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ABSTRACT

CopraRNA (Comparative prediction algorithm for
small RNA targets) is the most recent asset to the
Freiburg RNA Tools webserver. It incorporates and
extends the functionality of the existing tool In-
taRNA (Interacting RNAs) in order to predict tar-
gets, interaction domains and consequently the reg-
ulatory networks of bacterial small RNA molecules.
The CopraRNA prediction results are accompanied
by extensive postprocessing methods such as func-
tional enrichment analysis and visualization of in-
teracting regions. Here, we introduce the function-
ality of the CopraRNA and IntaRNA webservers and
give detailed explanations on their postprocessing
functionalities. Both tools are freely accessible at
http://rna.informatik.uni-freiburg.de.

INTRODUCTION

In recent years, bacterial small RNAs (sRNAs) have proven
to be potent, versatile and important regulators of prokary-
otic gene expression (1,2). Furthermore, they are extremely
abundant in various prokaryotic genomes (3–7) and due
to novel experimental (6,8,9) and computational (10–12)
methods on the genomic scale, biologists are struggling with
ever increasing magnitudes of sRNA data that can, in many
cases, only be harnessed by bioinformatics analyses (i.e. tar-
get predictions), preceding wetlab verifications. To make
analysis methods accessible to a broad audience, graphical
user interfaces (GUIs) are indispensable. Offering such in-
terfaces in a web browser based manner has proven to be
useful and intuitive to many users in the past (13–16). The
Freiburg RNA Tools webserver aims at supplying an easy

to use, free and comprehensive web resource for RNA anal-
ysis, also for non-adept users.

Several sRNA target prediction algorithms have been de-
veloped in the past (17), and many of them are available as
webservers (14,18–21). Here, we highlight that CopraRNA
(Comparative prediction algorithm for small RNA targets)
(22) and IntaRNA (Interacting RNAs) (23) not only pro-
duce more than sound results but also supply postprocess-
ing that greatly aids in the interpretation and evaluation of
the results. The tools are accompanied by extensive help
pages, and direct help requests are rapidly answered. The
results can be viewed in the browser and downloaded for
further local analysis or archiving. Furthermore, the source
code for both tools is available for download on the Freiburg
RNA software page at http://www.bioinf.uni-freiburg.de/
Software/.

CopraRNA AND IntaRNA

While CopraRNA is a comparative method that constructs
a combined sRNA target prediction for a set of given organ-
isms, IntaRNA predicts interactions in single organisms.
An exemplary workflow incorporating both tools is given in
Figure 1. Employing a statistical model, CopraRNA com-
putes whole genome target predictions by combining whole
genome IntaRNA target screens for homologous sRNA se-
quences from distinct organisms. Individual evolutionary
distances between the organisms and the statistical depen-
dencies in the data are accounted for and are corrected
within the workflow of the algorithm. IntaRNA predicts
interacting regions between two RNA molecules by incor-
porating the accessibility of both interaction sites and the
presence of a seed interaction; both features are commonly
observed in sRNA–mRNA interactions (24). IntaRNA, un-
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Figure 1. sRNA identification and classification workflow incorporating
CopraRNA or IntaRNA. The first box mentions selected experiments that
have aided in sRNA identification, i.e. RNAseq (8), dRNAseq (6) or Hfq
co-immunoprecipitation (CoIP) (9). The cylinder represents databases that
can be queried while looking for sRNA homologs. Examples are NCBI
(BLAST) (26) or Rfam (27). The next step is the execution of the actual
sRNA target prediction depending on presence of sRNA homologs (Co-
praRNA) or absence of sRNA homologs (IntaRNA). The final two stages
consist of postprocessing and selection of candidates for experimental ver-
ification, e.g. by a GFP reporter system (32).

like CopraRNA, can also be applied to non-whole genome
screens using smaller sets of RNA molecules as input. Thus,
it is also applicable to RNA–RNA interaction prediction
for eukaryotic systems (25).

INPUT AND OUTPUT

Input data must be supplied in FASTA format. For
CopraRNA, the FASTA file should represent three or
more homologous sRNA sequences from distinct organ-
isms. Homologous sRNA sequences may be retrieved from
databases such as NCBI via BLAST (26) or from Rfam (27).
While only three input sequences are mandatory, we suggest
using at least five if available. CopraRNA requires for each
sequence, a RefSeq ID of its affiliated organism as FASTA
header (see Figure 3A, top left for an example). If several
RefSeq IDs correspond to replicons of one organism, any
one of these IDs may be supplied. A maximum of eight in-
put organisms is possible. One of these species must be se-
lected as central reference (organism of interest) for post-
processing and annotation.

Currently, ∼2700 organisms are available for CopraRNA
and IntaRNA whole genome target predictions and the list
is updated on a monthly basis. As previously mentioned,
IntaRNA can also compute interactions for smaller sets of

RNAs. In this case, the user may supply two FASTA files.
For these, all pairwise interactions are computed. Suggested
standard parameters for IntaRNA are a seed length (p) of
7, a target folding window size (w) of 150 and a maximum
base pair distance (L) of 100 (28).

Both webservers provide the top 100 predictions of the re-
spective methods as primary result table. Furthermore, the
core results of the algorithms are accompanied by exten-
sive postprocessing that aids interpretation and condensa-
tion of the result tables. For whole genome target predic-
tions, CopraRNA and IntaRNA include automatic func-
tional enrichment (29) of the top predicted targets and vi-
sualization of putative interacting regions within the sRNA
and the mRNA. As a new feature of the webserver, the func-
tionally enriched terms are represented within a heatmap,
allowing ‘at a glance’ conclusions for target networks (see
Figure 2 for an example). These results can guide the user
while constructing functional networks and characterizing
target binding mechanisms of a given sRNA. For users in-
terested in the entire results, the corresponding job is avail-
able for download as compressed archive. Sample input and
output pages for CopraRNA are displayed in Figure 3. Both
tools’ source code is also available for download and local
installation from the Freiburg RNA webserver download
page.

METHODS

CopraRNA utilizes IntaRNA to calculate single organism
whole genome target predictions. IntaRNA predictions are
computed for each sRNA-organism pair participating in
the analysis. These individual predictions are the basis for
the comparative model. In order to combine target predic-
tions for homologous genes from distinct organisms, In-
taRNA p-values are computed from the IntaRNA energy
scores for each putative target with an energy score ≤ 0.
Transforming energy scores to p-values is achieved by fitting
generalized extreme value distributions to the IntaRNA en-
ergy scores. Using the resulting equations for each individ-
ual whole genome target prediction, p-values can be calcu-
lated for each putative target. In the following, the Dom-
Clust (30) algorithm is applied in order to cluster homol-
ogous genes. The clustering is based on the amino acid
sequences of the organisms’ protein coding genes. These
clusters are then used to calculate a combined CopraRNA
p-value for each cluster of homologous genes by employ-
ing Hartung’s method for the combination of dependent
p-values (31). Conveniently, it not only allows to account
for the overall dependency within the data, but also incor-
porates the possibility to weight individual p-values. This
is important, as the organisms participating in the analysis
can usually not be regarded as equidistant. Closer organ-
isms are consequently down weighted. Excessive influence
of outliers is corrected for by applying a root function to the
weights. The final set of CopraRNA p-values is employed
for q-value calculation. The q-values give an estimate of the
false discovery rate of the target prediction. More detailed
algorithmic explanations on CopraRNA and IntaRNA are
given in the original publications (22,23).
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Figure 2. The CopraRNA heatmap shows the targets with a p-value ≤
0.01 (for IntaRNA the top 50 predicted targets are subjected to the initial
functional enrichment), which have homologs in the organism of interest
and are functionally enriched. All members of clusters with a DAVID en-
richment score ≥ 1.0 are shown in a specific color. Each row represents a
gene and each column a specific functional term. If the gene can be as-
signed to a term, the corresponding square is colored. If no assignment
was made, the square remains white. Closely related terms are assigned to
a cluster and have the same color. The opacity of the color depends on
the p-value of the CopraRNA prediction. A more intense color represents
a more significant p-value. The ‘fold enrichment’ is given in front of the
term descriptions. It represents the enrichment of a term in the prediction
group in relation to the whole prediction background (e.g. a term with an
enrichment of 10 contains 10 times more genes belonging to the respective
term than the background). The enrichment scores give a measure of the
biological significance of the cluster. The DAVID enrichment score for a
cluster is the log transformed geometric mean of all enrichment p-values
from the terms belonging to the respective cluster. A higher score repre-
sents a more statistically significant enrichment. The individual p-values
for the terms are calculated by a modified Fisher’s exact test. The length of
the bars next to the groups of enriched genes corresponds to the size of the
enrichment score. The publication on the DAVID webserver suggests to
investigate clusters with an enrichment score of ≥ 1.3 while also pointing
out that clusters with lower enrichment scores must not necessarily be dis-
carded and may also contain useful information (33). This specific heatmap
represents the enrichment output for the enterobacterial (here Escherichia
coli) sRNA FnrS. Due to space reasons only one term for each cluster is
shown.

POSTPROCESSING AND PREDICTION QUALITY ES-
TIMATION

The benchmarking of CopraRNA showed that some pre-
dictions are more reliable (e.g. GcvB, RyhB, FnrS) than
others (e.g. ArcZ) (22). On behalf of a reduced experimen-
tal (32) workload it is preferable to have a measure for
the reliability of each individual prediction. Here the q-

value and the postprocessing outputs provide guidance. A
strong functional enrichment signature, pointing to a spe-
cific group of genes or a specific pathway, has proven to be
a reliable signal for a meaningful prediction. However, func-
tional enrichments are not always present. This may be due
to low prediction quality, but it can also be caused by a lack
of annotation for the organism of interest or its absence in
the DAVID knowledge base (33).

In these cases the user may opt to choose the organ-
ism with the best available annotation as organism of in-
terest. If this proves ineffective, the user should resort to
the q-value distribution and the interaction domain plots.
A slowly growing q-value, i.e. a relatively high number of
predictions with a q-value ≤ 0.5, is a hallmark of a more re-
liable prediction, especially if the interaction plots show dis-
tinct clustered interaction regions for the sRNA and mRNA
homologs. A random distribution of the interaction sites in
the mRNAs and/or sRNA homologs argues against a reli-
able prediction.

JOB ARCHIVING

Upon submission, a unique ID, which is only known by
the submitting user, is automatically assigned to each job.
This ID can be used to recall the results of a specific job
at any time within the storage period. The Freiburg RNA
webserver stores all computed results for 30 days. Within
this time, selected results or the entire job directory may be
downloaded for local archiving by the user. Online archiv-
ing within the 30 day period is aided by the possibility of
setting job specific descriptions.

PRIOR APPLICATION AND EVALUATION

The predictive performance of CopraRNA and IntaRNA
was previously evaluated on an extensive benchmarking
dataset of 101 experimentally verified sRNA and target
pairs from 18 enterobacterial sRNAs (22). They were com-
pared to each other and to RNApredator (19) and Tar-
getRNA (18). Both tools from the Freiburg RNA webserver
outperformed the other tools in predictive accuracy. Fur-
thermore, CopraRNA was compared to experimental tar-
get prediction by micro arrays. Strikingly, it showed simi-
lar predictive quality with respect to the abundance of cor-
rectly predicted targets (22). From the CopraRNA bench-
mark predictions, 23 previously unreported, putative sRNA
targets were selected for experimental verification. From
these, 17 were verified (22). This represents a success rate
of ∼74%. CopraRNA has also been successfully applied
in studies on non-enterobacterial species. These include in-
vestigations of the sRNAs PsrR1 from Synechocystis sp.
PCC6803 and AbcR1 from Agrobacterium tumefaciens (un-
published data). Beside many other studies, computational
predictions with IntaRNA enabled the identification of two
novel targets of the cyanobacterial sRNA Yfr1 (34) and
aided in finding that the archaeal sRNA162 targets both cis-
and trans-encoded mRNAs via two distinct domains (35).

IMPLEMENTATION

The Freiburg RNA webserver is based on Apache Tomcat
Java Server Pages (JSP) to enable a high server-side perfor-
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Figure 3. CopraRNA webserver input (A) and output (B) page for the sRNA GcvB. The FASTA file may be pasted or uploaded to the webserver. Upon
insertion of the sequences, the webserver automatically displays the RefSeq IDs’ organism affiliations (blue text in (A)). The output page contains a visual-
ization of the primary result table, the interaction as predicted by IntaRNA and the interacting region plots within the sRNA and mRNA. Furthermore,
the functional enrichment is visualized as interactive heatmap.

mance for input validation, job execution and retrieval, and
dedicated pre- and postprocessing. Javascripting is used to
provide an intuitive and interactive user interface on the
client side. The tools provided by the Freiburg RNA web-
server are run on a dedicated computing cluster with up to
480 CPUs, depending on the workload. Jobs are automat-
ically queued and started via Sun Grid Engine to ensure a
balanced and fast job processing given the varying execu-
tion requirements of the different tools provided. An auto-
matic emailing system informs the user upon job comple-
tion if an email address (optional) is provided upon sub-
mission.
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