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(Supplementary Table 1). The average bead displacement and the 
ratio between correspondence candidates and true correspondenc-
es is a quantitative measure of the reconstruction success, which 
is crucial for automatic validation of registration results in long 
time-lapse recordings. The beads can be removed optically or com-
putationally from the sample (Supplementary Methods).

We applied the bead-based registration framework to SPIM 
recordings of early Drosophila melanogaster embryos, which are 
very challenging samples for multiview reconstruction owing to 
the scattering of the yolk that severely limits the overlap between 
views. We imaged Drosophila embryos expressing ubiquitous His-
YFP from five and seven views in an extended time-lapse record-
ing covering early embryonic development. We registered each 
time point separately and then registered all time points to each 
other compensating for minor drift during image acquisition 
(Supplementary Methods). We combined content-based fusion 
with nonlinear blending5 to compensate for brightness differ-
ences at boundaries between views (Supplementary Fig. 4). The 
reconstructed multiview acquisition of the specimen showed, in 
contrast to the single view, comparable lateral and axial resolution 
(Fig. 1e,f). We never imaged the anterior and posterior poles of the 
embryo with full lateral resolution in this acquisition, and yet the 
cells were clearly distinguishable, demonstrating the precision of 
the multiview reconstruction (Fig. 1g–i). In the middle of the speci-
men, the resolution was lower because only some views contributed 
high-content information whereas other views were blocked by the 
yolk (Fig. 1h). The reconstructed time-lapse recording provided an 
unprecedented four-dimensional view of Drosophila embryogen-
esis (Supplementary Videos 4 and 5).

The bead-based registration framework is sample-independent 
(Supplementary Data and Supplementary Fig. 5) and enables fully 
unguided registration without prior knowledge of the arrangement 
of the views (Supplementary Video 4). The software outperforms 
intensity-based registration approaches6,7 in terms of precision and 
speed, enabling accurate registration of large, multiview acquisi-
tions in minutes (Supplementary Data, Supplementary Fig. 6 and 
Supplementary Table 1). The run time of the bead-based regis-
tration framework is comparable to the time it takes to acquire 
the multiview data, and thus, to our knowledge, it is currently the 
only solution allowing robust, real-time registration of time-lapse 
SPIM recordings. Moreover, the bead-based registration framework 
is applicable to other optical sectioning microscopy techniques 
(Supplementary Fig. 7 and Supplementary Video 6), consider-
ably expanding the possible applications in biology. We provide 
our bead-based registration algorithm to the bioimaging commu-
nity as an open-source plugin for Fiji (Supplementary Fig. 8 and 
Supplementary Software; http://pacific.mpi-cbg.de/wiki/index.
php/SPIM_Registration).

Note: Supplementary information is available on the Nature Methods website.
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Partitioning biological data with 
transitivity clustering
To the Editor: Clustering is a common computational technique for 
data analysis in the life sciences. Essentially one defines clustering 
as a partitioning of arbitrary data objects into groups, such that the 
objects in each group, or cluster, have common traits, with respect to 
a similarity function. Ideally, objects from the same cluster are more 
similar to each other than to objects from different clusters. A density 
parameter controls the size and the number of resulting clusters.
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Figure 1 | Data analysis and clustering workflow. After importing and 
visualizing a subset of the data, a histogram of the distribution of similarities 
within and between gold standard clusters is created to estimate a promising 
region for the density parameter. Iterative clustering with varying thresholds 
and subsequent comparison against the gold standard identifies the ‘best 
threshold’. After importing and visualizing the whole dataset, this threshold 
is used to detect and report meaningful cluster assignments, which may be 
subject to subsequent integrated analyses.
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cal follow-up questions (step viii; Supplementary Table 1). With 
transitivity clustering and its implementation TransClust, we closed 
these gaps. The project website is available at http://transclust.
cebitec.uni-bielefeld.de/.

Note: Supplementary information is available on the Nature Methods website.
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Here we present ‘transitivity clustering’, an alternative way to par-
tition biological data, with easy-to-use interfaces: (i) a web inter-
face for a quick analysis of medium-sized datasets, (ii) a powerful 
stand-alone Java implementation for large-scale data clustering, 
and (iii) a collection of Cytoscape1 plug-ins that also provide meth-
ods to answer typical follow-up questions. Transitivity clustering is 
embedded in an integrated data-analysis framework, TransClust. We 
applied TransClust for protein sequence clustering, a long-standing  
challenge in computational biology2,3. Using the TransClust 
Cytoscape plug-ins we followed the typical data-analysis work-
flow (Fig. 1) to reconstruct protein families given the amino acid 
sequences. For this task, we found that transitivity clustering outper-
formed typical clustering approaches, such as connected component 
analysis, Markov clustering, spectral clustering, affinity propagation 
and hierarchical clustering (Supplementary Methods).

The typical process incorporates several data analysis steps:  
(i) identification of a similarity function, (ii) computation and 
postprocessing of a similarity matrix, (iii) visualization as a simi-
larity network, (iv) analysis of this network, that is, estimation 
of meaningful density parameters based on the similarity values 
(Supplementary Methods), (v) clustering of the similarity net-
work, (vi) comparison with given gold standards or toy examples, 
(vii) fine-tuning of the clustering by varying the clustering tool 
parameters, mainly the density parameter, (viii) visualization of the 
clustering results and (ix) follow-up analysis of the results regard-
ing underlying real-world questions. Although these steps are 
important to draw conclusions from the input data, most cluster-
ing frameworks solely concentrate on step v. Mainly two important 
functionalities are neglected: a semiautomatic estimation of  ‘good’ 
density parameters (step iv; Supplementary Fig.1) and a graphical 
postprocessing of the clustering results regarding specific biologi-
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