H,P}∗. With si we denote the ith element of a sequence s.
We say that a monomer with number i in s is even (resp. odd) if i is even (resp. odd). A
conformation c of a sequence s is a function

c : [1..|s|]→ Zd

(where d = 2 or d = 3 depending on whether we consider a 2-dimensional or a 3-
dimensional lattice) such that

1. ∀1 ≤ i < |s| : ||c(i)− c(i+ 1)|| = 1 (where || · || is the euclidian norm on Zd)

2. and ∀i 6= j : c(i) 6= c(j).

The first condition is imposed by the lattice constraint and implies that the distance vector
between two successive elements must be a unit-vector (or a negative unit-vector) in every
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admissible conformation. The second condition is the constraint that the conformation
must be self-avoiding.

Given a conformation c of a sequence s, the number of contacts Contacts(c) in c is
defined as the number of pairs (i, j) with i+ 1 < j such that

si = H ∧ sj = H ∧ ||c(i)− c(j)|| = 1

(in other words, the number of pairs of H-monomers that have distance 1 in the conforma-
tion c, but are not successive in the sequence s). The energy of c is just −Contacts(c).
With ~ex, ~ey and ~ez we denote the unit vectors (1, 0, 0), (0, 1, 0) or (0, 0, 1), respectively.
We say that two points ~p, ~p′ ∈ Z3 are neighbors if ‖~p− ~p′‖ = 1. This is equivalent to the
proposition that ~p = ~p′ ± ~e with ~e ∈ {~ex, ~ey, ~ez}.

This can now be directly encoded as a constraint problem. Our constraint problem
consists of finite domain variables. We use also Boolean constraint and reified constraints.
With reified constraints we mean a constraint x =: (φ), where φ is a finite domain con-
straint. x is a Boolean variable which is 1 if and only if φ holds. Technically, this can
be achieved via setting x to 1 if the constraint store entails φ, and to 0 if the constraint
store disentails φ. A constraint store entails a constraint φ if every valuation that makes the
constraint store valid also makes φ valid. We use also entailment constraints of the form
φ → ψ, which are interpreted as follows. If a constraint store entails φ, then ψ is added
to the constraint store. We have implemented the problem using the language Oz [94],
which supports finite domain variables, Boolean constraints, reified constraints, entailment
constraints and a programmable search module.

Now we can encode the space of all possible conformations for a given sequence as a
constraint problem as follows. We introduce for every monomer i new variables Xi, Yi and
Zi, which denote the x-, y-, and z-coordinate of c(i). Since we are using a cubic lattice,
we know that these coordinates are all integers. But we can even restrict the possible
values of these variables to the finite domain [1..2n].3 This is expressed by introducing the
constraints

Xi ∈ [1..(2 · length(s)] ∧ Yi ∈ [1..(2 · length(s)] ∧ Zi ∈ [1..(2 · length(s)]

for every 1 ≤ i ≤ n. The self-avoidingness is just (Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) for i 6= j.4

For expressing that the distance between two successive monomers is 1, we introduce
for every monomer i with 1 ≤ i < length(s) three variables Xdiffi, Ydiffi and Zdiffi.
The value range of these variables is [0..1]. Then we can express the unit-vector distance
constraint by

Xdiffi =: |Xi − Xi+1| Zdiffi =: |Zi − Zi+1|
Ydiffi =: |Yi − Yi+1| 1 =: Xdiffi + Ydiffi + Zdiffi.

The constraints described above span the space of all possible conformations. I.e.,
every valuation of Xi,Yi,Zi satisfying the constraints introduced above is an admissible
conformation for the sequence s, i.e. a self-avoiding walk of s. Given partial information

3We even could have used [1..n]. But the domain [1..2n] is more flexible since we can assign an arbitrary
monomer the vector (n, n, n), and still have the possibility to represent all possible conformations.

4This cannot be directly encoded in Oz [94], but we reduce these constraints to difference constraints on
integers.
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about Xi,Yi,Zi (expressed by additional constraints as introduced by the search algo-
rithm), we call a conformation c compatible with these constraints on Xi,Yi,Zi if c is
admissible and c satisfies the additional constraints.

The most simplest way to search for conformations with maximal number of contacts
would be to add constraints for counting the number of contacts. Then one can directly
enumerate the variables Xi, Yi and Zi. For HP-type models, we have to count contacts
which are always generated between two neighboring H-monomers. For this purpose, one
introduces a variable Contacti,j that is 1 if i and j have a contact in every conformation
which is compatible with the valuations of Xi,Yi,Zi, and 0 otherwise. Then

Xdiffi,j = |Xi − Xj | Zdiffi,j = |Zi − Zj |
Ydiffi,j = |Yi − Yj | Contacti,j ∈ {0, 1}

(Contacti,j = 1)↔ (Xdiffi + Ydiffi + Zdiffi = 1) (1.9)

where Xdiffi,j , Xdiffi,j and Zdiffi,j are new variables. The variable HHContacts counts
the number of contacts between H-monomers, and is defined by

HHContacts =
∑

i+1<j∧

s(i)=H∧s(j)=H

Contacti,j . (1.10)

Now we could start to apply constraint-based enumeration on Xi,Yi,Zi searching for a
conformation with maximal number of contacts.

The main problem using this approach alone is that it is very difficult to define good
bounds and to find a search heuristic for enumerating low-energy conformation first. Nev-
ertheless, this formulation is in part required for lattice models with an extended alpha-
bet like the HPNX-model [6], which models also electrostatic contacts in addition to hy-
drophobicity.

Dal Palù et al. [80] considered an extension of the above problem for a much more so-
phisticated energy function. Since it is not possible to solve the problem optimally or near-
optimally in the case of extended energy functions, they integrated additional biological
knowledge to achieve good predictions. Starting from a formulation of the protein folding
problem for the face-centered cubic lattice similar to the one described in Eq (1.9), they in-
tegrated secondary structure information in the prediction process. In a later work, Dal Palù
et al. [79] extended the simple formulation Eq (1.9) by introducing variable that have three-
dimensional domains (called Box-domains) associated, and described a constraint system
and propagation techniques for this kind of variables. A similar approach of using variables
with three-dimensional domains was successfully used in the PSICO-system [67] for the
prediction of protein structure from Nucleic-Magnetic-Resonance (NMR) data. NMR is
an experimental technique for determining protein structure. The result is a set of distance
constraint that give an estimate of the pairwise distances between the atoms of the proteins.
Here, the task is to find a structure minimizing an energy function that is compatible with
the distance constraints (or to be more precise, that minimizes the violation of distance
constraints).
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A more sophisticated approach

To overcome the problem of finding good bounds and search heuristics, the set of all con-
formations was restricted in [4] to a subset of conformations that contains provably all
minimal energy conformations. For this purpose, the hydrophobic core, which consists of
the the positions occupied by H-monomers, is calculated first. Then, in a second step, a
conformation of the HP-sequence is searched that has exactly the hydrophobic core calcu-
lated before. Since this problem is a strongly constrained, conformation can be found in
relatively short time. Of course, all possible maximal compact hydrophobic cores have to
be considered.5 Formally, a hydrophobic core C is just a set of positions. The number of
contacts in a hydrophobic core C is defined by

Contact(C) =
1
2
|{(~p, ~p′) | ~p, ~p ∈ C ∧ ~p and ~p are neighbors}|

X=1
n=3

fr=2x2

X=2
n=6

fr=2x3

X=3
n=4

fr=2x2

⇒

X=1
n=3

fr=2x2

X=2
n=6

fr=2x3

X=3
n=4

fr=2x2

⇒

X=1
n=3

fr=2x2

X=2
n=6

fr=2x3

X=2
n=4

fr=2x2

Figure 1.3: The overall approach

Finding all maximally compact hydrophobic cores is an optimization problem itself,
which was solved in [4] again in a two-level step. First, the distribution of H-monomers
to layers of the form X = i is calculated. Such a distribution is called a frame sequence,
and consists of the number of H-monomer in each layer, as well as the minimal rectangle
around these monomers. As we will see later, this information can be used to calculate an
upper bound on the number of contacts for a specific frame sequence, which allows one to
discard many frame sequences. Then, for a given frame sequence, all possible maximally
compact hydrophobic cores having the corresponding frame sequence are generated. Thus,
we have the overall 3-level approach depicted in Figure 1.3.

Enumeration of Frame sequences The basic idea for the upper bound on the number
of contacts is to classify the contacts into contacts between positions in the same layer
(called layer contacts), and contacts between positions in successive layers (called inter-
layer contacts). To give an upper bound for a specific frame sequence, one gives separate

5If there is no conformation found for the maximally compact core, then sub-optimal cores have to be con-
sidered as well, which is not very often the case.
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Layer1 Layer2
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Figure 1.4: a) Layer and Interlayer Contacts b) Corresponding Frame Sequence

bounds for the number of layer and interlayer contacts for hydrophobic cores have this
frame sequence. In Figure 1.4a), a the hydrophobic core for the cubic lattice is shown
together with the layer and interlayer contacts. The corresponding frame sequence is given
in Figure 1.4b).

For the layer contacts, consider a frame of size a× b with n H-monomers. For finding
the maximal number of layer contacts that any hydrophobic core with this frame can have,
Yue and Dill [110] observed that it is much simpler to calculate the surface instead of the
number of layer contacts. The layer surface of an hydrophobic core C in layer x = k is
the number of positions ~p in layer x = k that are not in C, but neighbors of some position
~p′ ∈ C (~p is called a surface point). Since every position in the core has 4 neighbors, which
are filled by another member of the core or by a surface point, it is clear that surface and
contacts are related via the equation

4n = 2Contact+ 2a+ 2b.

Hence, minimizing the surface maximizes the number of contacts.
Now whenever we have a layer where a surface point is buried between two position

from the core, this core cannot be maximal. We can achieve a more compact one by
resorting the core positions in this layer in a way that the gap generated by this surface
point is closed (recall that a hydrophobic core is just a set of positions, with no other
conditions imposed on them). Under the condition of a maximal compact layer core, this
implies that every horizontal and vertical line that goes through the core in some layer must
generate 2 surface points. Hence, a frame of size a×bmust generate at least 2a+2b surface
points. Furthermore, one can conclude that an optimal frame for n points must minimize
a + b, which is the case for a nearly quadratic frame. I.e., the best possible adaption of a
quadratic frame with a = d

√
ne and b = dna e will have minimal surface, which used as a

bound when enumerating number sequences.
For the interlayer contacts in the cubic lattice, one simply observes that every monomer

in one layer can have at most one contact in the following layer. Thus, the maximal number
of interlayer contacts for two successive layers X = i and X = i+ 1 having ni and ni+1

monomers is min(ni, ni+1). Using this upper bounds for layer and interlayer contacts, one
can calculate the optimal frame sequence using a dynamic programming approach.

For the face-centered cubic lattice, the calculation of the bound is more complicated.
Albeit one can uses also a splitting of the core into successive layers and apply the same
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bound for layer contacts, the bound for the interlayer contacts is more difficult. The reason
is that every H-monomer in one layer can have up to 4 contact in the successive layer. For
details the reader is referred to [2].

Construction of Hydrophobic cores Once we have a frame sequence ak, bk, nk for k =
1 . . .m, one has to enumerate the possible hydrophobic cores for this frame sequence. The
first step is to fix the frame positions in each layer. That is, we have finite domain variables
syk and szk for the lower left corner of the frame in layer x = k. We can choose sy1 =
sz1 = 0 for the first frame. For the remaining frames, we have to enumerate in principle all
possible starting positions. But again, we can use bounds to discard combination of values
for syk, szk that may not result in a maximal compact hydrophobic core.

An example of such a bound is the following. A combination is unfavorable if a frame
does not completely overlap with the previous frame. Then only the part of the two frames
that do overlap can generate interlayer contacts. Hence, we can use the bounds on the in-
terlayer contacts described in the last section to calculate the number of interlayer contacts
for the overlapping sub-frames.

Once we have fixed the frames (via determining their lower left corners), we start be
enumerating the positions that are actually contained in the core. This can be done by
inserting for every position a Boolean variable c~p for every position ~p that is in one of the
fixed frames. Then

c~p = 1 iff ~p is in the core.

Clearly, we have





∑

~p is in Layer x = k

c~p



 = nk.

Since a frame is usually tightly filled, this constraint provides good propagation. Finally,
we have to encode contacts by using a Boolean variableContact~p,~p′ for each pair of neigh-
bors ~p, ~p′. Then

Contact~p,~p′ = 1⇔ (c~p = 1 ∧ c~p′ = 1).

Counting Contact~p,~p′ will gives us the total number of contacts for the core.
We can improve propagation by the following consideration. Usually, hydrophobic

cores do not have too many caveats. A caveat is a P-monomer which is part of the hy-
drophobic core and thus buried by H-monomers. This usually produces a non-optimal
core, but must be considered in the case that the optimal cores do not correspond to a valid
sequence conformation. If a frame does not contain any caveat, then we know that for any
line through the frame, the H-monomers must be consecutive on this line. Now suppose we
have two positions ~p and ~p′ in the same frame with the property that ~p is the left neighbor
of ~p′, c~p = 0 (P-position) and c~p = 1 (H-position). Then all positions to the left of ~p on
the line through ~p, ~p′ must be P-positions as well (see Figure 1.5). For a given pair of left
neighbors ~p = (k, s, t) and ~p′ = (k, s+1, t), this can be simply expressed by the following
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P−positions via entailment

Figure 1.5: Example of the caveat-freeness constraint

entailment constraint:

c~p = 0 ∧ c~p′ = 1 =⇒
∧

~p′′ = (k, s, t)
in frame

with r < s

c~p′′ = 0

Of course, we have to introduce such a constraint for every pair of left, right or vertical
neighbors. For more details, the reader is referred to [1] and [108]. If caveats are allowed,
then one can enumerate them explicitly and add the constraint for the remaining positions.

1.5.3 Protein docking and ligand binding

Protein docking attempts to find the most stable mode of association between two protein
molecules, starting from the atomic coordinates of the two isolated components. It can be
likened to a ‘lock and key’ mechanism , where both lock and key are plastic, and distort
according to mutual interactions. The protein-protein interfaces are closely packed, similar
to protein cores. The aim of any docking algorithm is to optimise the surface area and at-
tractive forces and to minimise the loss of energy due to interaction with the solvent. This
is a difficult area of research, but there are general rules. Optimisation must be performed
on many degrees of freedom, since this is an example of 6-D problem of rigid body move-
ment - 3 translations and 3 rotations, all of which must be searched. The approaches to
rigid surfaces are broadly

1. Given the information of a pair of proteins crystallised together, to reconstruct the
docking

2. Given the individual proteins separately crystallised, to predict their docking. re-
quires trying all combinations of degrees of freedom note that ligand binding - small lig-
ands tend to bind in big pockets; ligands are more flexible than proteins

1.5.4 Structure motif matching

Protein structures can be described at various levels of detail, ranging from atomic coordi-
nates, through vector approximations to secondary structures elements (SSEs), to ‘topolog-
ical’ models. These latter abstractions typically consider a sequence of SSEs, i.e. helices



28 CONTENTS

or strands, together with relationships like spatial adjacency within the fold and approxi-
mate orientation, neglecting details like lengths and structures of loops, and the lengths of
the secondary structure elements themselves. This level of abstraction can be useful to per-
mit very fast algorithms for structure motif matching, discovery and structure comparison.
Further, by neglecting many of the details which typically vary between related structures,
like lengths and structures of loops, and exact lengths, spatial positions and orientations of
SSEs, it has the potential to detect more distant structural relationships than could be found
by methods based on more geometrical descriptions. On the other hand, its disadvantages
are that there may be structures which, although related at the topological level, are very
different from a geometric point of view, and have no meaningful biological relationship.

A TOPS structure is a triple (E,H,C) where E = S1, . . . , Sk is a sequence of length
k of secondary structure elements (SSEs) and H and C are relations over the SSEs, called
respectively H-bonds and chiralities. In this description an H-bond constraint refers to
a ladder of individual hydrogen bonds between adjacent strands in a sheet. An SSE S
is a character from the alphabet {α, β} standing for helix and strand respectively. Since
each SSE in a TOPS structure is associated with a direction up or down we associate a
direction symbol, + or−, with each letter of this alphabet. Both H-bonds and chiralities are
symmetric relations (non-directed arcs in the graph). An H-bond constrains the types of the
two SSE’s involved to be strands, and each bond is associated with a relative direction δ ∈
{P,A}, indicating whether the bond is between parallel or anti-parallel strands. Chiralities
are associated with handedness χ ∈ {L,R} (left and right respectively), and only occur
between pairs of SSEs of the same type. We denote the H-bond relationship between two
SSEs Si and Sj by (Si, δ, Sj) and a chirality relationship by (Si, χ, Sj).

Definition 8 (TOPS structure). Given Σ = {α+, α−, β+, β−}, then
a TOPS structure D is defined by the triple (S,Hd, Cd), where
S = (S1, . . . , Sk), Si ∈ Σ
Hd = {(Si, δ, Sj)|Si, Sj ∈ {β+, β−}, δ = P ↔ Si = Sj , δ = A↔ Si 6= Sj}
Cd = {(Si, χ, Sj)|Si, Sj ∈ Σ, χ ∈ {R,L, }}

As an example, in Figure 1.6 we give a TOPS structure for the protein structure “2bop”
(Protein Databank code) both in a form with ‘2-D’ layout as well as in a linear form form.
The textual form of the TOPS description for 2bop is:

2bop = (E,H,C), where
E = (β+1 , α−2 , α−3 , β+4 , β+5 , β−6 , α+7 , β−8)
H = {(β+1 , A, β−6), (β+1 , A, β−8), (β+4 , A, β−6), (β+5 , A, β−6)}
C = {(β+1 , R, β+4), (β−6 , R, β−8)}

A TOPS pattern, or motif , is similar to a TOPS structure, but is a generalisation which
can describe several structures conforming to some common topological characteristics.
This generalisation is achieved by permitting ‘gaps’, standing for the insertion of SSEs (and
any associated H-bond and chiralities), in the sequence of secondary structure elements;
indeed a structure is just a pattern where no inserts are permitted. A gap is described by
a pair (n,m) where n stands for the minimum and m for the maximum number of SSEs
which can be inserted at that position. The range of n and m is from zero to the largest
number of SSE’s in any TOPS structures (approximately 60).

In principle, just as for TOPS structures, each SSE in a TOPS pattern is associated with
a direction up or down (+ or − respectively) relative to the X-axis, and is a character from
the alphabet {α, β}.



29

R

1

23

4

6

7

8

5

CN

A
A A

A R

A

N 1
2

C3 4 5 6 7 8

R
R

A

A

A

Figure 1.6: TOPS structure for 2bop. Circles represent α-helical secondary structure ele-
ments, triangles represent β-strand secondary structure elements, arrows represent loop re-
gions, heavy dotted lines represent hydrogen-bond relationships (‘A’ – anti-parallel), light
dotted lines represent chiralities (’R’ — right-handed)

However, since any TOPS description of pattern (or a structure) can be flipped about
the X-axis without loss of meaning, in order to facilitate pattern matching we associate a
direction variable, ⊕ or 	 with each SSE in a pattern P s.t. they satisfy the constraint

∀⊕,	 ∈ P : opp(⊕,	)↔ (⊕ = + ∧ 	 = −) ∨ (⊕ = − ∧	 = +)

Note that it is possible, but redundant if we are to perform pattern matching, to associate a
similar constraint with each SSE in a structure description.

Definition 9 (TOPS pattern). Given Σ = {α⊕, α	, β⊕, β	} then a TOPS pattern P =
(T,Hp, Cp), ∀⊕,	 ∈ P : opp(⊕,	), where T = (n0,m0)−V1− (n1,m1)−V2− . . .−
(nk−1,mk−1)− Vk − (nk,mk), Vj ∈ Σ, nj ≤ mj

Hp = {(Si, δ, Sj)|Si, Sj ∈ {β⊕, β	}, δ = P ↔ Si = Sj , δ = A↔ Si 6= Sj}
Cp = {(Si, χ, Sj)|χ ∈ {R,L, }, Si, Sj ∈ Σ}

For example a TOPS pattern which describes plaits (2bop is an instance of a plait) is
illustrated in Figure 1.7; arrows between SSEs in the sequence have been annotated with
pairs of integers standing for (ni,mj), in this case (0,N ).
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Figure 1.7: TOPS plait motif

Definition 10 (Size of a TOPS structure (resp pattern)). The size of a TOPS structure
D = (S,H,C) (resp. pattern) is |S|, the number of SSEs in the structure (pattern).
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Gilbert et al [47] have defined a simple backtracking algorithm which is guaranteed to
find all the ways in which a TOPS pattern matches a TOPS structure; for each match it
returns the set of pairs of corresponding SSEs between the pattern and the structure, and
the set of corresponding insert sizes in the pattern.

Finite domain constraints over integers are used in the algorithm in order to prune the
search space. A correspondence is established between the SSE numbers in a structure size
j and the SSE numbers in a pattern size k Corr := (d1, d2, . . . , dk), where di (i ∈ 1 . . . k)
is a constraint variable representing the number of the SSE in the structure matching SSE i
in the pattern. In addition Ins := (I1, I2, . . . , Ik−1) is the sequence of insert sizes, where
Ii (i ∈ 1 . . . k−1) is a constraint variable representing the number of inserts between SSEs
i and i+ 1 in the pattern, The matching algorithm imposes constraints on the SSEs in the
pattern by setting up constraints for i ∈ 1..k, C1: 1 ≤ di ≤ j
C2: ni ≤ Ii ≤ mi,
C3: di + Ii + 1 = di+1

Constraint C1 gives the range of di (a pattern cannot have more SSEs than a matching
structure); C2 sets up a constraint variable for each insert in the pattern, and C3 ensures
that the insert sizes are respected in the matching.

The simple algorithm then proceeds by matching the H-bonds (respecting the paral-
lel/antiparallel labels), the chiralities (respecting the right/left-hand labels) and the SSEs
(respecting the type and orientation) between the pattern and the structure.

In fact, matching of TOPS motifs to TOPS structures is an instance of the subgraph
isomorphism problem which remains NP-complete for such vertex ordered graphs. There
are several non-polynomial algorithms for subgraph isomorphism problem, the most pop-
ular being by Ullmann [102] and McGregor [76]. Although these are not straightforwardly
adaptable to vertex ordered graphs, the vertex ordering seems to be the property that could
considerably improve the algorithm efficiency.

Viksna et al. [106] give a fast matching algorithm for TOPS structures, which is a
variant of a method based on constraint satisfaction [76]. The algorithm tries to match
edges in the increasing order of edge positions and backtracks if for some edge match can
not be found. Since the graphs are ordered, the positions in the target graph to which a given
edge may be mapped and which have to be checked can only increase. Two additional
ideas are used to make this process more efficient. Firstly, a number of additional labels
are assigned to vertices and edges; they comprise the numbers of incoming and outgoing
edges of all possible types for a given vertex, whilst for an edge they describes how many
“shorter” or “longer” other edges are connected to the endpoints of a given edge. describes
how many shorter or longer other edges are connected to the endpoints of a given edge
Secondly, if an edge e can not be mapped according to the existing mapping for previous
edges, then the next place where this edge can be mapped according to the labels is found,
and the minimal match positions of previous edges are advanced in order to be compatible
with the minimal position of e. The full algorithm is given in [106].

1.5.5 Structure motif discovery

Pattern discovery for sequences is a well-established technique [15] which could be applied
to TOPS structures as follows. The first, “pattern driven” (PD) is based on enumerating
candidate patterns in a given solution space and picking out the ones with high fitness; the
second, “structure driven” (SD) comprises algorithms that try to find patterns by comparing
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given diagrams and looking for local similarities between them. In SD an algorithm may be
based on constructing a local multiple alignment of given sequences and then extracting the
patterns from the alignment by combining the segments common to most of the sequences.

Essentially the difference between pattern discovery for sequences and TOPS structures
is that techniques for the former assume that the grammar of the former is regular whilst
that of the latter is context–sensitive. Thus in a naive version of a PD approach for TOPS
diagrams not only would we have to enumerate an exponentially large number of patterns
comprising not only all the possible combinations of the SSEs (and their orientations) in a
pattern of length k, but also all the possible H-bond and chirality connections over them.

Viksna et al [106] find maximal common subgraphs for a set of TOPS graphs by an
exhaustive search comprising repeated extension of an initial subgraph and checking for
subgraph isomorphisms in the target set of graphs. In doing so, they exploit the speed of
their specialised subgraph isomorphism algorithm for TOPS graphs. Starting with a simple
(one vertex) pattern graph, subgraph isomorphism is used to check against all graphs in a
given set and in the case of success attempt to extend the already matched pattern graph
in all possible ways. Some restrictions on the number of different types of edges and
vertices can be deduced from the given set of target graphs and are used by the algorithm.
Apart from that, the previous successful match may be used to deduce information about
extensions which are more likely to be successful in the next match. In general this does
not prune the search space but may help to discover large common subgraphs earlier. The
advantage of this approach is that the algorithm has time complexity that is linear with
respect to the number of graphs in the given input set.

Gilbert et al. [45] report an heuristic algorithm which discovers patterns of H-bonds
(and chiralities) based on the properties of sheets for TOPS diagrams; they also derive pat-
terns on the associated sequences of SSEs and insert sizes. Briefly, the algorithm attempts
to discover a new sheet by finding, common to all the target set of diagrams, a (fresh)
pair of strands, sharing an H-bond with a particular direction. Then it attempts to extend
the sheet by repeatedly inserting a fresh strand which is H-bonded to one of the existing
strands in the (current) sheet. The algorithm then finds all further H-bonds between all
the members of the current sheet. The entire process is repeated until no more sheets can
be discovered; any chirality arcs between the H-bonds in the pattern are then discovered
by a similar process. The numbers of inserts between each strand in the pattern are then
computed for all the patterns in the learning set, and the minimum and maximum size of
the gaps in the corresponding insert positions in the pattern are thus found, and combined
with the SSE sequence to give the T-pattern. The result is the least general common TOPS
pattern characterising the target set of protein descriptions.

Other methods that are known mostly correspond to the SD approach outlined above,
for example as described by Koch et al. [66]. These may be more efficient for sets con-
taining a small number (basically just two) of graphs, but in general cannot be used to find
the exact answer to the problem for larger sets.

The goodness of a pattern can be stated in several ways, including the size of the pattern,
its discriminative performance against a set of positive and negative examples, and its
compression value. In [46] Gilbert et al describe how to compute the compression of a
TOPS pattern with respect to a set of graphs of structures using a general data compression
measure applied to the size of the pattern graph and the total size of the components of the
structures which are not included in the pattern. This value can be normalised to the range
1 (best) to 0 (worst).
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Definition 11 (Raw compression). The raw compression of a pattern length k w.r.t. a set
of n structures of lengths l1, . . . , ln is

Σni=1li − (n− 1) ∗ k

Definition 12 (Normalised compression). The normalised compression of a pattern length
k w.r.t. a set of n structures of lengths l1, . . . , ln is

(n−1)∗k
Σni=1li−minni=1(li)

These definitions can be extended in a natural way to include complete structural defini-
tions (H-bonds and chiralities). When there are only two structures in the set, the compres-
sion measure can be used as a measure of structure comparison, as ultilised in the online
TOPS system reported by Torrance et al [101] which operates over the TOPS database
[77].

1.6 Function related problems

1.6.1 Metabolic pathways

Living organisms function by a complex set of interactions at the molecular level which
occur in a highly organised manner. They involve metabolic reactions which transform
some compounds (substrates) into others (products). In general a reaction S → P can
be described by a transition S → S′ → P , transforming the set of substrates S into the
set of products P via a transition state S′ in which the substrate molecules are distorted
into some electronic conformation which more readily converts to the products. In order to
occur, S → P has a negative free energy, i.e. the free energy of S is greater than that of P ;
however S → S′ has a positive free energy change, termed the energy of activation. This
energy is a barrier preventing S → P occurring spontaneously, without which all reactions
would occur in an uncontrolled way. Most reactions are catalysed by special proteins
called enzymes which control the reaction by lowering the energy barrier (i.e. increasing
the rate of flow). They do this by binding substrates at combining sites within active sites,
positioning substrate molecules in the most favourable orientations for reactions to occur,
as well as distorting them in order to favour transition state formation. During this process
the enzyme may change shape in order to induce a fit with the substrate, rather than just
rely on a rigid ‘lock and key’ mechanism. In general, reactions can be chained together
into paths so that the products of one reaction become the substrates of another [36].

1.6.2 Regulatory networks

Metabolic reactions can be regulated in two ways. The first is by the direct activation or
inhibition of activity of enzymes by small molecules. This method is relatively fast in
action, since it directly affects the chain of reactions. Another method of regulation is that
of transcriptional regulation, in which the production of the enzyme itself is controlled by
a transcription factor (a protein which activates the capacity of a gene to produce another
protein). This method is relatively slow, since it indirectly affects the reaction path.

Reactions can be self-regulated using either the direct or transcriptional method, since
it is common that products of an immediate or eventual reaction act have a direct or tran-
scriptional effect on enzymes involved earlier in the chain of reactions. These regulatory
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relationships can be quite complex in that products from one path can regulate enzymes
involved in another path.

1.6.3 Querying and analysing networks of cellular function

In [105] van Helden et al. give a data model for representing and analysing networks of
cellular function (metabolic and regulatory pathways). This has been extended by Deville
et al. [26] to the general case including signalling pathways. Often the information is
stored in a database, with the associated the database model permitting simple analysis to
be directly be performed on through a database query language which are often unsuitable
for algorithmic use. Specific algorithms with their own data structures are required for
more sophisticated analyses. Often graphs are used as representational data structures
– these can be compound, reaction, bipartite and hyper-graphs. Object-oriented models
can be seen as a generalization of bipartite graphs, where the nodes are typed, permiting
detailed descriptions, and the use of inheritance to structure data.

Current computational systems often path navigation routines in addition to simple
data retrieval. A simple query is to get all the reactions catalysed by a gene product More
complex queries require the application of specialised algorithms, often involving the use
of graph analysis. These are for example (adapted from [105])

• find all metabolic pathways that convert compound A into compound B in less than
X steps

• find all genes whose expression is directly or indirectly affected by a given com-
pound.

• find all compounds that can be synthesised from a given precursor in less than X
steps

• in the complete set of metabolic reactions, find all feedback loops including a given
compound, or, in a defined biochemical pathway, find all feedback loops.

Another type of complex queries involve sub-graph extraction. Here the user specifies a set
of seed nodes in the network the system is required to extract the portions of the network or
sub-graphs that interconnect each pair of seed nodes via the smallest number of individual
links. The user can specify the maximum number of individual links, or graph arcs, that
can be inserted between any two seed nodes. The resulting sub-graph can then be displayed
and analysed. Algorithms for sub graph extraction and maximal path enumeration used in
this context have been described in van Helden et al [104]. Examples of major databases
and computational systems for storing and analysing biochemical pathway and network
data include KEGG (Kyoto Encyclopedia of Genes and Genomes) [61], BioCyc [68], and
Amaze [72].

In recent work Dooms et al have described an approach using constraint programming
to solve constrained path finding problems in metabolic networks [29] [30], and have ap-
plied it to discover pathways from a set of their reactions. [78]. This approach builds on
earlier work by the same authors [31] in which they defined a graph computation domain
for constraint programming in order to provide a high level modeling language with the
data and results are graphs.
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1.7 Microarrays

DNA microarrays (“DNA chips”) are made by the deposition of DNA spots on a solid
support, often a coated glass surface. For an in-depth review, see e.g. [19]. Two main
procedures have been used to produce these: photolithography (e.g. by as developed and
marketed by Affymetrix Inc. [74], and mechanical gridding [16]. Photolithography is a
technique used in the computer microchip industry. There is, however, an inherent length
restriction with this in situ synthesis technology limiting the probes to about 25 nucleotides
in length. This is offset by the use of high-density arrays which allow the use of multiple
probes per gene. The arrayed probes can be oligonucleotides (photolithography and grid-
ding) or cDNAs (gridding).

Arrays of thousands of DNA sequences representing part of all of the genome of an
organism can be constructed. Such arrays can then be used to compare the relative abun-
dance of the transcriptional products of each of these gene sequences in two DNA or RNA
samples, for example from two different cell populations, or from one population exposed
to two different stimuli. In the spotting techniques the two samples are first labelled using
different fluorescent dyes and are then mixed and hybridized with the arrayed DNA spots.
After hybridization, fluorescence measurements are made for each DNA spot, and record-
ing the fluorescence for each dye separately. These measurements are used to determine
the ratio, and in turn the relative abundance, of the sequence of each specific gene in the
two mRNA or DNA samples. (Adapted from [16]).

The computational challenges can be broadly divided into two major categories:
(1) Normalisation and background correction of microarray data,
(2) Modelling and analysis of the networks that are represented by the sets of genes in the
samples.

We briefly overview the second challenge. Network or pathway reconstruction from
microarray data is based on observations of the expression of a set of genes under varying
conditions such as time-series, targeted mutation or exposure to different evnironmental
conditions (stress, starvation etc) [81]. These data are usually taken as steady-state. The
goal is to identify which genes control (the expression of) other genes, and the results if
these controls. The analysis often involves the clustering of genes by expression data and
the analysis of promoter elements within the same clusters. Machine learning techniques
are commonly used for reconstgruction of gene networks, for example Soinov et al [95]

A potential application of constraint programming in this area is proposed by Dooms
et al [78] is the explanation of DNA microarray experiments using a CSP able to solve
pathway discovery problems. However, this area is ripe for the application of constraint
computation techniques, both in the processing of low-level (primary) data, as well as in
the analysis and interpretation of results, for example cross-referencing into biochemical
pathway data.
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