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Abstract

Many years of research in RNA biology have soundly established the importance of RNA based

regulation far beyond most early traditional presumptions. Importantly, the advances in ”wet”

laboratory techniques have produced unprecedented amounts of data that require efficient and

precise computational analysis schemes and algorithms. Hence, many in silico methods that

attempt topological and functional classification of novel putative RNA based regulators are

available. In this review we technically outline thermodynamics-based standard RNA secondary

structure and RNA-RNA interaction prediction approaches that have proven valuable to the

RNA research community in the past and present. For these, we highlight their usability with

a special focus on prokaryotic organisms and also briefly mention recent advances in whole

genome interactomics and how this may influence the field of predictive RNA research.

1 Introduction

For over a decade, prokaryotic and eukaryotic RNA biology exploration has unveiled the multi-

faceted and central contribution of RNA based control in all domains of life. RNA interactions

are at the core of many regulative processes and have hence been heavily studied by wet-lab

and biocomputational researchers alike. Within this review, we focus in biocomputational meth-

ods and outline the technical details of standard algorithms for RNA secondary structure and

RNA-RNA interaction prediction. Furthermore, we highlight their application in the context

of prokaryotic RNA biology.

Similar to DNA, RNA molecules can undergo stable base pairing when stretches of comple-

mentary nucleotides are present and form a so called duplex. The generalized model assumes

that adenine (A) can form base pairs with uracil (U) while guanine (G) can pair with cytosine
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(C) or U. In vivo, further interactions are possible [1, 2, 3], which are, however, not considered

for the methods presented in this review. Base pairs in RNA or DNA can be established due to

complementary nucleotides forming hydrogen bonds [4]. Two types of base pairing are conceiv-

able for RNA molecules. Firstly, base pairing can occur within a single RNA molecule. These

intramolecular interactions give rise to RNA secondary structures that are often important for

an RNA molecule’s function or regulation and are thus central to cellular physiology.

The second type of base pairing is referred to as intermolecular interaction or RNA-RNA in-

teraction. These interactions occur between RNAs that are present as individual molecules and

play a key role in processes that employ RNA molecules as regulators of other RNA molecules.

Examples are prokaryotic trans acting small RNAs (sRNAs) or eukaryotic microRNAs (miR-

NAs). Both sRNAs and miRNAs are posttranscriptional regulators that often bind target RNAs

and thereby modulate the target’s function in a positive or negative manner [5, 6, 7]. Labo-

ratory based identification and verification of RNA-RNA interactions is a cumbersome task.

In accordance with this, and taking the pivotal role of RNA-RNA interactions in the regula-

tory network of cellular systems into account, in silico prediction of such interactions has been

intensely studied and several predictive approaches are available.

2 Intramolecular RNA structure prediction

RNA molecules are usually chain-like polymers of nucleotides that differ in their base compo-

sition and length. They are therefore typically represented by their base sequence in 5′ → 3′

direction, where 5’ denotes the five prime phosphate group and 3’ denotes the three prime hy-

droxyl group of the first and last nucleotide, respectively. Thus, an RNA molecule of length n is

encoded by its sequenceR ∈ Σn where Σ = {A, C, G, U} encodes the possible bases. A structure P

for a given RNA R can be encoded by its set of base pairs P = { (i, j) | 1 ≤ i < j ≤ n } .

In the basic RNA secondary structure model, each base can form only a single base pairing

within the molecule. A valid secondary structure P fulfills the following criteria: i) unique base

pairing (∀(i, j) 6= (k, l) ∈ P : i 6∈ {k, l} ∧ j 6∈ {k, l}), ii) sequence complementarity (∀(i, j) ∈ P :

{Ri,Rj} ∈ {{A, U}, {C, G}, {G, U}}), and iii) minimal base pair span sl (∀(i, j) ∈ P : i+ sl < j).

Therefore, an empty secondary structure Poc = ∅ corresponds to the open chain without in-

tramolecular base pairings. The minimal base pair span sl, also called loop size, incorporates

steric bending constraints into the structure model and is usually set to sl = 3. If the base pairs
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within a structure are nested, i.e. it holds @(i,j)6=(k,l)∈P : i < k < j < l, then we call P a nested

structure. Otherwise, it is called a crossing or pseudoknot structure. Nested models enable a

unique decomposition of P into secondary structure elements, which facilitates efficient RNA

structure and interaction prediction methods. Therefore, we will focus on nested models only

in the following.

A nested secondary structure P can be uniquely decomposed into structural elements. These

elements are called loops. Each loop is defined by an enclosing base pair (i, j) ∈ P. The loop

type is determined by the directly enclosed base pairs (k, l) ∈ P with i < k < l < j. A base pair

(k, l) is directly enclosed by (i, j), if there is no other (k, l)-enclosing base pair (i′, j′) ∈ P that

is enclosed by (i, j) too. We distinguish the following loop types that are depicted in Fig. 1.

hairpin loop: no enclosed base pair
stacking : adjacent enclosed base pair,

i.e. i+ 1 = k and j − 1 = l
bulge loop: only one side adjacent,

i.e. (i+1=k ∧ j−1>l)
or (i+1<k ∧ j−1=l)

interior loop: non-stacked enclosed base pair,
i.e. (i+ 1 < k ∧ j − 1 < l)

multi-loop: more than one directly enclosed base pair
S
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Figure 1: Loop decomposition of a nested RNA structure into Hairpin loops (dark gray), Multi-
loops (light gray), Stackings (light blue), Bulges and Interior loops (dark blue). Initials of the
loop types are placed in white next to the enclosing base pair (black).

2.1 Individual structure prediction

One of the first and most fundamental algorithms for the prediction of nested RNA secondary

structures was introduced by Ruth Nussinov and co-workers [8]. It applies dynamic program-

ming techniques to efficiently identify a stable structure P for an RNA molecule with sequenceR

by maximizing the number of base pairs |P|. To this end, the Nussinov algorithm recursively

computes the maximum number of base pairs for each subsequence Ri..Rj and stores this infor-

mation in the dynamic programming matrix Ni,j . It can be filled by employing Eq. 1 (depicted

in Fig. 2), which is a variant of the original recursions formulated in [8] to enable the relation to

other approaches in the following. The maximum number of base pairs is found in the matrix

entry N1,n. The corresponding structure can be identified via traceback.
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Figure 2: Graphical depiction of the Nussinov-like recursion from Eq. 1.

Ni,j = max


0 : if (i+ sl) ≥ j

Ni+1,j−1 + 1 : if Ri, Rj can form base pair

maxi≤k<j{Ni,k +Nk+1,j} : decomposition

(1)

While efficient and in theory applicable to the folding of RNAs, this simple optimization

scheme shows poor prediction accuracy for several reasons. Firstly, it does not account for

differences in base pairing strengths. In general, base pair complementarity is at the core of

every RNA interaction prediction but a distinction needs to be made between stronger and

weaker base pairs. While a G-C pair incorporates three hydrogen bonds, G-U and A-U base pairs

only form two hydrogen bonds and are less stable when compared to a G-C pair. Furthermore,

the stability influence of loop sizes, base pair stackings, loop context, multi-loop formations,

etc. is not considered. The stacking of base pairs, for instance, is central to RNA helix stability

[9]. Nevertheless, the algorithmic idea was transferred into more sophisticated optimization

schemes that are discussed in the following.

Current RNA secondary structure prediction algorithms are usually energy minimization

methods. Typically, they use the aforementioned loop decomposition of a structure (see Fig. 1)

in combination with loop-specific energy contributions. This enables an incorporation of em-

pirically determined loop type- and context-specific contributions [10, 11]. Thus, this so called

nearest-neighbor model [12, 13] considers the directly neighboring bases and base pairs for each

interaction. The overall energy E(P) of a nested structure P can therefore be computed by the

summation over energies for each loop enclosed by (i, j) ∈ P (Eq. 2).

E(P) =
∑

(i,j)∈P


Eloop(i, j, i, j) : if hairpin loop

Eloop(i, j, k, l) : if stacking, bulge, or interior loop

Eloop
multi(i, j, h, u) : if multi-loop

(2)

where Eloop provides the loop’s energy contribution for stackings, bulges, interior and hairpin
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loops and Eloop
multi gives the energy for a multi-loop element. To reduce complexity, multi-loop

energies are typically estimated by Eloop
multi(i, j, h, u) = Em

c + hEm
h + uEm

u . This uses empiri-

cally identified constants Em
c , E

m
h and Em

u , with Em
c penalizing the multi-loop closure by (i, j),

Em
h accounting for the h ≥ 2 directly enclosed base pairs (i.e. branching helices) and Em

u

weighting the u directly enclosed unpaired bases. For instance, the multi-loop in Fig. 1 results

in h = 2 and u = 6. To respect the outer context of non-enclosed loops, so called dangling

end contributions have to be added as well, which is neglected in Eq. 2 and in the following

presentations for simplicity. Throughout the last decades, several parameter sets for the nearest

neighbor model have been derived from experimental data [10, 14, 15].

Given such an energy decomposition, a dynamic programming scheme to compute the min-

imal free energy (mfe) structure Pmfe for an RNA R was introduced by Michael Zuker and

Patrick Stiegler [16]. It uses three matrices to store results for distinct subproblems: Vi,j pro-

vides the mfe for all possible structures that can be formed by the subsequence Ri..Rj under the

assumption that Ri and Rj form a base pair; WM
i,j handles multi-loop decompositions, where

Ri..Rj is enclosed in the multi-loop; and Wi encodes the mfe for the prefix R1..Ri. Given

the following recursions (Eq. 3-6), the mfe of the whole RNA can be found in Wn. Note, the

multi-loop decomposition in the WM
i,j recursion is not unique, which makes it unsuitable for

suboptimal structure prediction as addressed in [17]. When restricting the maximally allowed

interior loop size in Eq. 5, this algorithm runs in O(n3) time and O(n2) space. Note, since this

transfer of a base pair maximizing recursion (Nussinov algorithm) to energy minimization using

the nearest neighbor model (Zuker algorithm) is generic, we will restrict where appropriate the

algorithm presentations to a Nussinov-like form.
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W0 = 0 (3)

Wj = min


Wj−1 : j is unpaired

min
1≤k<j

{Wk−1 + Vk,j} : base pair (k, j)

(4)

Vi,j = min



∞ : Ri,Rj cannot pair or (i+ sl) ≥ j

Eloop(i, j, i, j) : (i, j) closes hairpin

min
i<k<l<j

{
Eloop(i, j, k, l) + Vk,l

}
: (i, j), (k, l) stacking, bulge, . . .

min
i<k<j

{
Em

c +WM
i+1,k +WM

k+1,j−1

}
: (i, j) closes multi-loop

(5)

WM
i,j = min



∞ : (i+ sl) ≥ j

Em
u +WM

i+1,j : i unpaired

Em
u +WM

i,j−1 : j unpaired

Em
h + Vi,j : (i, j) directly enclosed

min
i<k<j

{
WM

i,k−1 + Vk,j + Em
h

}
: decompose and (k, j) directly enclosed

(6)

The advanced versions of the Zuker algorithm are implemented in the standard folding

programs UNAFOLD [18] (former Mfold [19]) and RNAfold [20, 21]. Both implementations

are being successfully used by the research community and show good prediction accuracy for

RNAs such as Spot42 [22] and FnrS [23] to name just two.

The time complexity of the Nussinov and Zuker algorithm is O(n3), at least when restricting

the interior loop size in Zuker. This is, however, still high for long RNA sequences as for instance

large mRNAs, long non-coding RNAs and viral RNAs. For that reason, attempts have been

made to reduce the overall time complexity on average to O(n2). When revisiting the recursion

in Eq. 1, the split in the final decomposition case is the one causing the high complexity. Many

of these splits will not lead to the optimal solution. This observation sparked the idea of

sparsification techniques, first introduced by Ydo Wexler and colleagues [24], which is discussed

in the supplementary material.

Finally, more and more tools now allow for the inclusion of structure probing data [25,

26], which can guide a more sophisticated structure prediction process based on experimen-

tally established constraints [27, 28]. Examples are RNAstructure [29], RNAsc [30] and

RNAfold [31, 32].
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2.2 Comparative structure prediction

In order to increase the prediction quality, it is often useful to take not only one but a set of

evolutionarily related molecules into account. That is, one wants to compute a common struc-

ture for a set of sequences, which requires an alignment that takes both sequence and structure

features into account. Paul R. Gardner and Robert Giegerich classified such approaches accord-

ing to the applied plan [33]: Plan A) “first align then fold”, Plan B) “simultaneously align and

fold”, Plan C) “first fold then align”.

The class of methods, which is referred to as Plan A, is basically an extension of the in-

dividual structure prediction to alignments. That is, first all sequences are aligned based on

their sequence similarity. This multiple sequence alignment can be successively folded into a

consensus structure that is compatible with all sequences. Common approaches are RNAali-

fold [34], PFold [35] or PetFold [36]. Such approaches are as efficient as individual structure

prediction and work well for data sets with high sequence similarity. RNAalifold for instance

has been used to determine the conservation of the CyaR sRNA [37]. If sequence identity within

the data drops below 60%, Plan A approaches have been shown to fail [38]. Here, the other two

plans are more promising, since they utilize the observation that an RNA’s structure is often

more strongly conserved than its sequence on an evolutionary scale [38].

The first practical implementations of Plan C were RNAforester [39] and MARNA [40].

They generate a multiple structure alignment for a set of given input structures. The latter are

either known or stem from individual structure prediction. Thus, Plan C approaches depend

on the accuracy of the input structures. Since there is only a limited number of known RNA

structures, the overall alignment quality is often flawed by the individual structure predictions

used instead.

Thus, the current state-of-the-art approaches are applying Plan B that was first introduced

by David Sankoff [41]. Here, sequences are simultaneously folded and aligned leading to an

algorithm with O(n6) time and O(n4) space complexity. The key idea of Sankoff is to si-

multaneously find two equivalent structures P1 and P2 for the given sequences R1 and R2,

respectively, in combination with a compatible sequence alignment of R1 and R2. That is, we

have to optimize the combination: E(P1) + E(P2) + S, where Si,j, i′,j′ provides the alignment

score for the respective subsequences. The two structures are equivalent if they are of the same

size (|P1| = |P2|) and show the same nesting. The sequence alignment is compatible with both

structures if equivalent base pairs (i, j) ∈ P1 and (i′, j′) ∈ P2 are aligned to each other.
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In the following, we present a reduced Nussinov-like version of the algorithm using a base

pair maximization scheme. Here, the Nussinov-matrix N (Eq. 1) for one sequence is extended to

a four-dimensional matrix F (Eq. 7) that encodes the optimal Sankoff-like score for two aligned

subsequences R1
i..j and R2

i′..j′ .

Fi,j, i′,j′ = max



Si,j, i′,j′ : alignment of no structure

Fi+1,j−1, i′+1,j′−1 + 2 : if (R1
i ,R1

j ) and (R2
i′ ,R2

j′) are compl.,

+Si,i, i′,i′ + Sj,j, j′,j′ alignment of base pairs (i, j),(i′, j′)

max
k,k′

{
Fi,k, i′,k′ + Fk+1,k′+1, j,j′

}
: decomposition

(7)

where the sequence alignment contributions are computed by

Si,j, i′,j′ = max



Si+1,j, i′+1,j′ : align i and i′ if R1
i , R2

i′ match

Si+1,j, i′+1,j′ − sm : align i and i′ if R1
i , R2

i′ mismatch

Si+1,j, i′,j′ − sg : align R1
i with gap

Si,j, i′+1,j′ − sg : align R2
i′ with gap

(8)

using the penalties sm and sg (both ≥ 0) for mismatch and gap alignments, respectively. The

introduction of base pairs into both structures at once ensures their equivalence and the direct

inclusion of respective alignment scores ensures the compatibility of the alignment with the

structures. As for the Nussinov-like recursion in Eq. 1, the Sankoff-like recursion from Eq. 7

can be extended to the nearest-neighbor energy model just like the Zuker algorithm.

To reduce the computational complexity, several simplifications have been introduced. One

class of variants uses sequence-based heuristics to restrict the search space. Programs of this

class are for instance Foldalign [42, 43], dynalign [44], and Stemloc [45]. Another class

of approaches, e.g. implemented in PMcomp [46], LocARNA [47], and FoldalignM [48], do

not restrict the alignment search space but use a simplified energy model based on base pair

probabilities to reduce the considered structural search space and such computational complex-

ity and runtime. Here, instead of directly considering loop energies, as done by Sankoff, energy

terms are indirectly encoded within base pair probabilities that are efficiently precomputed us-

ing the algorithm by John S. McCaskill [49]. Both classes of simplifications are combined by

RAF [50], which fuses heuristics based on subsequence alignment quality with the simplified
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energy model of PMcomp, an approach first introduced in Stemloc.

3 RNA-RNA interaction prediction

3.1 Key components in RNA-RNA interactions

Recalling the commonly known double helical structure of DNA, one may naively assume that

base pair complementarity is the sole component needed to form a stable interaction between two

RNAs. However, further factors influence RNA-RNA interactions. One of these factors are the

previously discussed intramolecular structures (see Sec. 2) that can be formed by each individual

copy of the interacting RNAs before they meet. Given the hypothetical RNA sequence, where 5’

denotes the five prime phosphate group and 3’ denotes the three prime hydroxyl group, 5’-GGG-

GGGGGGGCCCCCCCCCC-3’; if no intramolecular base pairs are assumed, one may be tempted to see

a perfect duplex forming between two individual RNAs of this type (Fig. 3a). However, each

individual RNA of this type is also capable of forming a hairpin structure incorporating a strong

G-C stem enclosing a small loop. Hence, a more realistic assumption is that only the unpaired

hairpin loop regions will interact and the duplex is not as long as naively expected (Fig. 3b).

This theoretical scenario is also reflected by cis-antisense RNAs in vivo [51]. Neglecting or

considering the component of intramolecular structures splits the prediction approaches that

will be discussed in this review into two major groups. They will be reviewed in the sections

3.2 and 3.3 respectively.

a

5'-GGGGGGGGGGCCCCCCCCCC-3'
   ||||||||||||||||||||
3'-CCCCCCCCCCGGGGGGGGGG-5'

b
5'-GGGGGG        CCCCCC-3'
         GGGGCCCC         
         ||||||||         
         CCCCGGGG         
3'-CCCCCC        GGGGGG-5'

Figure 3: Potential interactions for two identical RNA molecules (blue and green) as predicted
by the a) RNAhybrid webserver [52] and b) IntaRNA webserver [53] (intramolecular base
pairs subsequently added, which form a kissing hairpin interaction). Inter- and intramolecular
base pairs are indicated by vertical pipe symbols and arches respectively.

3.2 RNA-RNA interaction prediction not considering intramolecular base

pairing

As previously mentioned (see Sec. 3.1), approaches to predict RNA-RNA interactions can be

split into two major groups. The first group, that will be discussed here, neglects the impact

9



of intramolecular base pairing within the interaction partners. The algorithmic solutions are

either purely sequence- or structure-based approaches. While the sequence-based models solely

search for stretches of extensive base pair complementarity, a physical energy model is employed

by structure-based approaches.

To find base pair complementarity, the basic local alignment search tool (BLAST) algorithm

[54] is appropriate. Yet, next to the canonical Watson-Crick base pairs G-C and A-U, also the

non-Watson-Crick base pair G-U can form within RNA-RNA interactions and must thus be

considered. GUUGle [55] is an approach that incorporates the G-U wobble base pairs, and was

mainly developed as filtering scheme to reduce the search space for more complex algorithms.

The advantage of these sequence-based approaches is that they immediately inherit a method

to calculate p-values from local alignment approaches [56].

TargetRNA [57], which was developed to predict the targets of bacterial sRNAs, ap-

proaches the problem from different angles. Two scoring schemes for an interaction of RNAs

are proposed. Firstly, TargetRNA allows for a purely sequence-based solution using a variant

of the Smith-Waterman alignment algorithm [58]. Therein, it searches for base pair complemen-

tarity rather than sequence similarity. Furthermore, loops within the interaction are penalized

while G-C and A-U base pairs are favored over G-U base pairs. The second solution in Tar-

getRNA uses an energy model. Here, the free energy of an RNA duplex is considered when

scoring an interaction. A lower energy represents a more stable interaction. This second type of

scoring resembles the energy model used for individual RNA structure prediction (see Sec. 2).

RNAhybrid [59], which was developed prior to TargetRNA, also uses minimal free energy

scoring primarily in order to predict eukaryotic miRNA targets. Yet, it has also been frequently

applied in the prediction of prokaryotic sRNA target interactions. [37, 60, 61]. The scoring in

these approaches strongly depends on the energies of stacked back-to-back base pairs, interior

loops and bulges. The stacking energies, which were originally derived for intramolecular struc-

tures, are available from experimental testing (see Sec. 2). Energies for small interior loops and

bulges are also available from experimental data.

Both RNAhybrid and TargetRNA restrict the length for long interior loops (i.e. con-

sidered values for p, q in Eq. 9/10), as these structures increase the computational complexity.

The rationale behind this is that long interior loops do not represent structures that are favor-

able, and thus may be disregarded in the interaction prediction due to their limited real world

relevance. RNAplex [62] on the other hand deviates from RNAhybrid’s and TargetRNA’s
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type of treatment for long interior loops by using an affine function for scoring long interior

loops and bulges within the interaction, while its energy model is similar to those applied in

the previously mentioned approaches. Furthermore, RNAplex can avoid disproportionately

long duplex predictions, which often occur in RNAhybrid, by imposing a penalty for every

nucleotide in the interaction. Thereby, RNAplex provides a more realistic estimation of the

potential in vivo duplex, which is especially helpful when predicting the targets of prokaryotic

sRNAs. The constraint on duplex lengths can be regarded as a step towards consideration of

intramolecular structures without specifically addressing them. A pre-filtering algorithm for

RNA-RNA interaction prediction on the genomic scale employing a simplified Turner energy

model is RIsearch [63].

The above mentioned energy-based approaches predict RNA-RNA interactions by minimiz-

ing the free energy of the resulting duplex. Specifically, this can be solved in polynomial time

using dynamic programming. In principle, one can consider all possible interaction sites i..k on

the first sequence R1 together with all possible interaction sites j..l on the second RNA R2,

and store the minimal duplex energy in a matrix Di..k
j..l . Note, that we number the first sequence

in 5′ → 3′, and the second sequence in reverse orientation (3′ → 5′) since we consider only

sense-antisense interactions. To guarantee that these interaction sites are actually covered by

a duplex, we have to enforce that i, j, k, l are occupied by intermolecular base pairs. By the

non-crossing condition for the intermolecular base pairs, this is only possible if i is paired to k

and j to l. Then, we can simply calculate all possible interactions by the following recursion:

Di..k
j..l = min



+∞ if R1
i , R2

j can not pair

EInit(i, j) if i = k and j = l

min
p,q

{
Eloop(i, j, p, q) +Dp..k

q..l

}
if i < k and j < l

(9)

Here, EInit(i, j) is the free energy for the first intermolecular base pair in a duplex. Follow-

ing [64], this comprises the dangling end contributions for the initial base pair (i, j) and the

intermolecular initiation free energy (usually 4.10 kcal/mol). Eloop(i, j, p, q) is the energy con-

tribution for the loop enclosed by the base pairs (i, j) and (p, q), where i < p and j < q. This

can either be a stacking (i = p − 1 and j = q − 1), bulge (i = p − 1 or j = q − 1, but not

both) or interior loop (i < p − 1 and j < q − 1) (see Sec. 2). When restricting the maximal

size of interior loops (typically not more than 30 bases), this gives rise to an algorithm with
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complexity O(n4) time and space. The best duplex interaction of R1 and R2 can be found by

starting a traceback from the minimal Di..k
j..l entry, where (i, j) and (k, l) define the duplex’s left-

and rightmost intermolecular base pairs. The recursion is depicted in Fig. 4a.

a i k

j l

= min
p,q

i k

j l

p

q

Eloop

b i n

j n'

= min
p,q

i n

j n'

p

q

Eloop

Figure 4: Recursion depiction of interaction prediction via a) Di..k
j..l and b) Ci

j .

When neglecting the intramolecular base pairing, then information about the interacting

sites as used in Di..k
j..l is actually not required to determine the best duplex. Instead, one can use

a matrix Ci
j that provides the minimal duplex energies for the suffixes R1

i . . .R1
n and R2

j . . .R2
n′

(see Fig.4b), where n and n′ are the respective sequence lengths. The simplified recursion is

then given by

Ci
j = min



+∞ if R1
i , R2

j can not pair

EInit(i, j)

min
p,q

{
Eloop(i, j, p, q) + Cp

q

} (10)

The actual interaction sites can be subsequently generated via traceback starting at the minimal

Ci
j entry, where (i, j) marks the leftmost intermolecular base pair. Assuming n′ ∈ O(n), this

simplified recursion has an O(n2) time and space complexity and according variants are used

in RNAhybrid, RNAduplex [21] and TargetRNA.

Evidently, the approaches described in the current section can be split into purely sequence-

based methods and methods that incorporate an energy model for RNA-RNA interaction predic-

tion. While the methods that solely rely on sequence complementarity are a useful initial approx-

imation for potential interactions of RNA molecules, their disregard of the energetic properties

of RNA duplexes represents a major pitfall. Hence, the minimum-free-energy-based algorithms

have several advantages. Firstly, they have the same runtime complexity as the sequence-based

methods and their use of experimentally derived energy values for specific structure elements

allows a more realistic approximation of RNA duplexes. Furthermore, the incorporation of a

thermodynamic context allows the consideration of temperature, which is a key factor when

defining the structural states of molecules such as RNA. The temperature is a dynamic pa-
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rameter and can thus be adjusted to accommodate for the investigated system’s temperature

properties. The latter may be especially helpful for predictions on systems that are not assumed

to be at 37◦C (human body temperature), like the native environment of organisms such as the

thermophile archaeons belonging to the Sulfolobus genus [65].

The inclusion of thermodynamic parameters into the prediction of RNA-RNA interactions

represents an advance in this field of research when compared to the purely sequence based

methods. Yet, by not directly addressing the influence of intramolecular structures within the

interaction partners, a major in vivo factor of RNA-RNA interactions is neglected and can cause

duplex predictions that may never occur. Thus, a common artifact of the methods that disregard

intramolecular structures can be unproportionately long duplex predictions [62, 66] as these are

generally favored by the energy model. To counter such effects, recent versions of RNAplex [67]

(and its webserver RNApredator [68]), TargetRNA2 [69] and RIsearch2 [70] incorporate

the accessibility of the interacting sites for intermolecular base pairing prediction. This concept

is more closely discussed in the following section.

3.3 RNA-RNA interaction prediction accounting for intramolecular base

pairing

Intramolecular base pairing plays a key role for the in vivo interplay of distinct RNA molecules.

Hence, in silico predictions taking intramolecular base pairs into account currently belong to

the most sophisticated and successful approaches in this field of biocomputational research. The

algorithms can be split into concatenation-based, accessibility-based and general joint structure

approaches, which is also the order that the algorithms are going to be presented in.

a
                      
                 UUU
                U   U
                 C-G
                 C-G
5'-…GCC          C-G
       UGCGGGCACA   GGGGGGGG  
       ||||||||||   ||||||||
       ACGCUCGUGU   CCCCUUCC
3'-…AAA          A-U
                 U-A
                 U-A
                U   U     
                 UAA

Linker 

b       
5'-…AA   AAAGAGGGAG   AA…-3'
      C-G          C-G
      C-G          C-G
     U   U        C   C 
      CUC          AGA
      |||          |||
      GAG          UCU
     A   A        U   U
      G-C          C-G
      G-C          C-G
3'-…CC   CAAAUCCACA   CC…-5' 

Linker 

Figure 5: a) Intramolecular structure enclosing interaction predictable by concatenation-based
approaches. b) Double kissing hairpin interaction that can not be predicted since it forms a
pseudoknot when linked; red dotted line denotes the linker, blue/green denotes the first/second
sequence, respectively. Base pairs are indicated by pipe or dash symbols.
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3.3.1 Concatenation-based approaches

In general, the concatenation-based approaches make extensive use of the predefined algorithms

for single RNA secondary structure prediction (see Sec. 2) by concatenating the putatively

interacting RNAs, usually interspaced with a so called linker sequence [20, 64]. Tools that allow

RNA-RNA interaction prediction in this manner are e.g. Mfold/UNAFOLD [71], PairFold

[72], RNAcofold [73] and one of NUPACK’s utilities [74]. The approaches record the position

of the linker and fold the concatenated sequences, thus returning the joint minimum free energy

structure for the two sequences and the linker. The main difference of the concatenation-based

approaches to general RNA folding is that they need a special handling of loops containing the

linker sequence, as the linker is an artificially introduced entity. Hence, the energy contributions

added by the structures including the linker need to be adjusted. Figure 5a shows a ’hairpin

context’. Instead of treating the structure formed by the linker sequence as a bulge or hairpin,

respectively, one rather treats them as structure ends. As a consequence, the high energy

penalties for the embedding of unpaired regions can be appropriately reduced. Technically,

this is solved by an extension of the Zuker recursions from Sec. 2. Here, for every matrix (see

Eq. 3-6), one has to treat the case that the linker position is covered by the current loop in

addition to the normal case (see [72] for details). Still, the computational complexity of Zuker’s

algorithm is retained.

Conveniently, the nature of the concatenation-based approaches also allows for the calcu-

lation of the partition function and base pair probabilities for the joint structures under ap-

plication of the principles described by John S. McCaskill [49]. Furthermore, interactions that

form a multi-loop (Fig. 5a) can also be considered. A downside, however, is the inability of

these approaches to detect interactions that represent pseudoknots in the concatenated model,

namely kissing hairpin interactions [75, 76], shown in Fig. 3b and 5b. Here, complementary

nucleotides within the hairpin loops, which are not entangled in intramolecular base pairs, form

an intermolecular duplex between sRNA and mRNA thereby tying the two RNA molecules

together. This common kind of RNA-RNA interaction represents an unpredictable pseudoknot

structure in the nested concatenation-based approach, and thus is a central limitation of these

approaches. An experimentally verified example of an interaction involving a pseudoknot in

the concatenation context is the interplay of the Escherichia coli sRNA RyhB and its target

mRNA encoded by the sodB gene. Here, the second loop of RyhB interacts with the translation

initiation region of its target mRNA and thereby represses its translation into the superoxide
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Figure 6: The ensemble-based approach for interaction prediction. Instead of considering only
a single individual structure for the RNAs R1 and R2, RNAup and IntaRNA introduce a
sequence-specific accessibility term, which represents all structures with an accessible (i.e. not
covered by intramolecular base pairs) interaction site i..k and j..l. These are incorporated into
a modified duplex calculation.

dismutase protein [77].

3.3.2 Accessibility-based approaches

Accessibility-based approaches like IntaRNA [66] and RNAup [78] can predict kissing hairpin

interactions while still considering the contribution of intramolecular structures. These ap-

proaches specifically evaluate the structuredness of putative RNA-RNA interaction sites within

the interaction partners and penalize intermolecular duplexes that require the breakup of in-

tramolecular base pairs. Hence, interactions between commonly unstructured or accessible

regions, like hairpin loops, are favored.

For this, both RNAup and IntaRNA incorporate the hybridization energy (Ehybrid) for

the interacting RNAs R1,R2 and the unfolding energies (EDR
1
, EDR

2
) required to make the

interacting regions in both RNAs accessible. The general strategy of these ensemble-based algo-

rithms is given in Fig. 6. Ehybrid is calculated by employing the energy model from RNAhybrid

and the energy parameters from Mathews et al. [10] (see Di..k
j..l in Eq. 9), while the unfolding

energy is derived under application of a partition function approach. The partition function ZP

for all possible structures P of a given RNA is defined as:

ZP =
∑
P∈P

e−
E(P)
RT (11)

where E(P) is the free energy of a specific structure P ∈ P that the given RNA can form

(see Eq. 2), R is the gas constant and T is the temperature of the system. John S. McCaskill

introduced an efficient algorithm for the partition function computation [49] that adapts the

structure prediction approach of Zuker (see Sec. 2) with equal complexity. Given the loop
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decomposition of the energy function, i.e. E(P) =
∑

(i,j)∈P E (loop (i, j)) (see Eq. 2), the

Boltzmann weight e−
E(P)
RT in Eq. 11 can be replaced by a loop-based product:

e−
E(P)
RT = e

− 1
RT

∑
(i,j)∈P

E(loop(i,j))

=
∏

(i,j)∈P

e−
E(loop(i,j))

RT . (12)

Based on that, one can replace energy summations within the Zuker recursions with Boltz-

mann weight multiplication (following Eq. 12) and change the minimization strategy to a weight

summation of structural alternatives (Eq. 11), which results in the computation of ZP. Once

ZP is identified, the free energy of the ensemble (Eens) of all possible structures P of the given

RNA can be calculated byEens(P) = −RT ln( ZP ).

Finally, the EDR value, to make a stretch of bases i..k within an RNA R unpaired, can

be computed by subtracting the ensemble energy Eens of all possible structures P from the

ensemble energy of all structures with i..k unpaired Punpaired
i..k , which can also be calculated

using an extension of McCaskill’s algorithm [78, 79]. Note from the following, ED values can

either be derived from the ensemble energies or via the unpaired probabilities Prunpaired(i..k)

of subregions.

EDR(i, k) = Eens
(
Punpaired

i..k

)
− Eens(P)

= −RT ln
(
Z
Punpaired

i..k
/ ZP

)
= −RT ln

(
Prunpaired(i..k)

)
(13)

The EDR term from Eq. 13 is positive by definition (since Punpaired
(i,k) ⊆ P) and thus rep-

resents a penalty in the RNA-RNA interaction context, as smaller energies are considered to

be favorable. Given an RNA-RNA interaction between the closing base pairs (i, j) and (k, l),

where i and k denote the outermost bases of a stretch of RNA R1 that is written in 5′ → 3′

direction, and j and l denote the outermost bases of a stretch of an RNA R2 that is written

in 3′ → 5′ direction, the extended hybridization energy computed by RNAup [78] is given as

follows:

ERNAup(i, j, k, l) = Di..k
j..l + EDR

1
(i, k) + EDR

2
(j, l), (14)

where Di..k
j..l is the duplex energy as calculated by Eq. 9. To get the interaction details for the

ERNAup entry that minimizes Eq. 14, one has to traceback the according hybridization entry

Di..k
j..l , which directly defines the duplex’s boundaries (i, j) and (k, l). This gives rise to an
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O(n4) time and space complexity, which can be reduced to O(n2w2) when using a maximal

interaction length w. Nevertheless, this complexity is too high for genomic screens. For that

reason, IntaRNA [66, 80] was introduced to replace the exhaustive recursions from the pre-

sented approach with a heuristic. Therein, for each possible leftmost interaction base pair only

respective best interaction (and its right end-point) are stored and considered. Thus, the recur-

sion gets similar to the hybrid-only recursion in Eq. 10 but additionally considers ED values.

This reduces the complexity to O(n2) but keeps the predictive power of the accessibility-based

model.

IntaRNA also enforces a seed region as a necessary constraint for two RNAs to be able to

interact. This means, that a stretch of perfectly complementary base pairs, the seed, needs to be

present within the potentially interacting RNAs in order to make a prediction. This constraint is

biologically warranted both for sRNAs [81] and miRNAs [82]. The seed length is usually assumed

to be between six and eight nucleotides. To speed up genome-wide target prediction, tools like

RIsearch2 [70] or RIblast [83] apply suffix-array-based screens to identify seed regions that

are subsequently extended in both directions using an accessibility-based prediction approach.

IntaRNA (version ¿ 2.0) [80] can emulate most hybrid-only and accessibility-based ap-

proaches that have been previously discussed. While IntaRNA and similar approaches can

predict interactions between single hairpin loops (Fig. 3b), they can not be used to predict

interaction patterns forming multiple kissing hairpins (Fig. 5b). An in vivo verified example

of double kissing hairpins is the interaction of the enterobacterial sRNA OxyS pairing with its

target mRNA encoded by the fhlA gene [84]. Furthermore, interactions that would represent a

multi-loop structure within the interacting region (Fig. 5a) cannot be predicted. Such interac-

tions are conceivable for RNAs such as the glucose activated enterobacterial sRNA Spot42 [22],

that could potentially interact with targets using its highly accessible unstructured regions I

and III simultaneously. These aspects highlight that both concatenation-based approaches and

accessibility-based approaches have intrinsic limitations that restrict the extent of interactions

that can be predicted. General joint structure prediction algorithms, which will be discussed

next, attempt to tackle these limitations.

3.3.3 General joint structure approaches

Can Alkan and co-workers have shown that unrestricted prediction of RNA-RNA interactions is

an NP-hard problem [85]. Nevertheless, they were able to identify topological constraints that
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enable efficient prediction schemes that are also satisfied by the following approaches.

Dmitri D. Pervouchine introduced and applied the first intermolecular RNA interaction

search (IRIS) method [86] that can predict general duplex structures incorporating the struc-

tural context of both interacting RNAs. The supplementary material provides further details

on the underlying recursions. IRIS was applied to computationally reconstruct certain known

interactions of prokaryotic RNAs such as OxyS with the fhlA mRNA and several further exam-

ples [86], which form a double kissing hairpin interaction as shown in Fig. 5b. While the joint

structure prediction enables a wide spectrum of predictable interaction patterns, its extreme

runtime complexity of O(n6) renders it inapplicable to genome-wide screens or similar problems.

The previously mentioned approaches predict a single optimal interaction. However, as in

the case of the folding of a single RNA-sequence, the mathematically optimal structure is not

necessarily the biologically functional one. For that reason, the partition function version of

RNA-RNA interaction was independently introduced in [87] and [88], leading to an O(n6) time

and O(n4) space algorithm. This partition function version of RNA-RNA interaction prediction

allows not only to predict sub-optimal interactions and their probabilities, but also allows the

computation of probabilities for intermolecular interactions and melting curves, which can be

used to assess the stability of the interaction.

Due to the high complexity of these methods, several approaches for reducing the require-

ments of these algorithms have been introduced. In [89], the idea of sparsification (see supple-

mentary material) was applied to this problem. In [90] and [91], an approach was introduced

that extends the accessibility-based approaches to multiple binding sites.

As already discussed for intramolecular RNA structure prediction in Sec. 2, one can increase

the prediction quality when considering sets of evolutionarily related sequences instead of solely

considering individual examples. The following section discusses such comparative approaches

for RNA-RNA interaction prediction.

3.4 Comparative RNA-RNA interaction prediction

Currently, one of the standard applications for RNA-RNA interaction prediction algorithms

is whole genome target prediction. This is usually the first step towards characterizing the

function of an RNA regulator that exerts its function by directly base pairing with its target

RNA. Unfortunately, the pool of potential targets can be huge. The bacterium Escherichia

coli for instance has over 4,000 protein coding genes, which must all be considered as putative
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Figure 7: (left) In silico accessibility scenario without consideration of RNA-binding factors
(A, B). Here, region i..j is accessible while i′..j′ is blocked by intramolecular base pairs. (right)
Putative in vivo situation with bound factors A and B. The in silico accessible site i..j is blocked
by A while i′..j′ becomes accessible due to structural reconfiguration upon binding of A and B.

targets. This number is significantly higher in eukaryotes. Due to the fact that an RNA-RNA

duplex can be predicted between most RNA molecules, the magnitude of potential interaction

partners often leads to many false positive predictions and thus represents the central limitation

of RNA target prediction algorithms. Specifically, this means that predictions for real targets

may be lost on the genomic scale due to the noise created by the high abundance of false

positives. Simply put, the lists of putative targets are very long and oftentimes the real targets

are not on the top ranks.

An explanation for false positive predictions is that the fundamental principles used by most

RNA-RNA interaction algorithms generally neglect external factors such as proteins or other

RNAs. Therefore, the system that most algorithms imply is an in vitro system in which only

the two potentially interacting RNAs are present. Clearly this is far from a realistic in vivo

setting in which RNAs are usually densely covered, for example by factors like proteins, RNAs

or small ligands. Hence, regions of the interacting RNAs, may appear accessible within the

thermodynamic model even though they are blocked due to additional factor binding. This

means that sites considered accessible in silico may be inaccessible in vivo or vice versa (see

Fig. 7).

To at least partially resolve this issue, data from more than one source or organism can

be used, which can greatly aid in the reduction of false positive predictions. In fact, it has

been stressed that RNA target predictions should be carried out in a comparative manner if

possible [59]. A selection of homologous input sequences for comparative predictions can be

obtained by using tools such as GLASSgo [92], RNAlien [93] or GotohScan [94]. There

are two major approaches for comparative RNA-RNA interaction prediction. The first one,

as implemented in PetCofold [95, 96] and ripalign [97], uses the same ideas as applied for

comparative structure prediction (see Sec. 2.2). That is, instead of predicting the interaction of

two single sequences, one predicts the interaction for two alignments. This not only assumes a
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conserved interaction site, but also a conserved interaction structure, which is a strong signal.

Furthermore, TargetRNA2 also optionally incorporates a phylogenetic target prediction based

on an assessment of conservation within the regions of the sRNA input [69]. However, as shown

in [98], interaction sites are not necessarily conserved. This implies that the potential of two

RNAs to interact might be conserved without a strictly conserved interaction site, which is not

in agreement with most alignment based assumptions.

For that reason, the second major approach to comparative RNA-RNA interaction prediction

combines individual RNA-RNA interaction predictions without enforcing a strict consensus in

order to obtain a more reliable result, given that the regulation is also conserved throughout

the considered systems. In principle this is like asking several people a question and making a

joined conclusion or decision without closely investigating how each individual reached his or her

answer. Such a joined conclusion is most likely better when compared to the conclusion derived

from the answer of a single person. In the original RNAhybrid publication [59], Rehmsmeier

et al. present a scheme that uses distinct RNAhybrid predictions for homologous miRNAs

from different organisms on orthologous targets of said organisms in order to achieve superior

predictions.

Duplex energies can not be directly used to make a combined prediction, because they

are strongly influenced by the GC-content and dinucleotide frequency of the organism they

are made for. For instance, organisms with higher GC-content will generally produce duplex

predictions with lower energies. Hence, the duplex energies predicted by RNAhybrid need to

be transformed to p-values, which are then comparable. In the following, we will introduce how

p-values can be derived and how p-values from different organisms can be combined to enable

comparative RNA-RNA interaction prediction.

A p-value represents a statistical measure for the quality of a given prediction and, if correctly

estimated, also enables comparability. Following the conclusions from extreme value theory [99],

it is appropriate to regard the results of RNA-RNA interaction predictions as extreme value

distributed. The density function f of the generalized extreme value (GEV) distribution is

introduced and discussed in the supplementary material.

A p-value is the probability that a certain event x or something more extreme (≥ x) is

observed for a specific background model. Given the density function f of the events, a p-

value can be computed by the integral
∫∞
x f(x)dx. The cumulative distribution F for the

GEV distribution (see supplementary material) provides the integral F (x) =
∫ x
−∞ f(x)dx for
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events ≤ x, such that we can compute the p-value by 1− F (x).

Since the significant p-values depend on the right tail of the distribution, its correct esti-

mation via the parameters µ, σ, and ε is central to their quality. An appropriate volume of

background predictions for estimating the parameters of the GEV can be obtained by dinu-

cleotide shuffling sequences that are actually present in the real search space (e.g. putative

target sequences that are present in the investigated genome) and predicting RNA-RNA inter-

actions for these shuffled sequences. It is important to retain the dinucleotide frequency because

the duplex prediction depends on base pair stacking and mononucleotide shuffling would thus

no longer yield random sequences that still appropriately represent the properties of the non-

random system. If target sequences of differing lengths are used, the energy scores need to

be normalized with En = −E/ ln(mn) to prevent inappropriately high abundance of better

predictions for longer sequences.

The negative normalized energy is denoted as En while the unnormalized energy is denoted

as E with m and n being the lengths of the target and the binding RNA respectively [59]. The

parameters for the GEV can then be derived by fitting a GEV to the empiric background’s

energy scores after duplex prediction and if necessary length normalization. A p-value for a

given energy score within the search space can then be inferred from the GEV’s cumulative

distribution function. For whole genome target predictions, it has been shown that the GEV’s

parameters can also be estimated by using all the predictions on real putative target sequences

and fitting the GEV to these [100]. These predictions are clearly not all completely random due

to functionally correct predictions presumably being present. Yet, the majority of predicted

duplexes can be assumed as not functionally relevant in vivo. While the p-value quality might

be inferior compared to a shuffled background model, this strategy leads to strongly reduced

runtimes, which is important when performing predictions on a genomic scale.

The individual p-values (pi) for an orthologous putative target can then be combined to a

joint p-value (pjoint) by selecting the biggest individual p-value and raising it to the power of

the amount of participating organisms (k) (Eq. 15).

pjoint = (max{p1, ..., pk})k (15)

This, however, assumes complete statistical autonomy of the individual p-values, which is

not the case for the given biological scenario. Here, the investigated species are assumed to be
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descended from a common ancestor, which intuitively implies a certain degree of mutual depen-

dence. Consequently, smaller evolutionary distance between organisms leads to higher statistical

dependence of individual results. Hence, the effective number of organisms or sequences (keff)

needs to be assessed. keff lies between 1 and the amount of participating organisms (k).

keff can be estimated by shuffling the homologous sRNA or miRNA sequences while retaining

the original dinucleotide frequencies followed by duplex predictions for homologous targets. This

supplies a background set of optimal duplexes for each participating homologous target from

which extreme value distribution parameters can be assessed. With these parameters, the

duplex energies can be transformed into p-values. These p-values are then joined following

Eq. 15 using several consecutive k′ values instead of one single k. k′ can lie between 1 and k.

Finally, the k′ yielding the most uniform distribution of joint p-values is set as keff. A small keff

implies high dependence between the putative target sequences. Specifically, keff=1 would mean

that no additional information could be gained by incorporation of predictions for homologous

sequences. The method for joining the p-values (Eq. 15) can be regarded as very conservative

due the fact that it always selects the highest/worst individual p-value for p-value combination.

In other words, this means that a putative target needs to return a good prediction for each

organism participating in the comparative analysis to be considered as true target. This most

likely leads to a lowered number of false positives but may also cause many false negatives

depending on the set of organisms that is used.

The comparative prediction algorithm for sRNA targets CopraRNA [100, 101], which was

developed to make whole genome target predictions, also uses the concept of transforming energy

scores to p-values. CopraRNA, unlike other comparative methods that enforce a consensus

interaction site within the homologous putative targets [95], is very unrestrictive. It solely

enforces an interaction (as predicted by IntaRNA) to be present anywhere in the putative

target sequence without demanding a consistent duplex pattern throughout the homologs. Also,

homologs of a putative target need to be present in at least half of the participating organisms

to ensure a sensible degree of conservation. Missing single organism p-values are sampled from

a multivariate normal distribution, which is based on clusters of homologous genes that contain

a homolog from every organism participating in the comparative analysis.

The first step in CopraRNA is to compute individual whole genome target predictions with

the homologous sRNAs for each organism participating in the analysis. The energy scores for

each putative target are computed by IntaRNA. Following the logic that most duplexes pre-
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dicted by IntaRNA are likely to be non-functional (i.e. they represent a random background),

the whole genome prediction can be used to estimate extreme value distribution parameters for

each of the homologous sRNAs. Based on these parameters, the energy scores can be trans-

formed to p-values. The next step, like in RNAhybrid, is the combination of p-values for

homologous putative targets. CopraRNA employs Hartung’s method for the combination of

dependent p-values [102] to calculate a joined p-value for a cluster of homologous genes with

size K. For this, the initial p-values need to be transformed to probits (ti), which is done based

on the inverse of the cumulative distribution function. The combination of the probits tjoint is

computed following Eq. 16.

tjoint =

∑K
i=1 λiti√

(1− ρ)
∑K

i=1 λ
2
i + ρ(

∑K
i=1 λi)

2

(16)

The result of Eq. 16, tjoint, can then be transformed back to a p-value. Hartung’s method

includes both a correction for the dependence in the data (ρ) and a weighting (λi) for each

individual single p-value. The rationale for the dependence correction is the same as described

previously for the comparative approach in RNAhybrid and ρ is assessed in a similar manner as

keff. ρ can adopt values between 0 and 1 and higher values for ρ indicate higher dependence in the

data. The optimal ρ is the ρ that yields the most uniform distribution of joint CopraRNA p-

values. CopraRNA uses the organisms’ 16S rDNA to construct a phylogenetic tree. Organisms

that are very similar need to have a lower individual weight λi when compared to an organism

that is evolutionarily very distant. The weights are calculated by a recursive scheme that

computes the relative weights of an organism in all subtrees and then multiplies these. The

weights are subsequently subjected to a root function to reduce overly strong effects of outlier

organisms.

CopraRNA was originally benchmarked on a set of 101 experimentally verified enterobac-

terial sRNA-target interactions and significantly outperformed its competitor algorithms while

also rivaling experimental target predictions derived from microarray experiments. An inde-

pendent comprehensive benchmark has since confirmed this finding [103]. Furthermore, Co-

praRNA has been successfully applied in non-enterobacterial systems [104, 105, 106, 107, 108]

and it has been shown that it can benefit from the incorporation of Hfq binding data [109]. As

a concept, CopraRNA may also be promising in a eukaryotic setting but has not yet been

implemented to accommodate for such a context. Due to CopraRNA using IntaRNA as a
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background RNA-RNA interaction model, it partly inherits IntaRNA’s limitations. Yet, the

general concept of phylogeny-guided p-value combination is detached from IntaRNA and al-

lows the application of other interaction prediction algorithms. For the future, this means that

CopraRNA can benefit from advances in single organism target prediction.

4 Outlook

The RNA structure and RNA-RNA interaction prediction approaches that have been discussed

here are typically used either via according webservers or command-line interfaces of local in-

stallations. In order to enhance reproducibility and to accommodate for large-scale application,

pipeline and workflow systems like Galaxy [110, 111] and bioconda [112] have been developed.

Recently, the ’RNA workbench’ extension of Galaxy was published [113], which features many

of the approaches outlined here. This enables their high-throughput application in sophisticated

(partially pre-defined) workflows for non-expert scientists [114].

All algorithms discussed here are tailored for linear RNA molecules. However, circular

non-coding RNAs also exists and have been reported in e.g. eukaryotic cells [115, 116] and

archaea [117]. To tackle this new class of ncRNAs, some of the sketched approaches have been

appropriately adapted [118, 119].

Overall, a lot of prokaryotic RNA research has been intensely focusing on the one-by-one

functional classification of newly identified RNA based regulators and many such projects are

still ongoing. One of the central pillars in most of these studies are RNA structure and RNA-

RNA interaction elucidation aided by the computational tools that have been mentioned in

this review. However, more recently transcriptome wide RNA interactomics data has been pro-

duced [120, 121, 122, 123, 25, 26], which can be expected to strongly shift interest towards large

scale projects. The opportunities and information within the newly acquired data might be able

to answer long standing questions in the predictive community and allow for the development

of more sophisticated data driven algorithms.
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and effective prediction of microRNA/target duplexes. RNA, 10(10):1507–17, 2004.

[PubMed:15383676] [PubMed Central:PMC1370637] [doi:10.1261/rna.5248604].

[60] Hao Gong, Gia-Phong Vu, Yong Bai, Elton Chan, Ruobin Wu, Edward Yang, Feny-

ong Liu, and Sangwei Lu. A salmonella small non-coding RNA facilitates bacterial in-

vasion and intracellular replication by modulating the expression of virulence factors.

PLoS Pathog, 7(9):e1002120, 2011. [PubMed:21949647] [PubMed Central:PMC3174252]

[doi:10.1371/journal.ppat.1002120].

[61] Kai Papenfort, Yan Sun, Masatoshi Miyakoshi, Carin K. Vanderpool, and Jorg Vogel.

Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose home-

ostasis. Cell, 153(2):426–37, 2013. [PubMed:23582330] [PubMed Central:PMC4151517]

[doi:10.1016/j.cell.2013.03.003].

[62] Hakim Tafer and Ivo L. Hofacker. RNAplex: a fast tool for RNA-RNA

interaction search. Bioinformatics, 24(22):2657–63, 2008. [PubMed:18434344]

[doi:10.1093/bioinformatics/btn193].

[63] Anne Wenzel, Erdinc Akbasli, and Jan Gorodkin. RIsearch: fast RNA-RNA

interaction search using a simplified nearest-neighbor energy model. Bioinfor-

matics, 28(21):2738–46, 2012. [PubMed:22923300] [PubMed Central:PMC3476332]

[doi:10.1093/bioinformatics/bts519].

31

http://www.ncbi.nlm.nih.gov/pubmed/2315319
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC53667
http://www.ncbi.nlm.nih.gov/pubmed/16717284
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464411
http://dx.doi.org/10.1093/nar/gkl356
http://www.ncbi.nlm.nih.gov/pubmed/7265238
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://www.ncbi.nlm.nih.gov/pubmed/15383676
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370637
http://dx.doi.org/10.1261/rna.5248604
http://www.ncbi.nlm.nih.gov/pubmed/21949647
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174252
http://dx.doi.org/10.1371/journal.ppat.1002120
http://www.ncbi.nlm.nih.gov/pubmed/23582330
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151517
http://dx.doi.org/10.1016/j.cell.2013.03.003
http://www.ncbi.nlm.nih.gov/pubmed/18434344
http://dx.doi.org/10.1093/bioinformatics/btn193
http://www.ncbi.nlm.nih.gov/pubmed/22923300
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476332
http://dx.doi.org/10.1093/bioinformatics/bts519


[64] D. H. Mathews, M. E. Burkard, S. M. Freier, J. R. Wyatt, and D. H. Turner. Pre-

dicting oligonucleotide affinity to nucleic acid targets. RNA, 5(11):1458–69, 1999.

[PubMed:10580474] [PubMed Central:PMC1369867].

[65] T. D. Brock, K. M. Brock, R. T. Belly, and R. L. Weiss. Sulfolobus: a new genus of sulfur-

oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol, 84(1):54–68,

1972. [PubMed:4559703] [doi:10.1007/BF00408082].

[66] Anke Busch, Andreas S. Richter, and Rolf Backofen. IntaRNA: efficient prediction of

bacterial sRNA targets incorporating target site accessibility and seed regions. Bioin-

formatics, 24(24):2849–56, 2008. [PubMed:18940824] [PubMed Central:PMC2639303]

[doi:10.1093/bioinformatics/btn544].

[67] Hakim Tafer, Fabian Amman, Florian Eggenhofer, Peter F. Stadler, and Ivo L. Ho-

facker. Fast accessibility-based prediction of RNA-RNA interactions. Bioinformatics,

27(14):1934, 2011. [PubMed:21593134] [doi:10.1093/bioinformatics/btr281].

[68] Florian Eggenhofer, Hakim Tafer, Peter F. Stadler, and Ivo L. Hofacker. RNApredator:

fast accessibility-based prediction of sRNA targets. Nucleic Acids Research, 39:W149,

2011. [PubMed:21672960] [PubMed Central:PMC3125805] [doi:10.1093/nar/gkr467].

[69] Mary Beth Kery, Monica Feldman, Jonathan Livny, and Brian Tjaden. Tar-

getRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res,

42(Web Server issue):W124–9, 2014. [PubMed:24753424] [PubMed Central:PMC4086111]

[doi:10.1093/nar/gku317].

[70] Ferhat Alkan, Anne Wenzel, Oana Palasca, Peter Kerpedjiev, AndersFrost Rude-

beck, Peter F. Stadler, Ivo L. Hofacker, and Jan Gorodkin. RIsearch2: suffix array-

based large-scale prediction of RNA-RNA interactions and siRNA off-targets. Nucleic

Acids Research, 45(8):e60, 2017. [PubMed:28108657] [PubMed Central:PMC5416843]

[doi:10.1093/nar/gkw1325].

[71] Michael Zuker. Mfold web server for nucleic acid folding and hybridization predic-

tion. Nucleic Acids Research, 31(13):3406, 2003. [PubMed:12824337] [PubMed Cen-

tral:PMC169194] [doi:10.1093/nar/gkg595].

32

http://www.ncbi.nlm.nih.gov/pubmed/10580474
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1369867
http://www.ncbi.nlm.nih.gov/pubmed/4559703
http://dx.doi.org/10.1007/BF00408082
http://www.ncbi.nlm.nih.gov/pubmed/18940824
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639303
http://dx.doi.org/10.1093/bioinformatics/btn544
http://www.ncbi.nlm.nih.gov/pubmed/21593134
http://dx.doi.org/10.1093/bioinformatics/btr281
http://www.ncbi.nlm.nih.gov/pubmed/21672960
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125805
http://dx.doi.org/10.1093/nar/gkr467
http://www.ncbi.nlm.nih.gov/pubmed/24753424
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086111
http://dx.doi.org/10.1093/nar/gku317
http://www.ncbi.nlm.nih.gov/pubmed/28108657
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416843
http://dx.doi.org/10.1093/nar/gkw1325
http://www.ncbi.nlm.nih.gov/pubmed/12824337
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC169194
http://dx.doi.org/10.1093/nar/gkg595


[72] Mirela Andronescu, Zhi Chuan Zhang, and Anne Condon. Secondary structure prediction

of interacting RNA molecules. J Mol Biol, 345(5):987–1001, 2005. [PubMed:15644199]

[doi:10.1016/j.jmb.2004.10.082].

[73] Stephan H. Bernhart, Hakim Tafer, Ulrike Muckstein, Christoph Flamm, Peter F.

Stadler, and Ivo L. Hofacker. Partition function and base pairing probabilities of RNA

heterodimers. Algorithms Mol Biol, 1(1):3, 2006. [PubMed:16722605] [PubMed Cen-

tral:PMC1459172] [doi:10.1186/1748-7188-1-3].

[74] Robert M. Dirks, Justin S. Bois, Joseph M. Schaeffer, Erik Winfree, and Niles A. Pierce.

Thermodynamic analysis of interacting nucleic acid strands. SIAM Review, 49(1):65–88,

2007. [doi:10.1137/060651100].

[75] Kung-Yao Chang and Ignacio Tinoco. The structure of an RNA ”kissing” hairpin complex

of the HIV TAR hairpin loop and its complement. Journal of Molecular Biology, 269(1):52

– 66, 1997. [PubMed:9193000] [doi:10.1006/jmbi.1997.1021].

[76] Nilshad Salim, Rajan Lamichhane, Rui Zhao, Tuhina Banerjee, Jane Philip, David Rueda,

and AndrewL. Feig. Thermodynamic and kinetic analysis of an RNA kissing interaction

and its resolution into an extended duplex. Biophysical Journal, 102(5):1097 – 1107, 2012.

[PubMed:22404932] [doi:10.1016/j.bpj.2011.12.052].

[77] Branislav Vecerek, Isabella Moll, Taras Afonyushkin, Vladimir Kaberdin, and Udo Blasi.

Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron

metabolism of Escherichia coli. Mol Microbiol, 50(3):897–909, 2003. [PubMed:14617150]

[doi:10.1046/j.1365-2958.2003.03727.x].

[78] Ulrike Mückstein, Hakim Tafer, Jörg Hackermüller, Stephan H. Bernhart, Peter F.

Stadler, and Ivo L. Hofacker. Thermodynamics of RNA-RNA binding. Bioinformatics,

22(10):1177–82, 2006. [doi:10.1093/bioinformatics/btl024].

[79] Stephan H. Bernhart, Ulrike Mückstein, and Ivo L. Hofacker. RNA accessibility in cu-

bic time. Algorithms for Molecular Biology, 6(1):3, 2011. [PubMed:21388531] [PubMed

Central:PMC3063221] [doi:10.1186/1748-7188-6-3].

33

http://www.ncbi.nlm.nih.gov/pubmed/15644199
http://dx.doi.org/10.1016/j.jmb.2004.10.082
http://www.ncbi.nlm.nih.gov/pubmed/16722605
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459172
http://dx.doi.org/10.1186/1748-7188-1-3
http://dx.doi.org/10.1137/060651100
http://www.ncbi.nlm.nih.gov/pubmed/9193000
http://dx.doi.org/10.1006/jmbi.1997.1021
http://www.ncbi.nlm.nih.gov/pubmed/22404932
http://dx.doi.org/10.1016/j.bpj.2011.12.052
http://www.ncbi.nlm.nih.gov/pubmed/14617150
http://dx.doi.org/10.1046/j.1365-2958.2003.03727.x
http://dx.doi.org/10.1093/bioinformatics/btl024
http://www.ncbi.nlm.nih.gov/pubmed/21388531
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063221
http://dx.doi.org/10.1186/1748-7188-6-3


[80] Martin Mann, Patrick R. Wright, and Rolf Backofen. IntaRNA 2.0: enhanced and cus-

tomizable prediction of RNA-RNA interactions. Nucleic Acids Res, 45(W1):W435–W439,

2017. [PubMed:28472523] [doi:10.1093/nar/gkx279].

[81] Roberto Balbont́ın, Francesca Fiorini, Nara Figueroa-Bossi, Josep Casadesús, and Lionello
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