
GigaScience, 2022, 11, 1–9

DOI: 10.1093/gigascience/giac061

TECH NOTE

Loop detection using Hi-C data with HiCExplorer

Joachim Wolff 1,2,*, Rolf Backofen 2,3 and Björn Grüning 2

1Friedrich Miescher Institut for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
2Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
3Signalling Research Centres CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
∗Correspondence author. Joachim Wolff. Friedrich Miescher Institut for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland, E-mail:
wolffj@informatik.uni-freiburg.de, joachim.wolff@fmi.ch

Abstract

Background: Chromatin loops are an essential factor in the structural organization of the genome; however, their detection in Hi-
C interaction matrices is a challenging and compute-intensive task. The approach presented here, integrated into the HiCExplorer
software, shows a chromatin loop detection algorithm that applies a strict candidate selection based on continuous negative binomial
distributions and performs a Wilcoxon rank-sum test to detect enriched Hi-C interactions.

Results: HiCExplorer’s loop detection has a high detection rate and accuracy. It is the fastest available CPU implementation and utilizes
all threads offered by modern multicore platforms.

Conclusions: HiCExplorer’s method to detect loops by using a continuous negative binomial function combined with the donut ap-
proach from HiCCUPS leads to reliable and fast computation of loops. All the loop-calling algorithms investigated provide differing
results, which intersect by ∼ 50% at most. The tested in situ Hi-C data contain a large amount of noise; achieving better agreement
between loop calling algorithms will require cleaner Hi-C data and therefore future improvements to the experimental methods that
generate the data.

Keywords: Hi-C, Hi-C loop detection, DNA loops

Introduction
Many algorithms are currently available for loop detection in Hi-
C data. HiCCUPS uses a donut algorithm, which considers all ele-
ments of a Hi-C interaction matrix as peaks and tests if the re-
gion around them is significantly different from the neighboring
interactions. HiCCUPS is part of the software Juicer,1 and the im-
plementation requires a general-purpose GPU (GPGPU), which im-
poses a barrier for users without access to Nvidia GPUs. How-
ever, an experimental CPU-based implementation has also been
released. Algorithms such as iterative correction and eigenvector
decomposition (ICE) [1] or Knight–Ruiz (KR) [2] are widely used in
Hi-C data analysis for balancing Hi-C matrices, but the loop de-
tection algorithm of HiCCUPS uses a different approach. HiCCUPS
employs a Poisson model, which is a distribution for discrete data,
to detect regions of interest. After balancing a Hi-C interaction
matrix, the data are no longer discrete but continuous. In order
to work with the Poisson distribution, the balancing of the values
is reverted. This procedure is methodologically questionable, as
it involves manipulation of the data to fit the requirements of a
particular distribution, rather than fitting on the distribution that
is most probable or suitable. Moreover, the Poisson distribution on
the raw Hi-C data tends to have an overdispersion, which suggests
Poisson is not the best choice. HOMER [3] creates a relative contact
matrix per chromosome and scans these for locally dense regions.
HOMER does not support standard file formats for Hi-C matrices
like cool [4], which forces the user to create all data from scratch,
a time-consuming process and a potential source of errors and
inaccuracies. Chromosight [5] detects loops based on a pattern-

1 https://github.com/aidenlab/juicer

matching algorithm. Cooltools2 uses a reimplementation of the
HiCCUPS algorithm; Fit-Hi-C 2 [6] detects significant Hi-C contacts
and provides a merging algorithm to detect DNA loops. Peakachu
[7] uses a random forest approach trained on CTCF or H3K27ac
data. Chromosight, cooltools, Peakachu, and HiCExplorer support
the cooler file format. HOMER, Fit-Hi-C 2, and Peakachu do not uti-
lize parallelization techniques to improve runtime, running only
on a single core.

Here we present an algorithm that can detect Hi-C loops. It
is based on a continuous negative binomial distribution and is
highly parallelized, assigning one thread per chromosome and
parallelizing further using multiple threads within a chromo-
some. This approach makes full use of the resources available in
the last generation of multicore CPU platforms.

Methods
According to Rao et al. [8], most of the anchor points of detected
loops lie within a range of 2 Mb. This insight can be used to de-
crease the search space in a biologically meaningful way and
also to reduce the computational burden, while at the same time
maintaining a low memory footprint. Moreover, interaction pairs
with genomic distances that are too close to each other, corre-
sponding to points in the Hi-C matrix close to the main diago-
nal, already have high interaction counts. It is, in many cases,
unlikely that these pairs contribute enrichments in the context
of their neighborhood. The high interaction count can explain
this observation between 2 loci; they are closer in 1-dimensional

2 https://github.com/open2c/cooltools

Received: February 28, 2021. Revised: June 23, 2021
C© The Author(s) 2022. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0001-9985-955X
http://orcid.org/0000-0001-8231-3323
http://orcid.org/0000-0002-3079-6586
mailto:wolffj@informatik.uni-freiburg.de
mailto:joachim.wolff@fmi.ch
https://github.com/aidenlab/juicer
https://github.com/open2c/cooltools
http://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2022, Vol. 11, No. 1

space and close to the main diagonal. Specialized algorithms like
FastHiC should be used to detect intra-topological associated do-
mains (TAD) enrichments. A general problem for Hi-C interactions
with few absolute counts is determining whether their interac-
tions are true interactions or noise. These artifacts cannot be cor-
rected by the commonly used Hi-C interaction matrix correction
algorithms such as iterative correction and ICE [1] or KR [2]. These
algorithms perform a matrix balancing and correct for an uneven
distribution of the interaction counts per genomic position. The
correction algorithms are unable to distinguish and therefore fil-
ter true interactions from noise. All values below a given threshold
are discarded, and noise is removed to account for these known
problems in the Hi-C interaction data.

Algorithm
A strict candidate selection is critical to reducing the computa-
tional complexity of the loop detection algorithm. A maximum
loop size can be defined to restrict the search space to take the
previously mentioned observation from Rao et al. [8] into account.
In Hi-C, the primary data structure is the symmetrical n × n inter-
action count matrix (ICM):

ICM =

⎡
⎢⎢⎣

ic00 · · · ic0n

... · · ·
...

icn0 · · · icnn

⎤
⎥⎥⎦ (1)

The relative genomic distance is given by

d = |i − j| for ici, j (2)

where ici, j is an element of Hi-C interaction matrix ICM.
As a first step, the interaction matrix ICM is transferred to an

observed versus expected matrix M∗ to normalize the differing in-
teraction heights per genomic distance. Each element m of M∗ is
defined as

m∗
i, j = icmi, j

expd
(3)

Different methods are offered to adjust differences in the sam-
ples introduced. Hi-C is, in comparison to techniques like RNA
sequencing, a 2-dimensional approach; all reads are chimeric.
The term chimeric in the context of Hi-C should be understood as
reads that are ligated from 2 different locations in the genome.
This is achieved by fixation of spatially close DNA fragments
with formaldehyde, followed by digestion and ligation to create
chimeric reads. These events should, in theory, happen uniformly
in the whole genome; however, whether this is the case depends
on the particular sample and genome studied. Therefore, 3 differ-
ent ways to compute the expected value are offered. Note that the
observed/expected matrix normalization step was not included in
the initial version of this publication released on bioRxiv [9] but
was described in the author’s dissertation [10].

First, only nonzero contacts are considered:

exp_nonzerod =
∑

ici, j

|non − zero interactions d| (4)

Second, all contacts are considered:

exp_with_zerod =
∑

ici, j

|all interactions d| (5)

And third, similar to HOMER’s normalization, a correction for
different occurring ligation events is offered:

exp_ligationd = exp_nonzeroi, j ∗
∑

(rowICM(i)) ∗ ∑
(rowICM(j))∑

(ICM)
(6)

Candidate selection per genomic distance
To detect enriched Hi-C interactions, the observed/expected nor-
malized Hi-C data are fitted per genomic distance d independently
to a continuous negative binomial distribution. Supplementary
Fig. S1 shows the value density distribution of different genomic
distances and provides evidence for the chosen distribution as-
sumption. The negative binomial function, rather than the Pois-
son distribution, is used because the raw data of the genomic dis-
tances of chromosome 1 of GM12878 cell line at 10 kb indicate
overdispersion [11] in a majority of the distances (80.1%); there-
fore, the negative binomial distribution with an additional free
parameter is the better choice (Supplementary Fig. S2).

Xd ∼ cNBd (rd, pd) ∀d = |i − j| (7)

Gamma functions must replace the factorial in the binomial
coefficient as used by edgeR [12, 13] to make the discrete negative
binomial function continuous:

(
k + r − 1

k

)
= (k + r − 1)!

(k!) ∗ (k + r − 1 − k)!
= (k + r − 1)!

(k!) ∗ (r − 1)!
(8)

The gamma function is defined for any n ∈ N:

�(n) = (n − 1)! (9)

Moreover, the gamma function is defined for any n ∈ R>0:

�(n) =
∫ ∞

0
xn−1 ∗ e−xdx (10)

With Equation (9), the binomial coefficient can be reformulated
as

(
k + r − 1

k

)
= �(k + r)

�(k + 1) ∗ �(r)
(11)

which leads to the probability mass function for a continuous neg-
ative binomial distribution with ∀k ∈ R>0 and ∀r ∈ R>0:

f (k, r, p) = �(k + r)
�(k + 1) ∗ �(r)

pk(1 − p)r (12)

The P-value of observing a specific observed versus expected value
at the genomic distance d is given by the continuous negative bi-
nomial cumulative density function:

pvalue o f m∗
i, j = P(x ≥ m∗

i, j) =
{

1 − CDFd (m∗
i, j) if m∗

i, j > 0.

1 if i = 0.
(13)

Only the observed versus expected values with P-values
smaller than an individual threshold per genomic distance are
accepted as candidates; these candidates are further filtered to
remove candidates with too few absolute interactions. To reduce
the amount of data to fit, the user can remove observed versus ex-
pected values below a threshold before the continuous negative
binomial function is fitted. Moreover, an option to remove candi-
dates by their interaction height is also provided.

Loop peak detection
The entire neighborhood needs to be considered to detect en-
riched regions in a Hi-C interaction matrix. A neighborhood is a

Loop detection using Hi-C data with HiCExplorer | 3

square of size n with the candidate element in its center. An en-
riched region needs to have an enriched interaction count in rela-
tion to the elements in its neighborhood. The neighborhood con-
cept comes with a few issues: first, within a single neighborhood,
there can be multiple candidate loops detected from different but
adjacent genomic distances. Second, if a candidate is significant
for its genomic distance, it is not necessarily an enriched value for
its neighborhood. Third, a single enriched interaction in a neigh-
borhood is possible, but is likely to be a false positive. Meaningful
enriched interactions appear in groups and form a peak in the 2-
dimensional space. All candidates in 1 neighborhood are pooled
together to handle the first issue, only the candidate with the
highest observed versus expected value for one neighborhood is
considered a representative of its neighborhood; all others are re-
moved. The neighborhood is split into a peak and a background
region to cover the second and third issues by considering the
square around the candidate as the peak region and the neighbor-
hood’s remaining elements as the background. The neighborhood
is further divided into the vertical region left and right from the
peak, the horizontal region above and below the peak, and the bot-
tom left corner; this is a similar approach to HiCCUPS [8]. The peak
and neighborhood square sizes are defined by their inradius val-
ues, peakWidth and windowSize. All candidates that fulfill the con-
dition mean(background) ≥ mean(peak) are rejected as a loop. This
filtering step is necessary to address the situation where a can-
didate peak value is a singular outlier within the neighborhood.
Furthermore, the Wilcoxon rank-sum test is used, with the H0
hypothesis that the background and peak regions have the same
distribution with significance level P. As background, the vertical
and horizontal area mentioned above, and the bottom left corner,
are independently tested against the peak region. Note in the ini-
tial version of this publication released on bioRxiv [9], only the
peak versus the entire neighborhood region was tested. The filter
steps described guarantee that only neighborhoods with a center-
ing peak value are considered.

Analyses
The algorithm was tested on various cell types published by Rao
et al. [8] to verify the chromatin loop detection algorithm results:
GM12878, K562, IMR90, HUVEC, KBM7, NHEK, and HMEC. First,
the parameter setting for HiCExplorer is investigated, and second,
the loop detection results of several algorithms are compared.
HiCExplorer’s implementation is tested against the HiCCUPS al-
gorithm from the Juicer software, HOMER’s loop detection, chro-
mosight, cooltools’ call-dots, Fit-Hi-C 2, and Peakachu. The algo-
rithms of GOTHIC, cLoops, and FastHiC are not considered due to
the differing focus of these algorithms. The detected chromatin
loop locations are correlated with binned protein peak locations
of the 11-zinc finger protein CTCF identified by ChIP-seq. CTCF
is a known loop binding factor [8], although not all peaks need
to have CTCF attached [14], especially in the case of a gene or a
polycomb-mediated loop [15]. In order to test the algorithms men-
tioned above, the detected chromatin loops were accepted as true
if CTCF was detected at both loci and otherwise rejected. CTCF
was matched to the GM12878, HMEC, HUVEC, K562, and NHEK cell
samples; for IMR90 and KBM7, no CTCF from the same source is
provided. A downside of ChIP-seq is the 1-dimensionality. In ad-
dition, therefore, 2-dimensional data for CTCF, H3K27ac, SMC1,
and RAD21 created by HiChIP and ChIA-PET were tested for the
GM12878 data set to investigate how 1-dimensionality affects the
results.

HiCExplorer parameters
The parameters of HiCExplorer have an influence on the results of
the algorithm. First, the threshold for the observed/expected val-
ues is negatively correlated with the number of detected loops. A
threshold of 0.5 results in 12,331 loops, a threshold of 1 in 12,008,
but a threshold of 1.5 and 2 results in 9,147 and 6,099 detected
loops, respectively. The stricter the threshold, the more accurate
the loops; however, the number of detected loops is lower. The
P-value for the continuous negative binomial functions has the
same effect: the stricter the threshold, the fewer loops are de-
tected, but they become more accurate, as measured by CTCF cor-
relation. Choosing good values for the peak window size and the
neighborhood window size parameters presents some difficulty.
The peak window size should be the smaller of the two, and the
two values should not be too similar. A peak window size of 4 and a
neighborhood window size of 5 leads to 2,380 loops, but if the peak
window size is reduced to 2, a total of 9,147 loops are detected. In-
creasing the two parameters by the same amount, to a peak win-
dow size of 4 and neighborhood size of 7, such that the same differ-
ence between the values is maintained, leads to a lower number
of detected loops, 7,269, with an equal level of accuracy, 0.70 ver-
sus 0.69. The threshold for the peak region and the neighborhood
test has an expected effect on loop detection. The stricter it is
set, the fewer loops are detected, but the accuracy increases. The
different methods provided for computing the expected value do
not contribute to significant differences in the results. Supple-
mentary Fig. S3 and Supplementary Table S6 show that the ex-
pected value based on all interactions (Equation (4)) has the best
accuracy (CTCF ChIP-seq, 0.71; CTCF ChIA-PET, 0.64), and the ex-
pected value based on the nonzero interactions (Equation (5)) has
the highest number of detected loops (14,144) and provides more
absolute correlated loop locations (CTCF ChIP-seq, 9,352; CTCF
ChIA-PET, 7,808). Last, the correction for ligation events as pro-
posed by the HOMER (Equation (6)) software shows the lowest ac-
curacy (CTCF ChIP-seq, 0.58; CTCF ChIA-PET, 0.48). The results de-
pend on the data: the fewer reads a Hi-C matrix has, the sparser
it is, and the fitted distributions are more biased toward zero. In
this case, interactions with a lower interaction count have a lower
p-value and are more likely to be detected. However, excluding
the zero contacts from the distribution can lead to a bias in the
other direction; interaction values that should be detected have a
P-value that is too high and are therefore excluded from the com-
putation.

For other cell lines published by Rao et al. [8], the situation is
comparable (Supplementary Table S1). The number of detected
loops ranges between 3,000 and 10,000 loops. The nonzero values
and implicitly the read coverage per bin help to explain this dif-
ferent detection behavior; the higher the read coverage, the more
regions are detected (see Supplementary Tables S1, S4, and S5).
The candidate selection approach via the definition of a neighbor-
hood makes the algorithm sensitive to the Hi-C interaction ma-
trix’s resolution. The lower the resolution, the smaller the neigh-
borhood needs to be. Otherwise, the chances of having elements
in the neighborhood, peaks, or TADs, or even the main diagonal,
are too high. At the same time, decreasing the size of the neighbor-
hood creates another issue: the number of elements in the peak
and background regions becomes too low. This leads to nonsignif-
icant test results and to the insight that, first, the neighborhood
size should be adjusted to the bin resolution of the Hi-C matrix
and, second, that a neighborhood should contain at least around
250 to 300 elements to produce valuable results.

4 | GigaScience, 2022, Vol. 11, No. 1

Comparison to state-of-the-art approaches
In the following section, the detected loops by different tools on
the Hi-C interaction matrices of the cell lines GM12878, HMEC,
HUVEC, IMR90, K562, KBM7, and NHEK (by Rao et al. [8]) with the
KR correction [2] are compared. The search distance is restricted
to 8 MB if the tool allows this; the results are postprocessed for
all others. The tools compared are HiCExplorer, HiCCUPS, HOMER,
chromosight, cooltools, Fit-Hi-C 2, and Peakachu.

Detected loop comparison
The detection rate is comparable for all tools and cell lines
(Supplementary Table S1), except for chromosight and Peakachu.
Chromosight detects significantly more loops with a very low
P-value; however, as the loops’ visualization (Fig. 3c, chromo-
some 1 18.00–22.00 MB) indicates, most detected loops are in very
noisy regions, and it is questionable what exactly chromosight
is detecting. This is supported by the analysis of additional re-
gions; see Supplementary Figs. S4c (chromosome 4, 20.55–22.55
MB), 6c (chromosome 1, 15.00–18.00 MB), and 8c (chromosome
10, 90.00–92.00 MB). On the other hand, Peakachu detects much
fewer loops than the other algorithms considered. After corre-
spondence with the authors, it became clear that the models
provided were trained on ICE-corrected matrices, whereas we
have used K-R–corrected matrices. For this reason, the loops de-
tected by Peakachu, as published by the authors, have also been
taken into consideration. Nonetheless, a detailed analysis of loop
loci shows that Peakachu misses important loops, regardless of
whether the K-R data or the author’s own results are considered.
For example, the region chromosome 4 (20.55–22.55 MB) contains
4 visible loops: Peakachu on KR detects 2 and misses 1 loop com-
pletely. Additionally, 2 locations are detected that slightly miss a
loop (Supplementary Fig. S4e). The Peakachu results provided by
the authors miss 2 loops and detect the other 2 loops successfully
(Supplementary Fig. S4f). Supplementary Fig. S6e shows another
issue of Peakachu on K-R data. Many loops are detected at the bor-
der of a faulty region; it seems the machine learning approach did
not have access to this kind of data in training. The data provided
by the authors of Peakachu do not have this kind of issue, but over-
all, while the provided data contain more correct locations, the
detection sometimes detects too many loops, for example, in the
region chromosome 10 (90–92 MB) (Supplementary Fig. S8f). The
third problematic tool is Fit-Hi-C 2. The number of detected loops
is at first sight comparable to the other tools; the loci-specific
analysis cannot confirm this. The regions chromosome 1 (15–22
MB) (Fig. 3 and Supplementary Fig. S6h), chromosome 4 (20.55–
22.55 MB) (Supplementary Fig. S4h), and chromosome 10 (90.00–
92.00 MB) have no loops detected by Fit-Hi-C 2, while the other
tools are able to detect loops in these regions. In comparison, the
regions where Fit-Hi-C 2 does detect loops are eye-opening. The re-
gions chromosome 1 (13.00–14.00) MB (Supplementary Fig. S5) and
chromosome 1 (142.00–144.00 MB) contain mostly very sparse or
even faulty Hi-C data. Fit-Hi-C 2 detects an overwhelming amount
of enriched pixels in these regions and returns these as loops.
While it might be true that these pixels are enriched in a local
context, they are far from being a loop. The pattern of the accu-
mulated loop locations (Fig. 2) confirms that the detected pattern
is usually a single enriched interaction. The other tools detect only
very few or no loops in the regions chromosome 1 (13.00–14.00
MB) and chromosome 1 (142.00–144.00 MB). Supplementary Fig. S7
indicates HiCExplorer and HiCCUPS also have issues in noisy re-
gions. An explanation is how loops are detected: both tools detect
first outliers and later consider the backgrounds with the loop re-

gions based on statistical tests. Regions that are noisy but to the
statistical test show 2 different distributions do pass the criterion
of detection. This behavior is present also for the most of the other
tools and is considered by us a weakness of statistical-based ap-
proaches. The intersection between the detected peaks of HiCEx-
plorer, HiCCUPS, HOMER, chromosight, cooltools, Fit-Hi-C 2, and
Peakachu is quite different (Fig. 1). HiCExplorer, with a search dis-
tance of 8 MB, shares ∼ 46% of its loops with HiCCUPS. HiCExplorer
has the highest intersection of detected loops with chromosight,
but chromosight also provides the highest number of detected
loops. The intersection of detected loops with cooltools is similar
to HiCCUPS; the number of intersecting loops with HOMER, Fit-
Hi-C 2, and Peakachu is lower. HiCCUPS and cooltools show the
highest intersecting numbers, chromosight profits from its high
detection rate, and HOMER shares only a few hundred loops with
HiCCUPS, similar to its intersection with HiCExplorer. The inter-
section of Fit-Hi-C 2 and Peakachu with HiCExplorer and HiC-
CUPS is very low, and the results of the Peakachu publication can-
not be confirmed. Concerning Peakachu, it can be assumed that
the performance is directly connected to the trained models and
its inadequate generalization ability. In the publication describing
Peakachu, the authors write they have used a probability thresh-
old for a pixel between 90% and 97%. However, to detect a similar
number of loops to have comparability, we had to use a score of
68%. For Fit-Hi-C 2, the authors of Peakachu have used a threshold
of 10−5, while we used 0.01 to enable detection of a few thousand
loops.

Loop location correlation to protein locations
The detected loops are correlated with CTCF and cohesin fac-
tors (Supplementary Table S2) to investigate the amount of in-
tersecting locations. This correlation is computed because it was
shown that at the anchor points of loops, the proteins CTCF and
cohesin are involved as loop binding factors [8, 15]. However, the
loop structures representing gene or polycomb-mediated loops do
not have CTCF at their anchor points, and the correlation can only
be as good as the quality of the ChIP-seq data from which it is
derived. This measurement is, therefore, only an indicator of the
accuracy of the detection.

The number of loops detected by HiCExplorer is comparable to
HiCCUPS. On the GM12878 cell line and correlated to ChIA-PET–
based CTCF locations, HiCExplorer detects a similar amount of
loops compared to HiCCUPS (6540 vs. 6564) but is more specific
(0.64 vs. 0.61). Cooltools (5,467 loops) and the loops provided by
the Peakachu authors (8,174 loops) have a similar relative value of
54% and 50%. Based on our computations, the loops detected with
Peakachu have a match at only 686 loop locations and a relative
value of 5%. The correlation for the other 3 tools is also low. Chro-
mosight has 7,205 loops correlated, a share of only 11%; HOMER
has 1,349 loops and a share of 18%; and last, Fit-Hi-C 2 has only
163 correlated loop locations with a share of 2%.

The correlation of locations for ChIA-PET RAD21, a cohesin
subfactor, has overall significantly lower correlations. HiCExplorer
has 2,577 loops (25%), HiCCUPS 2,385 loops (22%), cooltools 1,781
loops (17%), and the loop locations provided by the Peakachu au-
thors 2,554 (15%). All other tools have a meager share of corre-
lated locations of < 3%. As a second source of information, data
from HiChIP experiments are also considered. The correlation val-
ues are overall much higher: for the histone H3K27ac, the highest
correlation is achieved by the author-provided Peakachu results
with 96%, followed by HiCCUPS with 92%, cooltools with 85%, and
HiCExplorer reaching only fourth place with 86%. The results of
the other tools are also much higher than the results of CTCF and

Loop detection using Hi-C data with HiCExplorer | 5

(a)

(d) (e) (f)

(b) (c)

Figure 1 Intersection of detected loops of HiCExplorer, HiCCUPS, and either HOMER, chromosight, cooltools, Fit-Hi-C 2, or Peakachu. HiCExplorer,
HiCCUPS, and cooltools have the highest relative intersection. Chromosight has the most intersected loops but detects many false positives, predicting
6 times more interactions. HOMER, Fit-Hi-C 2, and Peakachu have only a minor intersection. Last, the loop results of Peakachu, as published by the
authors (subfigure f), show a higher overlap with the detected loops of HiCExplorer and HiCCUPS compared to the results we computed.

(a) (b) (c) (d) (e) (f) (g)

Figure 2 Aggregated loop locations of detected loops on GM12878, 10 kb resolution for the different detection algorithms. Aggregation is performed
with HiCExplorer’s hicAggregateContacts.

RAD21; for example, Fit-Hi-C 2 had only 2% matches with RAD21
but had 29% with H3K27ac. The correlation based on SMC1, a co-
hesin subfactor, created with HiChIP indicates the same: again,
the author-provided Peakachu results are the highest with 99%,
followed by HiCCUPS (96%), cooltools (94%), HiCExplorer (91%),
and HOMER (90%). The correlation of the low-performing Fit-Hi-C
2 is 34% higher compared to other proteins but is also low com-
pared to all other tools. Last, the proportions of the detected loca-
tions of the different tools were tested for significant differences.
A 2-sided proportion z-score test was used, and given the H0 (the
proportion is equal), the H0 was rejected for all data sets and tools,
under a P-value of 0.05 (Supplementary Table S3).

Nonintersected loops
The 2 previous sections investigated the intersection of loops be-
tween different tools and their correlation to structural proteins.
The intersection of all detected loops between HiCExplorer and
HiCCUPS is 46%, and both tools have a high correlation to struc-
tural proteins for their detected loops. However, the nonintersect-
ing detections have not been investigated. The above-discussed
correlation to structural protein locations indicates that the loops

detected by either HiCExplorer or HiCCUPS have a high match to
the positions of structural proteins. The situation is similar for the
unique detect loops of either HiCExplorer or HiCCUPS. The corre-
lation of unique loops to ChIA-PET–based CTCF locations shows a
lower matching than all detected locations, 0.49 to 0.64 for HiCEx-
plorer and 0.46 to 0.61 for HiCCUPS. A similar pattern is present for
the other proteins: ChIA-PET RAD21, 0.15 to 0.25 for HiCExplorer
and 0.11 to 0.22 for HiCCUPS; HiChIP H3K27ac, 0.78 to 0.86 and
0.89 to 0.92; and HiChIP SMC1, 0.85 to 0.91 and 0.93 to 0.96. The
lower correlations for the uniquely detect loops of HiCExplorer
and HiCCUPS indicate a higher false detection if a loop is not de-
tected by both tools; however, the correlations are still on a high
level. The unique detect loops are in their large majority of high
value for the investigation of DNA loop structures.

Averaged loop structure comparison
The accumulated contacts of all detected loop locations on
GM12878, displayed as a 3-dimensional plot in Fig. 2, shows that
all algorithms detect enriched regions, but the neighborhood
structure is very different. HiCExplorer detects a sharp peak with
an enriched direct neighborhood, while HiCCUPS and Fit-Hi-C

6 | GigaScience, 2022, Vol. 11, No. 1

(a) (b) (c)

(d) (e) (f)

Figure 3 Plot of chromosome 1 (18–22 MB) on GM12878, with the detected loops highlighted from each software. HiCExplorer, HiCCUPS, and cooltools
show similar results. Chromosight detects many loops in noisy regions and lacks specificity. The 4 loops of Peakachu show a general issue of this
algorithm: the first 2 loops (18 MB region) are in a region without enrichment, and the other 2 loops slightly miss the enriched interactions by a few
kilobases. HOMER and Fit-Hi-C 2 do not detect any loop in the area. The subplot (e) is based on the authors’ computations, and subplot (f) is based on
the loops as they have been published by the authors of Peakachu in [7]. Plots are produced using HiCExplorer hicPlotMatrix.

2 have a very sharp peak with almost no neighborhood signal.
HOMER and Chromosight detect broader peaks with a highly en-
riched neighborhood, and cooltools has a sharp peak and a neigh-
borhood structure that is slightly more enriched than HiCCUPS
and slightly less than HiCExplorer. Finally, Peakachu detects a
sharp peak and has a neighborhood plateau on one side, similar
to the other algorithms, but a sharp cliff on the other side. The vi-
sualizations indicate that a broad peak detection, as provided by
HOMER and Chromosight, or a very sharp peak with no neighbor-
hood signal has a low correlation to CTCF-based loops. The visu-
alization of Peakachu’s loop locations with the sharp cliff can be
interpreted as locations with a TAD border. This can be explained
in the context of a learned model based on CTCF locations, be-
cause CTCF is present at both loop locations and TAD boundaries.

Runtime and memory usage
The runtime and memory performance is a crucial factor in deter-
mining the quality of an algorithm, as well as its implementation.
The performance was measured on the Hi-C interaction matrices
of the cell lines by Rao et al. [8] discussed above, with a 10-kb res-
olution for the tools HiCExplorer, HiCCUPS, HOMER, chromosight,
cooltools, Fit-Hi-C 2, and Peakachu. The measures were computed
on an AMD 3700X with 128 GB memory and an Nvidia GTX 1070.
For a fair comparison, the CPU implementations are considered,
but for completeness, it should be mentioned that the GPU imple-
mentation of HiCCUPS with the search space restriction mode of
8 MB active was over all data sets the fastest approach.

On the 8 MB search distance range, HiCExplorer is the fastest
CPU implementation, except for GM12878 cell lines, where the

CPU-based version of HiCCUPS is faster. HiCExplorer is ∼ 44%
faster than chromosight (4:25 vs. 6:22 minutes) on GM12878 with
a 8 MB search distance and uses only 6.7 GB memory, while
chromosight consumes 39 GB. Moreover, HiCExplorer is 2 times
faster than cooltools if only loop detection is considered; if the
necessary computation of expected values is added, it is almost
3.5 times faster (Supplementary Table S8). When considering
the somewhat theoretical measure of single-core performance,
Chromosight is the fastest algorithm (Supplementary Table S9);
nonetheless, modern CPUs support up to 64 cores/128 threads,
and data analysis software should use the offered resources as
well as possible. For this reason, HiCExplorers’ hicDetectLoop sup-
ports parallelization by chromosomes as well as intrachromoso-
mal parallelization. The data structure allows this: each chromo-
some can be computed independently, as can each genomic dis-
tance normalization, distribution fitting, and p-value computa-
tion. For example, if 23 threads are used to compute each chro-
mosome in parallel, and for each chromosome thread, 10 other
threads compute all intrachromosomal computations in parallel,
a total of 230 parallel threads are used. Not all threads are used
at the same time; therefore, a good utilization is achieved. How-
ever, modern CPUs with core/thread counts of 64/128 can be fully
utilized with this approach. Two of the algorithms, Fit-Hi-C 2 and
Peakachu, provide only a single-core implementation. Their run-
times are by far the slowest, taking 4:46 hours and 7:03 hours on
the GM12878 data, and consume at the same time a high amount
of memory. HOMER is, in all scenarios, the third slowest algorithm
and also consumes the most memory. However, HOMER is also the
only algorithm without any search space restriction parameter, so

Loop detection using Hi-C data with HiCExplorer | 7

that all searches are performed genome-wide. This has the side
effect that, for example, the GM12878 data set could only be com-
puted using a single core, because the memory consumption was
already around 100 GB. The approach chosen by the developers of
HOMER to not support any binary file format to store and access
the Hi-C interaction matrix, such as Juicer’s hic or the cooler [4] file
format supported by many of the other investigated tools, results
in a computation based on text files and raw data and contributes,
apart from the lack of a search space restriction, to the very poor
runtime and memory performance.

Discussion
The search space of an algorithm is the dominant factor de-
termining its accuracy and performance. Therefore, pruning it
should be the primary goal when optimizing newly designed algo-
rithms. In theory, brute-force solutions that apply no restrictions
to the search space, like HiCCUPS, can detect all possible enriched
regions, but the result is an implementation with very demand-
ing hardware requirements. HiCCUPS solves this by utilizing mas-
sively parallel computational resources via GPGPU. On the other
hand, HOMER also applies no limitations to the search space, yet
detects a lower number of loops, and those that are detected have
a significantly lower correlation over all samples to CTCF local-
ization. HOMER does support a parallel computation per chromo-
some, like HiCExplorer, but is significantly slower than all other
solutions and uses significantly more memory per core. HOMER’s
poor runtime performance can be explained by the fact that com-
putation is performed on raw data, while all other approaches use
precomputed interaction matrices. Chromosight is a fast detec-
tion approach and provides the fastest single-core performance;
however, it lacks specificity and detects many loops that should be
considered noise, even though these loops may be provided with a
high significance. Cooltools, with its reimplementation of the HiC-
CUPS approach, provides a genome distance search that makes it
faster and more flexible. The results are good, but it is unclear why
they are not more similar to Juicer’s HiCCUPS results, given that
the same algorithm is used. An overview of the properties of all
algorithms is provided in Supplementary Table S10.

The divergence between the Peakachu results based on our
computations and the data published by the authors is high. Given
that the machine learning–based model of Peakachu is trained
using the locations of certain proteins, it is unsurprising that
the H3K27ac and SMC1 locations have very high correlation val-
ues. Our understanding is that the published trained model does
not detect loop locations themselves, but rather the locations of
SMC1 and H3K27ac. Moreover, the poor performance on the K-
R–corrected matrix used indicates heavy overfitting and a poor
generalization ability onto different kinds of input matrices. An-
other explanation could be the lack of preprocessing to normalize
the input data. The idea of training a model using the locations of
proteins known to be correlated with loops is sensible but is lim-
ited by the fact that not all loop locations have CTCF and cohesin
at their anchors. Overall, the model is an interesting approach;
nonetheless, the published model requires more diverse training
data to improve performance on varying input data sets.

Furthermore, it could be shown that the sparsity and thus the
read coverage of a Hi-C interaction matrix significantly influences
the detection of peaks in their neighborhood. The sparser a Hi-C
interaction matrix is, the more likely that the possible valid re-
gions detected by the continuous negative binomial distribution
filtering are rejected by the Wilcoxon rank-sum test. The large
number of differences between the detected loops and the high

correlation rates to CTCF can be explained in multiple ways. The
correlation to CTCF has its roots in biology. Not all loops have
CTCF as a binding protein at its anchors; gene loops or polycomb-
mediated loops lack it. All the algorithms detect enrichments in
the Hi-C data, which are interpreted as loops, but may also have
other explanations. The enrichments can also be noise in the
data, or interactions that are unrelated to CTCF. Second, the Hi-C
data are created with in situ Hi-C and have a higher noise level
than newer approaches like Arima Hi-C.3 Detections of loops in
noisy areas are responsible for the low intersection values for the
predictions of the competing algorithms, in particular for Chro-
mosight, which detects more noise than loops.

Availability of Source Code and
Requirements
Project name: HiCExplorer
Project home page: https://github.com/deeptools/HiCExplorer/
Operating system(s): Linux/MacOS
Programming language: Python
Other requirements: Python 3.6 and higher
License: GPLv3
RRID: SCR_022111
biotools ID: https://bio.tools/hicexplorer

Availability of Supporting Data and
Materials
The following identifiers are NCBI GEO accession numbers.

Hi-C data: GSE63525; Rao et al. [8]. CTCF for: GM12878 from
GSM935611, Hmec from GSM749753, Huvec from GSM749749,
K562 from GSM733719, and Nhek from GSM733636. CTCF ChIA-
PET (GSM1872886), H3K27ac HiChIP (GSE101498), SMC1 HiChIP
(GSE80820), and RAD21 ChIA-PET (GSM1436265). Result files are
available via Zenodo [16]. An archival copy of the code is available
via the GigaScience repository, GigaDB [17].

Additional Files
Supplementary Fig. S1. Value density distributions per genomic
distances on GM12878. Values are observed/expected normalized
per genomic distance.
Supplementary Fig. S2. Overdispersion test from Cameron and
Trivedi (1990). Tested on the raw data of chromosome 1 of
GM12878 cells, 10 kb resolution. The majority of the distances
(80.1%) had an overdispersion.
Supplementary Fig. S3. Venn diagram with loop overlaps of the
different expected value computations on GM12878.
Supplementary Fig. S4. The plot of chromosome 4 (20.55–22.55
MB) on GM12878 and the detected loops from each software high-
lighted. HiCExplorer, HiCCUPS, and cooltools show similar results.
Chromosight detects many loops in noisy regions and lacks speci-
ficity. The 4 loops of Peakachu show a general issue of this algo-
rithm: The first 2 loops (18 MB region) are in a region without en-
richment, and the other 2 loops slightly miss the enriched interac-
tions by a few kilobases. HOMER and Fit-Hi-C 2 are not detecting
any loop in the area. Plot with HiCExplorer hicPlotMatrix.
Supplementary Fig. S5. The plot of chromosome 1 (13.00–14.00
MB) on GM12878 and the detected loops from each software high-
lighted. HiCExplorer, HiCCUPS, and cooltools show similar results.
Chromosight detects many loops in noisy regions and lacks speci-
ficity. The 4 loops of Peakachu show a general issue of this algo-

3 https://arimagenomics.com/

https://github.com/deeptools/HiCExplorer/
https://bio.tools/hicexplorer
https://arimagenomics.com/

8 | GigaScience, 2022, Vol. 11, No. 1

rithm: the first 2 loops (18 MB region) are in a region without en-
richment, and the other 2 loops slightly miss the enriched interac-
tions by a few kilobases. HOMER and Fit-Hi-C 2 are not detecting
any loop in the area. Plot with HiCExplorer hicPlotMatrix.
Supplementary Fig. S6. The plot of chromosome 1 (15.00–18.00
MB) on GM12878 and the detected loops from each software high-
lighted. HiCExplorer, HiCCUPS, and cooltools show similar results.
Chromosight detects many loops in noisy regions and lacks speci-
ficity. The 4 loops of Peakachu show a general issue of this algo-
rithm: the first 2 loops (18 MB region) are in a region without en-
richment, and the other two loops slightly miss the enriched inter-
actions by a few kilobases. HOMER and Fit-Hi-C 2 are not detecting
any loop in the area. Plot with HiCExplorer hicPlotMatrix.
Supplementary Fig. S7. The plot of chromosome 1 (142.00–144.00
MB) on GM12878 and the detected loops from each software high-
lighted. HiCExplorer, HiCCUPS, and cooltools show similar results.
Chromosight detects many loops in noisy regions and lacks speci-
ficity. The 4 loops of Peakachu show a general issue of this algo-
rithm: The first 2 loops (18 MB region) are in a region without en-
richment, and the other 2 loops slightly miss the enriched interac-
tions by a few kilobases. HOMER and Fit-Hi-C 2 are not detecting
any loop in the area. Plot with HiCExplorer hicPlotMatrix.
Supplementary Fig. S8. The plot of chromosome 10 (90.00–92.00
MB) on GM12878 and the detected loops from each software high-
lighted. HiCExplorer, HiCCUPS, and cooltools show similar results.
Chromosight detects many loops in noisy regions and lacks speci-
ficity. The 4 loops of Peakachu show a general issue of this algo-
rithm: the first 2 loops (18 MB region) are in a region without en-
richment, and the other 2 loops slightly miss the enriched interac-
tions by a few kilobases. HOMER and Fit-Hi-C 2 are not detecting
any loop in the area. Plot with HiCExplorer hicPlotMatrix.
Supplementary Table S1. Detected loops on different cell types
cells from Rao et al. (2014), with 10 kb resolution and an 8 MB
search restriction. If the tool was not able to provide a search
space restriction, the data were postprocessed to fulfill the re-
quirement. Peakachu ((p.b.a.): published by authors) uses precom-
puted loops published by the authors of Peakachu; data were only
provided for the GM12878 cell line and not for the others. (∗) The
computation crashed for Fit-Hi-C 2 and Peakachu on the K562
data set.
Supplementary Table S2. Correlation of detected loops of the
GM12878 cell line on 10 kb resolution and 8 MB genomic dis
tance restriction with various HiChIP and ChiA-PET: CTCF ChIA-
PET (GSM1872886), H3K27ac HiChIP (GSE101498), SMC1 HiChIP
(GSE80820), and RAD21 ChIA-PET (GSM1436265) data. The data for
Peakachu were measured twice: first, the trained model as pub-
lished by the authors of Peakachu was used to detect loops on a
K-R–corrected matrix as it was used for all other tools. The second
data (Peakachu, published by authors) used precomputed loops
published by the authors of Peakachu.
Supplementary Table S3. Two-sided z-test for the different CTCF,
H3K27ac, RAD21, and SMC1 proportions as shown in Supplemen-
tary Table S2.
Supplementary Table S4. Initial possible candidates versus re-
duced candidate set of HiCExplorer for chromosome 1.
Supplementary Table S5. Sparsity level of the 10 kb Hi-C interac-
tion matrices. The dense matrix contains 309,581 × 309,581 ele-
ments.
Supplementary Table S6. Different expected value computation
for GM12878.
Supplementary Table S7. The effect of different parameter set-
tings on the results with HiCExplorer. All parameters used their
default values (peakWidth 2, windowSize 5, pValuePreselection

0.1, pValue 0.025, peakInteractionThreshold 10, obsExpTheshold
1.5), if not specified otherwise.
Supplementary Table S8. Computed on different data sets from
Rao et al. (2014) with K-R on 10 kb resolution, on AMD Ryzen 3700X
8 cores/16 threads, 120 GB memory with Nvidia GTX 1070. HiCEx-
plorer, Chromosight, and cooltools were computed on 2 MB and 8
MB of genomic distance; HiCCUPS GPU on the full data set, HiCC-
PUS CPU, and “GPU restrict” mode with a fixed size of 8 MB.
Supplementary Table S9. Computed on different data sets from
Rao et al. (2014) with K-R on 10 kb resolution with 8 MB maximum
loop distance using only 1 thread. On AMD Ryzen 3700X 8 cores/16
threads, 120 GB memory with Nvidia GTX 1070. HiCCUPS used the
CPU-based version, and HOMER had no option to restrict the loop
size and computed therefore on the full data set.
Supplementary Table S10. Feature comparison of different loop
detection tools.

Competing Interests
The author(s) declare that they have no competing interests.

Funding
German Federal Ministry of Education and Research [031 A538A
de.NBI-RBC awarded to R.B.]; German Federal Ministry of Educa-
tion and Research [031 L0101C de.NBI-epi awarded to B.G.]. R.B.
was supported by the German Research Foundation (DFG) un-
der Germany’s Excellence Strategy (CIBSS–EXC-2189–Project ID
390939984). We acknowledge support by the Open Access Publi-
cation Fund of the University of Freiburg for contributing to the
publication fees.

Authors’ Contributions
J.W. designed and implemented the presented algorithm and
wrote the manuscript. R.B. contributed to the manuscript. B.G.
contributed to the manuscript.

Acknowledgments
We thank Simon Bray and Anup Kumar for proofreading the
manuscript.

REFERENCES
1. Imakaev, M, Fudenberg, G, McCord, RP, et al. Iterative correction

of Hi-C data reveals hallmarks of chromosome organization. Nat
Methods 2012;9(10):999–1003. http://www.nature.com/doifinder/
10.1038/nmeth.2148

2. Knight, PA, Ruiz, D. A fast algorithm for matrix balancing. IMA J
Numer Anal 2013;33(3):1029–47. doi:10.1093/imanum/drs019

3. Heinz, S, Benner, C, Spann, N, et al. Simple combinations of
lineage-determining transcription factors prime cis-regulatory
elements required for macrophage and B cell identities. Mol
Cell 2010;38(4):576–89. https://www.sciencedirect.com/science/
article/pii/S1097276510003667?via/3Dihub

4. Abdennur, N, Mirny, LA. Cooler: scalable storage for Hi-
C data and other genomically labeled arrays. Bioinformatics
2020;36(1):311–6.

5. Matthey-Doret, C, Baudry, L, Breuer, A, et al. Computer vision for
pattern detection in chromosome contact maps. Nat Commun
2020;11(1):1–11.

http://www.nature.com/doifinder/10.1038/nmeth.2148
https://www.sciencedirect.com/science/article/pii/S1097276510003667?via/3Dihub

Loop detection using Hi-C data with HiCExplorer | 9

6. Kaul, A, Bhattacharyya, S, Ay, F. Identifying statistically signifi-
cant chromatin contacts from Hi-C data with FitHiC2. Nat Protoc
2020;15(3):991–1012.

7. Salameh, TJ, Wang, X, Song, F, et al. A supervised learning frame-
work for chromatin loop detection in genome-wide contact
maps. Nat Commun 2020;11(1):1–12.

8. Rao, SSP, Huntley, MH, Durand, NC, et al. A 3D map of the human
genome at kilobase resolution reveals principles of chromatin
looping. Cell 2014;159(7):1665–80. http://dx.doi.org/10.1016/j.cel
l.2014.11.021

9. Wolff, J, Backofen, R, Gruening, B. Loop detection using Hi-C data
with HiCExplorer. bioRxiv 2020. doi:10.1101/2020.03.05.979096.

10. Wolff, J. Approaches to analysis of chromosome conformation
capture data. freiDok 2022. doi:10.6094/UNIFR/224705.

11. Cameron, AC, Trivedi, PK. Regression-based tests for overdisper-
sion in the Poisson model. J Econometrics 1990;46(3):347–64.

12. Robinson, MD, McCarthy, DJ, Smyth, GK. edgeR: a Bioconductor
package for differential expression analysis of digital gene ex-
pression data. Bioinformatics 2010;26(1):139–40.

13. McCarthy, DJ, Chen, Y, Smyth, GK. Differential expression anal-
ysis of multifactor RNA-seq experiments with respect to biolog-
ical variation. Nucleic Acids Res 2012;40(10):4288–97.

14. Andrey, G, Schöpflin, R, Jerković, I, et al. Characterization of hun-
dreds of regulatory landscapes in developing limbs reveals two
regimes of chromatin folding. Genome Res 2017;27(2):223–33.

15. Bonev, B, Cavalli, G. Organization and function of the 3D genome.
Nat Rev Genet 2016;17(11):661.

16. Wolff, J. Loop detection using Hi-C data with HiCExplorer. Zenodo,
2021. http://doi.org/10.5281/zenodo.5648500.

17. Wolff, J, Backofen, R, Gruening, B. Supporting data for “Loop de-
tection using Hi-C data with HiCExplorer.” GigaScience Database.
2022. http://dx.doi.org/10.5524/102215

http://dx.doi.org/10.1016/j.cell.2014.11.021
http://doi.org/10.5281/zenodo.5648500
http://dx.doi.org/10.5524/102215

