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A Sparsification

Recapitulate a recursion to fill the Nussinov matrix Ni,j shown in Eq. 1 and depicted in Fig. 1.

Ni,j = max


0 : if (i+ sl) ≥ j
Ni+1,j−1 + 1 : if Ri, Rj can form base pair

maxi≤k<j{Ni,k +Nk+1,j} : decomposition

(1)

max

i

max
i<k<j

k k+1 ji jj-1i+1

+1

i jNij
0 , ,

Figure 1: Graphical depiction of the Nussinov-like recursion from Eq. 1.

The time complexity of the Nussinov algorithm is O(n3). This is, however, still high for
long RNA sequences as for instance large mRNAs, long non-coding RNAs and viral RNAs.
For that reason, attempts have been made to reduce the overall time complexity on average to
O(n2). When revisiting the recursion in Eq. 1, the split in the final decomposition case is the
one causing the high complexity. Many of these splits will not lead to the optimal solution.
This observation sparked the idea of sparsification techniques, first introduced by Ydo Wexler
and colleagues [1], which is discussed in the following.

To this end, we first reformulate the Nussinov recursion by introducing two additional matri-
ces Bi,j and Di,j , which handle the cases that Ri and Rj are paired (B; case 2 in Eq. 1), or the
region is decomposed into two substructures (D; case 3 in Eq. 1). This gives rise to the modified
recursion as depicted in Fig. 2a. For the decomposition case (i.e., the recursion for Di,j), the
exact copy of the Nussinov-like recursion from Eq. 1 would yield Di,j = maxq∈Qi,j (Ni,q+Nq+1,j),
where Qi,j contains all valid decomposition points q within the interval i..j. This decomposition
is replaced by Di,j = maxq∈Qi,j (Bi,q +Nq+1,j) to make the recursion non-ambiguous.

As already stated, the main complexity comes from the decomposition case, where Qi,j

covers all interval indices, i.e. equals {i..j − 1} without sparsification. However, one can prove
that many q ∈ {i..j − 1} are not required for the optimal solution. The idea is that if the best
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Figure 2: Sparsification of Nussinov’s algorithm. a) Modified recursion scheme, where Ni,j is
calculated by two matrices Bi,j and Di,j , corresponding to the base pair and decomposition case,
respectively. Sparsification takes place for the decomposition case. Without sparsification, Qi,j

contains all elements of the interval i..j, which implies that the condition q ∈ Qi,j considers all
possible decompositions. b) Analysis of the decomposition. If all conformations that contain
the base pair (i, q) are not better than any conformation that decomposes the region i..q, then
one can safely replace the sub conformation including the base pair (i, q) by a decomposition
conformation when extending i..q to the right. Thus, such positions q can be removed from Q
for all regions i..j with q < j, which reduces the runtime significantly.

conformation where i and q form a base pair is not better than a conformation stemming from
a decomposition of i..q, then the base pair (i, q) is not required for the optimal conformation
since it can always be replaced by this decomposition of i..j without violating the condition of
a nested structure (see Fig. 2b). This means that the position q is not required as a possible
element of Qi,j for all j > q. Thus, Qi,j is set for each j to a current candidate list Qcand

i , where
an additional element q is only added to Qcand

i if ∀q′ ∈ Qi,q : Bi,q > Bi,q′ +Nq′+1,q. This gives
rise to a time complexity of O(n2ψ(n)), where ψ(n) denotes the expected maximal size of a
candidate list in a sequence of length n. As shown in [2], the candidate list size converges to a
constant, which yields a quadratic time and space algorithm.

This approach has been extended in several ways. First, in [3] this approach was extended to
the Sankoff approach [4], which is the co-folding of two homologous sequences that is discussed
in the main text. In [5], it could be shown that sparsification of the Sankoff approach does not
only reduce time, but also the space requirement. In [6] and [7], the idea of sparsification was
extended to the problem of RNA-RNA interaction and RNA pseudoknot prediction, respectively.
Furthermore, [3] introduced another technique to reduce the computational requirements for
RNA structure prediction by using a variant of Vailant’s method [8], who showed that parsing
of a context-free grammar can be implemented by an optimized matrix multiplication.

Finally, the idea of sparsification for Sankoff-like approaches was extended in [9, 10] to a
more data-driven approach. Here, one does not filter base pairs that provably do not lead
to an optimal solution. Instead, one filters base pairs that have a low probability in the in-
put sequences, which are thus not likely to yield an optimal solution in the co-folding of two
sequences.

B Estimating p-values for interaction energies

Duplex energies of RNA-RNA interactions can not be directly used to make a combined predic-
tion, because they are strongly influenced by the GC-content and dinucleotide frequency of the
organism they are made for. Hence, the duplex energies need to be transformed to p-values,
which are then comparable. In the following, we will introduce how p-values can be derived
and how p-values from different organisms can be combined to enable comparative RNA-RNA
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interaction prediction.
A p-value represents a statistical measure for the quality of a given prediction and, if correctly

estimated, also enables comparability. Following the conclusions from extreme value theory [11],
it is appropriate to regard the results of RNA-RNA interaction predictions as extreme value
distributed (see Fig. 3).

x

f(x)
F(x) p-value of x

Figure 3: Schematic representation of a p-value for a given density function f of the background
model (generalized extreme value distribution).

The density function f of the generalized extreme value (GEV) distribution is given in
Eq. 2. The variable parameters are location (µ), scale (σ) and shape (ε). The location defines
the center of the distribution while its width is governed by the scale parameter. The shape
defines the character of the distribution’s tails, e.g. a higher ε corresponds to a longer right tail.

f(x; µ, σ, ε) =
1

σ

[
1 + ε

(
x− µ
σ

)](−1/ε)−1
exp

(
−
[
1 + ε

(
x− µ
σ

)]−1/ε)
(2)

A p-value is the probability that a certain event x or something more extreme (≥ x) is
observed for a specific background model. Given the density function f of the events, a p-value
can be computed by the integral

∫∞
x f(x)dx (see Fig. 3). The cumulative distribution F for

the GEV distribution (see Eq. 3) provides the integral F (x) =
∫ x
−∞ f(x)dx for events ≤ x, such

that we can compute the p-value by 1− F (x).

F (x; µ, σ, ε) = exp

(
−
[
1 + ε

(
x− µ
σ

)]−1/ε)
(3)

Since the significant p-values (very small) depend on the right tail of the distribution, the
correct estimation of the respective parameters µ, σ, and ε is central to the quality of the final
p-values. An appropriate volume of background predictions for estimating the parameters of
the GEV can be obtained by dinucleotide shuffling sequences that are actually present in the
real search space (e.g. putative target sequences that are present in the investigated genome)
and predicting RNA-RNA interactions for these shuffled sequences.

Given that optimal interaction energies E are minimal energies, we have to use negated
energy terms En for the estimation of the GEV and their p-value computation. Furthermore, a
length normalization of En is needed (Eq. 4) if targets of different lengths are used, since longer
targets often enable larger interaction patterns and thus lower energies.

En =
−E

ln(mn)
(4)

C General joint structure approaches

Dmitri D. Pervouchine introduced and applied the first intermolecular RNA interaction search
(IRIS) method [12] that can predict general duplex structures incorporating the structural
context of both interacting RNAs. As for single RNA structure prediction, we will present
the approach for the simplified base pair maximization scheme. Here, IRIS utilizes Nussinov’s
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recursion matrix N (Eq. 1) to compute the maximal intramolecular base pair number without
intermolecular interactions. In the following, we denote with NR

1
and NR

2
the according

matrices for the interacting RNAs R1 and R2, respectively.

i k

j l

i k

j l

i k

j l

= max

i k

j l

i k

j l

intramolecular base pairs intermolecular base pairs decomposition

(i,k) (i,j) at all (p,q)(j,l) (k,l)

i k

j l

p

q

Figure 4: Depiction of the general joint structure prediction recursion of M i..k
j..l (Eq. 5), which

handles intramolecular and intermolecular base pair extensions as well as a general decomposi-
tion case.

Entries M i..k
j..l in the duplex matrix M provide the maximal number of both intramolecular

and intermolecular base pairs for the interacting subsequences R1
i..k and R2

j..l. Here, entries

with i > k or j > l correspond to the individual structure formation of R1 and R2, respectively,
and are given by NR

1
and NR

2
. The full recursion is provided in Eq. 5 and yields an algorithm

with O(n6) time and O(n4) space complexity. A visual depiction of the recursion cases is given
in Fig. 4.

M i..k
j..l = max



0 : if both j > l and i > k

NR
1

i,k , NR
2

j,l : no interaction considered

if j > l or i > k

M i+1..k−1
j..l + 1, M i..k

j+1..l−1 + 1 : intramolecular base pair

if R1
i ,R1

k or R2
j ,R2

l can pair

M i+1..k
j+1..l + 1, M i..k−1

j..l−1 + 1 : intermolecular base pair

if R1
i ,R2

j or R1
k,R2

l can pair

max
s,t

{
M i..s

j..t +M s+1..k
t+1..l

}
: decomposition of interaction site

(5)

Note, for simplicity, the given recursion in Eq. 5 omits the minimal intramolecular base
pair span sl in the third case, which is enforced within the intramolecular folding algorithms.
Furthermore, the recursion covers only interaction sites that are consecutive along the sequences.
To allow for crossing interaction sites, the recursion can be extended [12]. As done by Zuker
for the algorithm by Nussinov for single RNA structure prediction, Can Alkan and co-workers
adapted the base pair maximization version of IRIS to derive an energy minimizing variant of
equal complexity [13].
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