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Abstract

Motivation: Hi-C technology provides insights into the 3D organization of the chromatin, and the single-cell Hi-C
method enables researchers to gain knowledge about the chromatin state in individual cell levels. Single-cell Hi-C
interaction matrices are high dimensional and very sparse. To cluster thousands of single-cell Hi-C interaction matri-
ces, they are flattened and compiled into one matrix. Depending on the resolution, this matrix can have a few million
or even billions of features; therefore, computations can be memory intensive. We present a single-cell Hi-C cluster-
ing approach using an approximate nearest neighbors method based on locality-sensitive hashing to reduce the
dimensions and the computational resources.

Results: The presented method can process a 10 kb single-cell Hi-C dataset with 2600 cells and needs 40 GB of mem-
ory, while competitive approaches are not computable even with 1 TB of memory. It can be shown that the differenti-
ation of the cells by their chromatin folding properties and, therefore, the quality of the clustering of single-cell Hi-C
data is advantageous compared to competitive algorithms.

Availability and implementation: The presented clustering algorithm is part of the scHiCExplorer, is available on
Github https://github.com/joachimwolff/scHiCExplorer, and as a conda package via the bioconda channel. The ap-
proximate nearest neighbors implementation is available via https://github.com/joachimwolff/sparse-neighbors-
search and as a conda package via the bioconda channel.

Contact: wolffj@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The chromosome conformation capture technique 3C (Dekker et al.,
2002) and its successors 4C (Simonis et al., 2006; Zhao et al., 2006),
5C (Dostie et al., 2006) and Hi-C (Lieberman-Aiden et al., 2009)
have given insights into the organization of the 3D structure of the
DNA and its impact on gene regulation over the last few years.
Direct chromatin interactions can provide evidence, for example, for
enhancer-promoter interactions and their contribution to the regula-
tion process. Several reviews have been published in recent years,
giving a broad overview of different Hi-C techniques and their abil-
ities: Kempfer and Pombo (2020), McCord et al. (2020) and Bonev
and Cavalli (2016). Single-cell Hi-C (Flyamer et al., 2017; Gassler
et al., 2017; Nagano et al., 2013; 2017; Ramani et al., 2017; Stevens
et al., 2017) extends Hi-C to individual cells and provides insights
into the processes of cell differentiation and division with respect to
the dynamics of chromosome conformation. While Hi-C data ana-
lysis demands high computational resources, single-cell Hi-C
increases this demand further due to the need to not only process

one interaction matrix but potentially several thousands of them.
Cell clustering, based on the interaction matrices to differentiate by
the chromatin folding properties, is one of the most important parts
of single-cell Hi-C data analysis to gain information about similarity
and, therefore, the linkage between different cells. Hi-C interaction
matrices are two-dimensional, representing the contacts between
each pair of genomic positions. The interaction matrices do not rep-
resent a per base-pair interaction between loci but a binned one; i.e.
multiple continuous base-pairs are counted as one interaction. This
is referred to as a resolution, the fewer base-pairs per bin, the higher
the resolution. The presented approach flattens the interaction
matrices of a cell to a single dimension. It creates a new matrix
where each row represents one cell to use classical clustering algo-
rithms, such as k-means or spectral clustering. The downside of this
approach is a high feature number; for example, with 1 megabase
(Mb) resolution matrices and the mice mm9 reference genome
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.26), 7.6 mil-
lion features are present while using 10 kilobases (kb) matrices the ma-
trix has 76 billion features.
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Dimension reduction is a well-known approach to improve the
clustering quality (Deegalla and Boström, 2007; DeTomaso et al.,
2019; Lee et al., 2007). Computing a k-nearest neighbors graph, rep-
resented as a matrix, is one of them. A k-nearest neighbors graph
connects nodes with k other nodes, and the edge weights represent
the similarity between two nodes. In this work, each cell is consid-
ered a node, and the edge weight is the similarity between the two
cells. With a k-nearest neighbors graph, the number of features is
reduced to the number of cells. The exact k-nearest neighbor’s graph
algorithm has a run time of Oððn� f Þ2Þ, with n the number of cells
and f the number of features. As long as f is reasonably small, the
computation time will mainly depend on the number of cells n, but
as the number of features rises to the millions, the compute time
becomes more dependent on the features rather than the number of
cells. Moreover, the higher the features, the less meaningful similar-
ity between two cells is. Both phenomenons are known in the con-
text of the curse of dimensionality (Aggarwal et al., 2001; Bellman,
2015; Beyer et al., 1999; Chen, 2009; Hammer, 1962; Hinneburg
et al., 2000; Houle et al., 2010). For many k-nearest neighbor
graphs, distance metrics such as the Euclidean distance or similar
metrics are used to compute the relation of two instances. In Hi-C,
using the Euclidean distance or similar metrics is, in our opinion,
problematic. Consider the following: one cell has 0 interactions at a
specific location, a second cell has 100 and a third cell 200. Using
the Euclidean distance, the first and third cells are equidistant from
the second cell. However, in our opinion, the results must be inter-
preted so that the second and third cells have recorded interactions
and are therefore closer to each other than a cell without any interac-
tions. To generalize this argument, Hi-C matrices with similar struc-
tures like A/B compartments, TADs or loops should, in our opinion,
considered as more similar to each other, independent of the inter-
action intensity. Metrics like the Euclidean distance cannot guaran-
tee this property; however, due to Hi-C matrices’ very sparse nature,
the Jaccard index can provide this. Similar observations concerning
the sparsity of the data and the problematical usage of the Euclidean
distance have been made in single-cell RNA-seq.

In this article, we propose, therefore, an algorithm to overcome
these limitations. A k-nearest neighbor graph is computed to reduce
the high number of features with respect to the number of cells.
Instead of the problematic Euclidean distance, a measurement with a
binary interpretation of the contacts, the Jaccard index, is used.
Concerning the expected increasing read coverage and cell number,
the quadratic run time to construct the k-nearest neighbor graph is
replaced by a linear run time solution. The linearity is achieved by
exchanging the Jaccard index by its approximation, MinHash
(Broder, 1997), a locality-sensitive hash function technique.

2 Materials and methods

The interaction matrices of cells need to be compiled into one inter-
action matrix to cluster single-cell Hi-C data. Each individual single-
cell matrix’s dimensions depend on the used reference genome and
the resolution of the Hi-C data. To compile the individual single-cell
matrices with ðn� nÞ dimensions to one matrix without losing any
information, each interaction matrix is flattened to 1� ðn� nÞ
dimensions:
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Figure 1(A) provides an abstract graphical description.
This new compiled single-cell Hi-C matrix can be used to apply

well-known clustering algorithms like k-means or spectral clustering
directly. However, research on the curse of dimensionality shows

that the more features are available, the less meaningful a similarity
is (Aggarwal et al., 2001; Beyer et al., 1999; Hinneburg et al., 2000).
Our approach reduces the number of features before a clustering al-
gorithm is applied. For this, we compute a k-nearest neighbors graph
using the approximation of the Jaccard index, MinHash, as a simi-
larity measure. Subsequently, a principal component analysis (PCA)
and a UMAP embedding (McInnes et al., 2020) are used to reduce
the dimensions of the k-nearest neighbor’s graph to low dimensional
space.

2.1 Jaccard index
The Jaccard index of two cells is given by their sets A, B of non-zero
feature ids. A non-zero feature id is the feature index position of a
feature which cell has at its index at least one recorded Hi-C
interaction.

JðA;BÞ ¼ jA \ Bj
jA [ Bj (3)

Based on the Jaccard index, the similarity between two cells in
terms of how many features they share can be used to compute a k-
nearest neighbors graph where the edge weight is the similarity.
However, the computation of a k-nearest neighbors graph is in
Oðn2Þ. Its approximation replaces the Jaccard index with MinHash
(Broder, 1997) to compute in linear time.

2.2 MinHash
Cells which share features are more likely to be similar to each other
compared to cells with less common features. MinHash uses this
fact; for each cell, only a set of features’ id A of non-zero features
(non-zero Hi-C interactions) are considered (similar to Heyne et al.,
2012), and the hash value per MinHash function h is computed as
the argmin over all non-zero features a 2 A of a hash function f. A
set of MinHash functions H and hash functions F are used; h 2 H
and f 2 F. The similarity between two cells is computed by counting
the number of collisions overall MinHash functions.

hðAÞ ¼ argmina2Af ðaÞ (4)

Broder shows that MinHash is an unbiased estimator of the
Jaccard index:

PðhðAÞ ¼ hðBÞÞ ¼ ðjA \ BjÞ=ðjA [ BjÞ ¼ JðA;BÞ (5)

2.3 Clustering
Multiple options are available to process the Hi-C contacts to com-
pute the k-nearest neighbor’s graph with MinHash. The first option
uses inter- and intra-chromosomal contacts; the second option only
intra-chromosomal contacts. The first option has the benefit of con-
sidering potential important long-range contacts; however, distin-
guishing them from noise is only possible with a high read coverage.
It might be, therefore, beneficial for the cluster results to consider
only intra-chromosomal contacts. The parameters used to compute
the k-nearest neighbor’s graph are the number of employed hash
functions and, therefore, how many collisions occur. The number k
of neighbors to be computed and if the additional Euclidean distance
based on the pre-selection of candidates should be considered. The
number of features of the k-nearest neighbor graph is still considered
as high dimensional. A principal component analysis followed by a
UMAP embedding is applied before the clustering to reduce the
number of dimensions further. For the clustering algorithms, we use
the algorithms offered by scikit-learn (Pedregosa et al., 2011) and
limit ourselves to the clustering algorithms that support a user-speci-
fied fixed number of clusters. These are K-means, spectral clustering,
birch and agglomerative clustering.

2.4 Implementation
2.4.1 Inverse index

Fast computation of a k-nearest neighbors graph requires a linear
query time and a significant reduction of the number of features to
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overcome the curse of dimensionality. A regular index stores the
computed hash values of a hash function per cell, leading to Oðn�
n� hÞ 2 Oðn2Þ to create the k-nearest neighbor graph. In order to
reduce the construction to linear time, an inverse index is used. Per
hash function, the hash values with the corresponding cell id are
stored. To construct a k-nearest neighbors graph, for each cell, the
hash functions have to be checked for collisions which is per hash
function in O(1) and for all cells Oðn� hÞ 2 OðnÞ.

2.4.2 Fitting

The MinHash values of all hash functions together are called the signature
of the cell; these signatures are inserted into the inverse index to achieve a
fast query time. The run time of the fitting depends on the number of cells
n, the number of hash functions h and the number of non-zero features
per cell f and is given as Oðn� h� f Þ 2 OðnÞ. For an example of the fit-
ting and the inverse index structure, refer to Figure 2.

2.4.3 Collision based approximate nearest neighbors graph

The number of hash collisions between two cells gives an estimate of
their similarity. The signature of a cell is used to search for hash col-
lisions in the inverse index to compute the estimate. A hash collision
between two cells is defined as the same hash value for the same
hash function. The more collisions two cells have, the more similar
they are. The query time of this approach depends only on the num-
ber of used hash functions and, if not stored in memory from the fit-
ting phase, the computation of signatures. The effect of sorting all

occurrences of collisions and the query time of the used data struc-
tures of the inverse index on the run time should also be considered,
although it is negligible from the user’s point of view.

2.4.4 Technical implementation

For this implementation, we use the hash function ‘32 bit mix func-
tion’ designed by Thomas Wang (https://gist.github.com/badboy/
6267743#32-bit-mix-functions) published in 1997/2007. The hash
function is always the same; however, for each hash function f 2 F
the seed differs. The index values for a 10 kb resolution matrix ex-
ceed the data range of 32-bit by 5 bit. The index values are modified
via modulo operation to fit the 32-bit range to avoid a 64-bit hash-
ing. The sparsity of the data is advantageous and results in more
than 98% unique indices after the modulo operation. To compute
the approximate nearest neighbors with MinHash, a highly opti-
mized library, ‘sparse-neighbors-search’, was implemented in Cþþ
with SSE and OpenMP support. To ensure user accessibility, the
Cþþ library is embedded in a Python 3.6, 3.7 and 3.8 interface. The
MinHash approximation of a k-nearest neighbors graph is part of
the scHiCExplorer (Wolff et al., 2020a); a software to process, ana-
lyze and visualize single-cell Hi-C data.

3 Results

The algorithm is tested with differing properties and settings to
evaluate the clustering abilities of the proposed algorithm. The clus-
tering is tested on the matrices at different levels of processing.
Compared here is the ability to detect the different cell cycle phases
(Nagano et al., 2017) respectively the cell types (Ramani et al.,
2017) based on the low dimensional embedding of the Hi-C cells.
First, the MinHash approach and its differentiation ability is dis-
cussed. Second, the best settings for the algorithm are investigated,
and third, the proposed solution is compared to the competing algo-
rithm scHiCluster from Zhou et al. (2019); also a clustering based
on a principal component analysis on the raw matrices, and a k-
nearest neighbor graph computed with scikit-learns implementation
are considered.

3.1 Embedding and differentiability of MinHash
The Jaccard index-based approach with its approximation via
MinHash, combined with a consecutively PCA and UMAP

Fig. 1. (A) Pre-processing and fitting: All n� n Hi-C matrices of the m cells are flattened to one single-cell Hi-C (scHi-C) matrix with m� ðn� nÞ dimensions. For each row a

signature is computed and inserted into the inverse index. (B) K-nearest neighbors computation: Per signature, the hash function hi is checked if the hash value at signature

index i is present in the inverse index. If such a collision is detected, the associated cell ids are stored. After all hash functions are checked, the number of occurrences for the

cell_ids is counted and sorted. This order gives the nearest neighbor’s relationship

Fig. 2. An example signature and inverse index: The signature is created for four

cells and three hash functions. The inverse index stores the computed hash value and

the id of the cell for each hash function. For example, for the second cell < 4; 7; 2 >

the first hash function Hash function 1 stores the computed hash value 4 and associ-

ates the id of the cell: Hash function 1 :< 2 : ð1Þ; 4 : ð2;3Þ; 5 : ð4Þ >. The same hash

function and hash value occur for cell number three again; this is a collision of hash

function 1 for cell 2 and cell 3
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embedding for a further dimension reduction, provides good differ-
entiability of the test data. The 1 MB cell cycle data from Nagano
et al. (2017) shown in Figure 3a is reduced to five UMAP compo-
nents and visualized are the first two dimensions. The visualization
with the first two UMAP dimensions is not indicating a good cluster-
ing result (Fig. 3a), but an embedding with the same parameters, but
reducing to two UMAP dimensions instead of five, improves this
(Fig. 3b). However, the clustering results of this approach are not as
good as for the five UMAP dimensions (Supplementary Tables S1
versus S2). Early-S (purple), late-S/G2 (green) and G1 (red) cell
cycles are differentiated, and post-M (cyan) and pre-M (yellow) are
projected to a similar location; an overlap of the different cell cycle
phases is given. Good clustering results are confirmed by validating
the detect clusters by Nagano et al. (2017) provided cell cycle labels
(Supplementary Table S1). A batch effect is slightly visible
(Supplementary Fig. S1a) but is not dominating. The 1 MB cell type
data from Ramani et al. (2017) are displayed in Figure 4a and b.
The four cell lines are provided from two batches, and a strong batch
effect is visible (Supplementary Fig. S2a). The embedding of the
ML1 batch with HeLa and HAP1 cells show a clear differentiation
of the two cells (Fig. 4a), and the ML3 batch with K562 and
GM12878 provides a good differentiation too (Fig. 4b). However,
the ML3 embedding has some minor issues: K562 cells are projected
to the top to the area of GM12878 cells. It requires further investiga-
tion if this is an error by the embedding approach or if, as the spatial
separation indicates, further subtypes are present within the dataset.
Ramani et al. (2017) provides only the cell type labels, but it is not

unlikely that the cell type data itself contains cells with a different

cell cycle phase.

3.2 Jaccard versus Euclidean distance
The proposed algorithm’s primary aim is to reduce the high dimensional
space of the single-cell Hi-C data from millions and billions of dimensions

to a lower-dimensional space to improve the clustering abilities. This

involves several dimension reduction steps: The reduction of the single-cell
Hi-C interaction data via a k-nearest neighbors graph to (cell � cell)
dimensions. The two measures to compute the k-nearest neighbor graph,

namely the approximate Jaccard index and Euclidean distance, have a dif-

ferent impact on the embedding results. On the 1275 cells from Nagano
et al. (2017) with a 1Mb resolution and the five pre-classified cell cycle

phases (G1, early-S, late-S/G2, post-M and pre-M), the approximate

Jaccard index can create a distinguishable clustering, while the Euclidean

based approach falls behind in terms of accuracy. For example, for an ac-
curacy level of at least 70% of uniquely classified cells of a cell phase per

cluster: the Jaccard index-based approach detects 73% of G1, 61% of

early-S, 87% of late-S/G2, 94% of post-M and 91% of pre-M; while for

the Euclidean distance only 37% of G1, 35% of early-S and 32% of late-
S/G2 and both post-M and pre-M are not detected (Supplementary

Tables S1 and S3). The Euclidean distance’s performance can be explained

by its behavior in high dimensions (Aggarwal et al., 2001; Beyer et al.,
1999; Hinneburg et al., 2000). Moreover, the Euclidean distance does not

differ between no-contacts and contacts, whereas the Jaccard index, on

the other hand, exactly makes this distinction and is, therefore, more

suitable.

3.3 Embedding via UMAP with and without prior PCA
The principal component analysis reduces the matrix dimensions from

(cells � cells) to a user-defined number of components (PC)

(cells� jPCj). The problem of not using a principal component ana-
lysis is present for the pre-M and post-M cells: The post-M cells are

mixed with pre-M cells (cluster 10), and the pre-M cells vanish in clus-

ter 4, which is dominated by late-S/G2 cells (Supplementary Table
S4). Third, using UMAP in combination with the metric ’Canberra’

(Lance and Williams, 1966) reduces the number of dimensions to a

user-defined number of UMAP components (UMAP_COMP) with

jPCj > jUMAPCOMPj: (cells� jUMAPCOMPj). This creates better clus-
tering results in comparison to the dataset that was only using princi-

pal component analysis (Supplementary Tables S1 versus S4).

Performing no principal component analysis followed by UMAP has a

worse detection rate and does not recognize any pre-M and post-M
cells (Supplementary Table S5). The situation is identical if the cluster-

ing is directly applied to the approximate k-nearest neighbor’s graph

without an additional PCA and UMAP embedding (Supplementary

Table S6).

3.4 Other parameters properties
The ideal parameter setting to compute the approximate k-nearest

neighbor graph is investigated; it is beneficial to initially use only
intra-chromosomal contacts (Supplementary Table S7), as well as

more hash functions to contribute to a better differentiation

(Supplementary Tables S8 and S9). In this context, the density of a

matrix is also essential. For example, the density distribution of the
cells in a 30 Mb context around the main diagonal of a 1 kb matrix

(from Gassler et al., 2017) with a density of 0.000002 is too sparse

to create a substantial amount of hash collisions, independent of the

number of hash functions used (Supplementary Figs S5–S13). It is
beneficial to compute a full k-nearest neighbor graph and not, e.g. a

100-nearest neighbor or a 1000-nearest neighbors graph

(Supplementary Tables S10 and S11). Last, the method to cluster the

data is investigated; spectral clustering is compared to the other
tested approaches, the algorithm with the best precision

(Supplementary Tables S1 and 12–S17).

Fig. 3. Embedding into a two dimensional space based on cell cycle data from

Nagano et al. (2017). Computed on 1275 cell cycle phase cells with their cell cycle

phase label. (a and b) are computed with the proposed algorithm. (a) is with 5

UMAP dimensions and plotted with the first two, (b) uses the same parameters but

with two UMAP dimensions. The second approach is better for a visualization, how-

ever, Supplementary Tables S1 and S2 clearly indicate the clustering result with the

first approach is better. (c) shows the first two principal components of Zhou’s

scHiCluster
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3.5 Comparison with competing approaches
The differentiation ability of the proposed algorithm is, compared to
Zhou’s scHiCluster, on a more advanced level. Considering a unique
level of 70% of a cell phase per cluster, Zhou’s scHiCluster detects
53% of G1 (versus 73%), 50% of early-S (versus 61%), 54% late-S/
G2 (versus 87%) and is not able to detect any of the pre-M and
post-M cells. Considering a uniqueness level of 80%, Zhou’s
scHiCluster detects more G1 cells (53% versus 51%) but less early-S
(50% versus 60%), late-S/G2 (54% versus 87%), post-M (0% ver-
sus 94%) and pre-M (0% versus 91%); consider Supplementary
Tables S1 and S18. For both embedding approaches, a distorted rela-
tion of the number of cells from each cell phase could be problemat-
ic. Three phases are present 1235 out of 1275 times (G1 300, early-S
573, late-S/G2 362), while post-M is present 17 and pre-M 23 times.

Besides the clusters with a high amount of a unique cell phase,
the clustering result shows that mixed clusters do not have a random
structure but represent the cell cycle’s dynamic process. Cluster 5 of
the proposed algorithm contains 11% of early-S and 88% late-S
cells; Cluster 2, 6, 8 and 10 a mix of G1 and early-S cells. The two
major phases in each cluster are consecutive in the cell cycle, and a
strict separation with no overlaps of phases would be an unexpected
result.

A batch effect is slightly visible (Supplementary Fig. S1a–c) but
does not dominate the differentiation of the embedding.
Furthermore, the detection rates of the clustering directly applied on
a k-nearest neighbor graph computed by scikit-learn’s implementa-
tion (Supplementary Table S19), on a principal component analysis
reduced dataset (Supplementary Table S20) or on the raw data
(Supplementary Table S21) are significantly worse and cannot com-
pete with the proposed algorithm. The embedding on 10 kb reso-
lution is different. While Zhou’s scHiCluster cannot perform the
computation within a reasonable time nor operate within generous
memory requirements (Supplementary Tables S22 and S23), the pro-
posed algorithm has significant issues distinguishing the cell phases.
Two cell cycle phases (early-S and late-S/G2) are partially differenti-
ated; however, they have significant overlaps with each other, espe-
cially for the G1 phase, and not all are embedded in a particular
region. Post-M cells are embedded into one region, but the pre-M
cells are distributed over the embedding, with no exact region, and
therefore, no clustering can be achieved for this cell cycle phase
(Supplementary Tables S24–S26). Investigating the batch relation
shows no correlation between the batch and the embedded region
(Supplementary Fig. S3). The bad detection rate can be explained by
a too sparse dataset with a density of 0–0.0006 (Supplementary Fig.
S6 (right)). Even a high number of hash functions does not help to

create a meaningful similarity between the cells (Supplementary
Tables S24–S26 with 20 000; 40 000 and 50 000 hash functions).

Considering the different cell type data from Ramani et al.
(2017), both the proposed algorithm and Zhou’s scHiCluster show a
separation by the two batches, ML1 and ML3 (Supplementary Fig.
S2a and b). For this reason, the cells of the two batches are separate-
ly computed. While per batch, only two cell types are present (ML1:
HeLa and HAP1; ML3: K562 and GM12878), the results indicate
subtypes in the data. Both Zhou’s scHiCluster and the proposed al-
gorithm benefit from using more clusters. For ML1, the proposed al-
gorithm outperforms Zhou’s scHiCluster if two clusters are used:
Considering a uniqueness of at least 70%, the proposed algorithm
detects 91% of HeLa cells and 94% of HAP1, while Zhou’s
scHiCluster detects 72% for both cell types. A uniqueness level of
80% or 90% keeps the results at an equivalent level for the proposed
algorithm but let it drop to 0% for Zhou’s approach. However, the
situation is different if three clusters are used: at a level of 90%, the
proposed algorithm detects 95% of HeLa and 92% of HAP1 while
Zhou’s approach detects 96% and 100% (Supplementary Tables
S27 and S28). The situation is similar for ML3: Using two clusters,
the proposed algorithm detects slightly more cells for GM12878
(73% versus 72%), but both detect 0% of the K562 at a uniqueness
level of 70%. Using five clusters shows an advantage of Zhou’s
scHiCluster, where it detects 94% for K562 and 98%for GM12878
at a uniqueness level of 80%; the proposed algorithm detects 78%
for K562 and 94% for GM12878 (Supplementary Tables S29 and
S30). Working on 10 kb data from Ramani et al. (2017), Zhou’s
scHiCluster cannot compute it within a reasonable time and memory
constraints; however, the results of the proposed algorithm are
mixed. A batch effect of ML1 and ML3 is visible (Supplementary
Fig. S4), but a clear differentiation of the cell types not
(Supplementary Tables S31 and S32). A differentiation of more ex-
tensive parts of the GM12878 cells for a uniqueness level of 70% is
possible with 74%, but upon a closer investigation of the clusters, it
is evident that a high mixture of the cells is given. This is especially
true for ML1, and the cell types HeLa and HAP1, where no clear dif-
ferentiation is possible. We assume the density of 0–0.00004 for
most of the cells (Supplementary Fig. S6 (right)) is too sparse to cre-
ate a good nearest neighbors computation.

3.6 Contact decay profiles
Contact decay profiles show for each cell in a given cluster the
summed number of contacts per genomic distance. Each row is the
genomic distance between the Hi-C contacts’ two locations, and the
columns are the cells. It is the nature of Hi-C contacts to decay with

Fig. 4. Embedding into a two dimensional space for cell type data from Ramani et al. (2017). Separated by the two batches ML1 (a and c) and ML3 (b and d) and labeled by

their cell types
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increasing distances between the two locations. Moreover, the decay
of contacts should have a similar pattern for each detected cluster
since the clusters’ cells are sorted by the short to long-distance con-
tact ratio. The plot gives a global indication of the detected clusters’
correctness but incorrectly detected individual cells vanish. Figure 5
shows a contact decay plot based on the cluster results as shown in
Supplementary Tables S1 (the proposed algorithm) and S18 (Zhou’s
scHiCluster approach) on the cell cycle data from Nagano. Both
results are very similar from a global perspective. Clear contact
decay patterns within the clusters and differences to the other clus-
ters are visible, indicating the dimension reduction, embedding and
clustering are general functional. It should be noted that the pro-
posed algorithm can detect the post-M (cluster 9) and pre-M (cluster
0), while Zhou’s scHiCluster mixes both (cluster 0) or mixes it with
late-S/G2 cells (cluster 4). In contrast to these results are the contact
decay profiles, where clustering was performed on: the raw inter-
action matrices (Supplementary Fig. S14a), a Euclidean distance-
based k-nn (Supplementary Fig. S14g, h), the proposed algorithm
using the Euclidean distance (Supplementary Fig. S14b), without an
intermediate principal component analysis (Supplementary Fig.
S14d) or without UMAP (Supplementary Fig. S14e). All the results
in Supplementary Figure S14 have significant differences in the con-
tact decay within the clusters, clearly indicating an overlap of cells
that are not consecutive in the cell cycle.

3.7 Consensus matrices
A consensus matrix is a bulk mean Hi-C matrix of all cells of a clus-
ter. In the best case, all cells of a cluster have a similar chromatin
pattern and provide an insight into the chromatin folding properties.
The more noisy a consensus matrix is, the more likely the cells from
different cell cycle phases or cell types are merged into the same clus-
ter. Figure 6 shows the consensus matrices for chromosome 6 based
on the clusters presented in Supplementary Tables S1 and S18. For
both the proposed algorithm and Zhou’s scHiCluster, different Hi-C
contact matrix patterns and, therefore, different chromatin folding
properties are well developed. Given a uniqueness of > 80% as
shown in Supplementary Tables S1 and S18, the cell cycle stage G1
is represented by clusters 2, 4 and 7 for the proposed algorithm and
clusters 6 and 8 for Zhou’s scHiCluster. The patterns for the clusters
are similar, and the same is true for the early-S clusters from us (1
and 8) and Zhou (7 and 9), late-S/G2 (3, 5 and 11 respectively 4 and
5); however, post-M and pre-M are identified by the proposed algo-
rithm (cluster 0 and 9), where Zhou’s scHiCluster instead mixes
post-M and pre-M cells in cluster 0. A closer look at the consensus
matrices for the other investigated approaches confirms the findings
of the previous sections that the usage of raw data, the euclidean dis-
tance, a 100-nearest neighbors graph, no PCA, no UMAP, inter- and
intra-chromosomal contacts, or the usage of the scikit-learn k-nn do
not lead to a good differentiation of the cell cycles (Supplementary
Figs S15 and S16).

Fig. 5. Contact decay profile of the clusters; computed by scHicClusterMinHash with spectral clustering (a), Zhou’s scHiCluster (b). Computation on 1 Mb resolution, with

1275 cell cycle phase cells from Nagano et al. (2017). Numbers indicate the cluster id and how many cells they contain; clusters are to be read from left to right. The number of

clusters is 12 to have comparability to the cluster results of Nagano et al. (2017)

Fig. 6. Consensus clusters computed by scHicClusterMinHash with spectral clustering (a) and Zhou’s scHiCluster (b). Computation on 1 Mb resolution, with 1275 cell cycle

phase cells from Nagano et al. (2017), with 12 clusters. Numbers under the matrices indicate the cluster id. The number of clusters is 12 to have comparability to the cluster

results of Nagano et al. (2017)
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3.8 Runtime and memory
The approximate Jaccard index computation achieves faster or simi-
lar run times compared to the sklearn implementation of a k-nearest
neighbors search, which is based on ball-trees, under consideration
of the one megabase resolution single-cell Hi-C dataset as shown in
Supplementary Tables S33 and S34. The runtimes can be influenced
by the clustering algorithm used. This is especially the case for the
clustering on raw data where k-means runs for around 40 min; for
all others, a difference is present but is minor. However, we cannot
explain the outstanding runtime of k-means on the XEON machine;
a run on the AMD Ryzen based computer shows a runtime of
12 min, but a similar runtime for all other algorithms. The classical
and naive way to reduce dimensions is a principal component ana-
lysis (PCA), but the method uses a high amount of memory (170
GB) even on the low-resolution matrix. For the 10 kb resolution ma-
trix, the PCA method throws an error that it is ’unable to allocate
1.28 PiB for an array with shape (2633, 69647960281) and data
type float64’. All approximate k-nearest neighbor graph approaches
use a similar amount of memory caused by the memory consumption
at the read-in stage of the individual single-cell Hi-C matrices. The
provided Euclidean mode of the proposed algorithm has a little
increased run time compared to sklearns implementation. The run-
times of the proposed algorithm computed on a state-of-the-art com-
puter with an SSD compute the clustering on the low-resolution
matrix in around a minute and uses less than 8 GB of memory. The
clustering on the high-resolution matrix is computed in 3:30 min and
uses 40 GB of memory (compare Supplementary Tables S22 and
S23). To have reduced memory usage, the mode –saveMemory is
offered. The proposed algorithm uses one core to load in a batch
processing way data; the user can define the share of the to be proc-
essed matrices. The 10 kb resolution matrices’ processing with a
share of 1% of the data took 13 min, but the memory usage is
reduced to 12.5 GB (Supplementary Table S23). The more hash
functions are used, the longer the run times are. The runtimes on a
1 Mb resolution using only cells with available labels is faster com-
pared to Zhou’s scHiCluster even for 20 000 hash functions
(Supplementary Table S35).

Zhou’s scHiCluster has a runtime of 14 min with the CPU imple-
mentation and 7 min on the GPU on a low resolution (1 Mb) matrix
(Supplementary Table S34). The benefits of the proposed algorithm
in terms of runtime and memory usage are significant under the con-
sideration of a high-resolution single-cell Hi-C dataset. As shown in
Supplementary Table S22, all methods besides the proposed algo-
rithm cannot be computed due to their high memory usage of more
than one terabyte. Considering Zhou’s scHiCluster, we canceled the
computation after 97 h runtime; the computation of the first loaded
chromosome (chromosome 10) was not finished but had a peak
memory usage of 970 GB. The data for Zhou’s scHiCluster was
stored in a RAM disk to exclude potential network file system issues.
Only the proposed algorithm can compute a result while using a
moderate 40 GB of memory; these resources are available for most
researchers.

4 Discussion

It was shown that an approximate k-nearest neighbors graph can be
used to reduce the number of dimensions required to cluster single-
cell Hi-C data, with higher accuracy, faster run times and enabling
users to analyze high-resolution data with a vastly reduced memory
burden. The approximation of the Jaccard index proves to be a suit-
able similarity measure to create a base for clustering, while the
Euclidean distance, considering the curse of dimensionality and the
unique properties of Hi-C data, is shown to be not such an appropri-
ate measure. The cluster results based on the approximate k-nearest
neighbors with MinHash, the additional PCA on the computed k-
nearest neighbor’s graph, the UMAP embedding and a spectral clus-
tering show a better differentiation of the chromatin folding proper-
ties compared to competitive methods. The presented approach to
reduce the number of features, especially when dealing with millions
to billions of dimensions, is crucial to achieving adequate run time
and memory usages. Access to computers with more than 1 TB of

memory is currently difficult, but access to computers or cluster
nodes with 40 GB of memory is available to most researchers. The
presented approximate nearest neighbors graph enables a broader
range of researchers to work with single-cell Hi-C data and adds
with the approximate Jaccard index a method to create a k-nearest
neighbors graph. Moreover, the proposed algorithm is embedded
into the scHiCExplorer, a software suite for single-cell Hi-C data
analyses, and supports the native single-cell Hi-C format scool
(Wolff et al., 2020b). Thanks to the availability of the approximate
k-nearest neighbor search as an independent software package, it
can be easily integrated into other research issues dealing with simi-
lar matrix properties, as is the case in single-cell RNA-seq.
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