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ABSTRACT

Current genomic screens for noncoding RNAs (ncRNAs) predict a large number of genomic regions containing potential
structural ncRNAs. The analysis of these data requires highly accurate prediction of ncRNA boundaries and discrimination of
promising candidate ncRNAs from weak predictions. Existing methods struggle with these goals because they rely on sequence-
based multiple sequence alignments, which regularly misalign RNA structure and therefore do not support identification
of structural similarities. To overcome this limitation, we compute columnwise and global reliabilities of alignments based on
sequence and structure similarity; we refer to these structure-based alignment reliabilities as STARs. The columnwise STARs of
alignments, or STAR profiles, provide a versatile tool for the manual and automatic analysis of ncRNAs. In particular, we
improve the boundary prediction of the widely used ncRNA gene finder RNAz by a factor of 3 from a median deviation of 47 to
13 nt. Post-processing RNAz predictions, LocARNA-P’s STAR score allows much stronger discrimination between true- and
false-positive predictions than RNAz’s own evaluation. The improved accuracy, in this scenario increased from AUC 0.71 to
AUC 0.87, significantly reduces the cost of successive analysis steps. The ready-to-use software tool LocARNA-P produces
structure-based multiple RNA alignments with associated columnwise STARs and predicts ncRNA boundaries. We provide
additional results, a web server for LocARNA/LocARNA-P, and the software package, including documentation and a pipeline
for refining screens for structural ncRNA, at http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/.

Keywords: de novo prediction of RNA; reliability of structural alignment; simultaneous alignment and folding

INTRODUCTION

Starting with findings of catalytic RNA (Guerrier-Takada
et al. 1983) and taking off with the discovery of microRNAs
(Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and Ambros
2001) and the advent of genome-wide transcriptomics
(Bertone et al. 2004; Cheng et al. 2005; The FANTOM
Consortium et al. 2005), it has become obvious that RNA’s
crucial role in living cells extends far beyond being a mere
template for protein biosynthesis. Indeed, the majority

of transcripts might have primarily regulatory functions
(Mattick et al. 2009). Elucidating the functional roles
of many newly discovered noncoding RNAs (ncRNAs)
has thus become a central research interest in molecular
biology.

The function of many ncRNAs is determined by their
secondary structure rather than their sequence. Such struc-
tural ncRNAs can therefore be detected by their stable and
evolutionarily conserved secondary structures. Recent ad-
vances in computational RNomics originated numerous
approaches for this purpose (Rivas and Eddy 2001; Coventry
et al. 2004; Washietl and Hofacker 2004; Washietl et al.
2005a; Pedersen et al. 2006; Torarinsson et al. 2006; Uzilov
et al. 2006; Yao et al. 2006; Bompfünewerer et al. 2008).
Among these methods, EvoFold (Pedersen et al. 2006) and
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RNAz (Washietl et al. 2005a,b; Gruber et al. 2010) are ef-
ficient enough to be applied to genome-wide surveys in
mammals (Washietl et al. 2005b; Pedersen et al. 2006) and
other metazoan clades (Missal et al. 2005, 2006).

The fast approaches EvoFold and RNAz rely on the given
sequence-based whole-genome alignment; they cannot cor-
rect potential misalignments, which prevent them from
identifying conserved RNA structure. The idea of revising
the alignment for ncRNA prediction, pioneered by MSARi
(Coventry et al. 2004), is also realized in the EM-based
approach CMfinder (Yao et al. 2006), which extends the
idea from local sequence motif finders such as MEME
to the problem of finding local RNA structure motifs.
Due to its high computational demands, CMfinder has
never been applied to whole eukaryotic genomes; for ex-
ample, in (Torarinsson et al. 2008), it has been applied
to the ENCODE region, covering only 1% of the human
genome.

Whereas EvoFold applies stochastic context-free gram-
mars (SCFGs), an approach pioneered by qrna (Rivas and
Eddy 2001), RNAz is based on the evaluation of folding
thermodynamics and covariance. Both approaches classify
input alignments either as nonstructural or as possessing
a common RNA secondary structure.

Mainly motivated by efficiency reasons, both approaches
rely on sequence-based multiple alignments. However, be-
cause RNA structure is often more conserved than se-
quence, sequence similarity can be weak even within well-
established RNA families. Thus, many ncRNAs cannot be
aligned well by pure sequence-based techniques, which fail
for structural RNAs at pairwise sequence identities <60%
(Gardner et al. 2005). Various algorithmic approaches
have been introduced to determine structural similarities
and to derive consensus structure patterns for structural
RNAs with low sequence identity (Sankoff 1985; Gorodkin
et al. 1997; Mathews and Turner 2002; Höchsmann et al.
2003; Hofacker and Stadler 2004; Havgaard et al. 2005;
Siebert and Backofen 2005; Will et al. 2007; Bradley et al.
2008).

The first practical approaches for structure-based multi-
ple alignment, e.g., RNAforester (Höchsmann et al. 2003)
and MARNA (Siebert and Backofen 2005), depend on pre-
dicted or known secondary structures. In practice, how-
ever, these approaches are limited by the low accuracy of
structure prediction from single sequences. This dilemma
is overcome only by simultaneously computing an align-
ment and the common secondary structure of two aligned
sequences; the general problem was first solved by Sankoff
(1985). The high complexity of the general problem is
prohibitive for practical applications of this algorithm.
Therefore, variants of Sankoff’s algorithm introduce simpli-
fications of the general problem; there are two main classes.
Programs such as FoldAlign (Havgaard et al. 2005), dynalign
(Mathews and Turner 2002), and Stemloc-AMA (Bradley
et al. 2008) evaluate a loop-based energy model for RNA

during the alignment; the expensive energy evaluation
has to be compensated by strong, usually sequence-based
heuristics.

In contrast, PMcomp (Hofacker and Stadler 2004) and
LocARNA (Will et al. 2007) evaluate a more lightweight
energy model during the alignment. To obtain good accu-
racy, the base-pair weights in the lightweight energy model
are derived from base-pair probabilities in the single se-
quences (due to McCaskill’s algorithm from McCaskill
1990). By moving the expensive evaluation of the full-
featured energy model to the pre-computation phase, the
total computational cost is reduced significantly. Further-
more, one can ignore very unlikely base pairs without
compromising the alignment accuracy. This reduces the
complexity of these approaches effectively without requir-
ing sequence-based heuristics, since most of the potential
base pairs in RNA ensembles are improbable. This is called
‘‘sparsity at the structure level’’ since RNA base-pair prob-
ability matrices are sparse, i.e., they have only few significant
entries.

We see the largest potential benefits of structure-based
multiple alignment in its application to de novo prediction
of structural ncRNA. There, it can overcome the funda-
mental limitations of ncRNA prediction approaches that
rely on sequence-based alignment. However, there have
been two caveats that prevented its application. First, many
approaches need to use a sliding-window technique be-
cause the boundaries of the ncRNAs are not known in
advance. This technique can result in poor structure models
due to an inaccurate folding context. Second, structure-
based alignment has been computationally too demanding
for genome-wide screens.

To overcome these limitations, we propose a new pipe-
line for structural ncRNA gene finding that uses fast ncRNA
finders like RNAz as a first filter. The coarsely predicted
loci are then extended by genomic context and further
analyzed using the novel multiple sequence–structure align-
ment approach LocARNA-P. LocARNA-P enables auto-
mated analyses of multiple sequence–structure alignments
that as of yet have required manual inspection by experts;
typically such analysis tasks are assessing the overall align-
ment quality or finding the most reliably structurally aligned
regions for locating putative ncRNAs. For the purpose of
automated analysis, LocARNA-P provides fine-grained as
well as total reliability measures for structure-based align-
ments, which we call STARs (structure-based alignment
reliabilities). STARs can be used for several important tasks
in this pipeline, namely, for (1) detecting clusters of struc-
tural ncRNAs predicted as putative ncRNA-containing re-
gions by the ncRNA gene finder, (2) determining accurate
ncRNA boundaries using alignment reliabilities based on
sequence and structural similarity, and (3) improving the
predictive power of ncRNA gene finding.

While more conventional RNA alignment methods, in-
cluding LocARNA, compute ‘‘only’’ a multiple alignment
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based on sequence and structure similarity, LocARNA-P
additionally computes columnwise and global STARs based
on sequence and structural match probabilities. This enables
various further analysis and can even improve the multiple
alignment quality. From LocARNA, LocARNA-P inherits
its accurate scoring model and parts of its algorithmic
structure. To allow large-scale applicability, a major design
goal of the LocARNA-P algorithm has been to preserve the
low time and space demands of LocARNA for the more
involved task of computing STARs. We emphasize that the
time for computing STARs by a straightforward, non-
optimized algorithm grows with the sixth power of the se-
quence length, which is prohibitive for most applications.
Therefore, our approach is feasible for large-scale appli-
cations, only because we reduce the complexity by a qua-
dratic factor.

While approaches like RAF (Do et al. 2005) and ExpaRNA
(Heyne et al. 2009) aim at speeding up Sankoff-style align-
ment by means of further heuristics, the novelty of
LocARNA-P is the efficient calculation of match probabil-
ities and reliabilities (STARs), which introduces a novel
quality to Sankoff-style alignment.

Note that pairwise match probabilities for sequence–
structure alignments have been computed previously by
Hofacker and Stadler (Hofacker et al. 2004) and Harmanci
et al. (2008). However, we go far beyond these approaches
in terms of LocARNA-P’s efficiency and the novel use of
match probability for RNA analysis. In contrast to the pre-
vious approaches, which have not been evaluated on real-
life data, LocARNA-P has been thoroughly benchmarked
and is readily applicable to large-scale data sets.

For evaluating our approach, we predicted the gene
boundaries on a data set of 287 RNAz predictions in fly
(Rose et al. 2007) that coincide with the FlyBase structural
ncRNA annotations of Drosophila melanogaster. In this
data set, we improved the boundary prediction of RNAz
significantly. Note that, for the purpose of this article, we
refrained from predicting boundaries for the unannotated
loci, since this would not strengthen our evaluation. Our
boundary predictions reveal additional information about
the genomic context of the ncRNAs. For instance, it detects
39 or 59 sequence–structure conservation in flanking re-
gions. Notably, by examples and in a systematic study on all
tRNA loci, we observe that predictions covering flanking
regions reveal true signals in the majority of cases. Fur-
thermore, the visualization of the STAR profiles that un-
derlie our automatic predictions supports the interpreta-
tion by an expert. Finally, STAR profiles and boundary
prediction produce a powerful measure for discriminating
false and true positives in an ncRNA screen. We show that
this measure significantly increases the specificity and
sensitivity when post-processing an RNAz screen. Due to
the large number of ncRNA predictions from a genomic
screen, filtering ncRNA candidates for subsequent expen-
sive experimental analysis is a highly relevant application.

RESULTS

Sequence–structure-based alignment
reliability (STAR)

We define structure-based multiple alignment reliabilities
based on pairwise match probabilities. For the case of se-
quence alignment, a probability-based reliability measure
was introduced by the authors of Probcons (Do et al. 2008).
Here, we extend this idea to structure-based alignment.

Initially, we consider two sequences, A and B, with their
corresponding base-pair probability matrices. These matri-
ces are usually calculated from the respective sequence by
McCaskill’s partition function approach (McCaskill 1990).
We are going to compute a high-quality alignment of the
two sequences, based on sequence and structure similarity,
together with additional information on the confidence in
the individual alignment columns and the predicted con-
sensus structure; this confidence is expressed by column-
wise STARs. These STARs facilitate the interpretation of the
sequence–structure alignment and allow for further auto-
mated analysis. Technically, the computed sequence–structure
alignment is a pair consisting of a sequence alignmentA of A
and B and a secondary structure S of A. It is evaluated by
a scoring function composed of sequence similarity and
structure similarity. A consists of a set of base matches
written as i z k, where i is a position in A, and k a posi-
tion in B. The consensus secondary structure S for an
alignment A consists of a set of arc matches (i, j) z (k, l),
where i z k 2 A and j z l 2 A are matches in A, and (i, j)
and (k, l) are base pairs of respective sequences A and B.

We assign a similarity score to a pair (A;S). It combines
a log-odds score for the probabilities of matched base
pairs with a Ribosum-like scoring of sequential matches
(Klein and Eddy 2003) and uses affine gap cost. This scor-
ing function provides substantial improvements over the
original scoring function of LocARNA, which has been
applied in Will et al. (2007). We call this function the
LocARNA scoring function, since it is shared with
the current version of LocARNA (see the Appendix for
the formal definition).

Match probabilities

We are going to define probabilities of single base matches
and arc matches in sequence–structure alignments. For this
purpose, we define probabilities of pairs (A;S) of align-
ment and consensus structure. Such probabilities are de-
fined under the assumption of a Boltzmann distribution
over pairs (A;S) that is based on the scoring of LocARNA.

Computing match probabilities via a statistical mechanics
model has been introduced for sequence-based pairwise
alignment by Probalign (Roshan and Livesay 2006). How-
ever, the analogous approach has not been considered for
structure-based multiple alignment. By assuming a Boltzmann
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distribution, our approach differs from methods that ob-
tain probabilities from generative models such as hidden
Markov models (HMMs) or stochastic context-free gram-
mars (SCFGs). Such methods produce structures with
probabilities determined by given transition probabilities.
The main advantage of the nongenerative approach taken
here is that the underlying similarity scores have a more
intuitive semantic.

The probability Pr[(A;S)|A,B] of a pair of alignment
and consensus structures (A;S) is calculated by dividing
its Boltzmann weight by the total partition function. The
Boltzmann weight is obtained as exp[�b Sc(A;S)], where
we apply the LocARNA scoring function Sc and control the
distribution by the inverse temperature b. As usual, the total
partition function ZAB is the sum over the Boltzmann
weights of all pairs (A;S). Once the probability of a pair
of alignment and consensus structures is defined, we can
introduce base match and arc match probabilities. The
probability of an arc match (i, j) z (k, l), where (i, j) and
(k, l) are respective base pairs of A and B, is defined as the
sum of all probabilities of pairs (A;S) that contain this
match. Similarly, the probability Pr[i z k|A,B] of a base
match i z k is defined as the sum of the probabilities of
all alignment consensus structure pairs matching the two
bases Ai and Bk. For later use, we introduce an exclusive base
match probability Pr[i zs k|A,B] of a match i z k that is not
part of a structural match. Since a naive inside/outside
algorithm could compute such probabilities only with pro-
hibitively high complexity, it is crucial for our approach that
we reduce this complexity significantly. Further details are
provided in Materials and Methods and in the Appendix.

Columnwise STARs, boundary prediction,
and global STAR scores

Based on the pairwise match probabilities, we define
columnwise STARs for a multiple alignment A of K
sequences S1,. . .,SK. The sequence reliability seqSTARA(q)
of a column q and the base-pair reliability bpSTARA(q, q9)
of a pair of columns q and q9 are defined as the average of
all pairwise base match probabilities associated with column
q, and the arc match probabilities for columns q and q9,
respectively:

seqSTARA qð Þ=
1

K

2

� � +
1#a <b#K

Pr �Aa qð Þ zs
�Ab qð ÞjSa; Sb

� �

ð1Þ

bpSTARA q; q0ð Þ=
1

K

2

� � +
1#a<b#K

Pr �Aa qð Þ; �Aa q0ð Þ
� ��

z �Ab qð Þ; �Ab q0ð ÞÞjSa; Sb

� �
;

ð2Þ

where �Aa qð Þ is defined as the position in sequence Sa

associated with column q; we implicitly ignore terms in
the equations where there is no such position. Finally, in
addition to the columnwise sequence reliability, we define
a columnwise structure reliability indicating how reliably
the column is aligned and part of a base pair in the
consensus structure: strSTARA qð Þ+ Sq0<qbpSTARA q0; qð Þ+
Sq<q0bpSTARA q; q0ð Þ. Finally, the sum seqSTARA(q) +
v strSTARA(q) defines the columnwise STAR for each
column q; this results in the STAR profile of an alignment.
The factor v controls the weight of structure reliability
(against sequence reliability). At a weight of v = 2,
sequence and structure have the same influence, since each
structure reliability contribution consumes two alignment
columns. In LocARNA-P, we use a default of v = 3 to
emphasize the structural component.

We use STAR profiles to predict the boundaries of local
regions of conserved sequence and structure, which poten-
tially indicate ncRNAs, in alignments of longer sequences.
For that purpose, we separate the structural reliability of
the putative ncRNA from the reliability of the background.
This is performed by fitting a two-step function to the
reliability profile, where the higher value is the reliability of
the ncRNA (i.e., the signal) and the lower value the average
reliability of the background (Materials and Methods).

Furthermore, columnwise STARs allow us to define a
global reliability score for an alignment. For a pair (A;S)
of an alignment and a consensus structure, we add all asso-
ciated structural and nonstructural column reliabilities. Thus,
STARSA(S) is the sum of reliabilities v bpSTARA(q, q9)
over all column pairs (q, q9) in S and seqSTARA(q) over
all columns q that are not paired in S. Finally, we define
the STAR Score STARSA of the multiple alignment A as
maximum STARSA(S) over all structures S divided by
the length of the alignment. The efficient computation of
the score is reported in the Supplemental Material.

STAR plots

Visualized as STAR (profile) plots, columnwise STARs pro-
vide an intuitive view of the local reliability of the align-
ment. For the ease of interpretation, we project the STAR
profile to one particular reference sequence of interest. This
proved useful in all studied applications, particularly when
the annotation is known or is to be generated for the
particular sequence.

Figure 1A demonstrates how STAR profiles can support
the manual curation of ncRNA alignments. We show se-
quence and structure reliability along an automatic align-
ment of nine 7SK ncRNAs generated by LocARNA-P. The
STAR plot is projected to the RNA of Xenopus laevis and
complemented by a mountain plot of the consensus struc-
ture. The consensus structure was obtained from a large
hand-curated alignment of 7SK ncRNAs. It fits the pre-
dicted structure reliabilities well, which is visible by the
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good agreement of the flanks of the mountain plot and
the peaks of structure reliability. The general shape of the
STAR profile is in agreement with the experiences from
hand-curating the alignment, where the 59 and 39 ends of
the sequences align very well and columns between posi-
tions 150 and 250 are extremely variable (Gruber et al.
2008a; Marz et al. 2009).

Locating structural ncRNAs using STAR profiles

Given a STAR profile projected to the sequence of the
reference genome, we computationally predict the loca-
tion of putative ncRNAs by fitting a two-step function as
described before.

Figure 1B shows the STAR plot for the microRNA cluster
from position 90,800,800–90,801,699 of human chromo-
some 13, generated from aligning 10 mammalian sequences.
In particular, the structural component of the STAR profile
(dark region) correlates well with the annotated micro-
RNAs, which are indicated by thin lines. Fitting the two-
step function results in a good prediction of the microRNA
locations (thick line on top). A larger example from five
mammalian sequences with lengths z5000 is given in
Figure 1C. The figure profiles the human gene gas5,
whose introns contain 10 C/D-box snoRNAs (Smith and

Steitz 1998). Identifying the C/D-box
snoRNAs in this large genomic con-
text is challenging due to their weak
conservation signal for both sequence
and structure. Consequently, C/D-box
snoRNAs have proven to be particu-
larly hard to discover using de novo
structural ncRNA predictors like RNAz.
However, we correctly predicted eight
of the 10 snoRNAs. We emphasize that
LocARNA-P nontrivially supports the
computation of these very large instances
due to optimally exploiting local folding
(Supplemental Material).

Accurate boundaries
of structural ncRNA

A common problem in the de novo
prediction of ncRNAs is that only ap-
proximate locations of structural RNAs
can be identified. This problem is shared
even by experimental approaches for
ncRNA detection such as tiling arrays
and short read sequencing. We show
that the STAR profile plot combined
with automated detection of high-re-
liability regions yields accurate bound-
aries of structural RNA.

To verify this claim, we generated a
data set of true-positive predictions of a recent RNAz
(Washietl et al. 2005a) screen (Rose et al. 2007) in Drosophila
melanogaster, which is based on a whole-genome alignment
of the 12 Drosophila genomes (Clark et al. 2007). In this
screen, 120-nt-long alignment slices of the whole-genome
alignment, called ‘‘windows,’’ at every 40 nt are evaluated
with RNAz; the latter estimates a ‘‘class probability’’ P of
containing structural RNA. Each set of overlapping win-
dows with RNAz P $ 0.5 in either orientation is combined
into a ‘‘locus.’’ As true positives, we selected 287 out of the
about predicted 42,000 loci that overlap with at least one
of the FlyBase-annotated structural noncoding RNAs in D.
melanogaster. For each of the loci, we selected all sequences
that have at most 25% gaps in the whole-genome alignment
slice of the locus region. This filter criterion was proposed
by Rose et al. (2007) to remove weakly aligned sequences.
To enable prediction of ncRNA boundaries that exceed
the RNAz prediction and to add background signal, each
sequence was extended by genomic context. While large
context increases the computational cost of the subsequent
realignment, its size should significantly exceed the ex-
pected deviation between true ncRNA boundaries and RNAz
prediction, which can be estimated from the annotation
(cf. Fig. 2A). Thus, we added 100 nt upstream and down-
stream, as long as we stay in the same syntenic block. For

FIGURE 1. STAR profile plots with annotations. In each profile plot, the dark regions indicate
structure reliability, the light regions represent sequence reliability, and the thin line shows the
combined column-reliability. The thick lines on top of B and C show the automatic prediction
based on the STAR profile; below we indicate the known annotation by thinner lines. (A) STAR
plot of an alignment of nine ncRNAs from the 7SK ncRNA family projected to the X. laevis
sequence. The profile is annotated with a mountain plot of the consensus structure. (B) STAR
plot for the LocARNA-P-alignment of the miRNA cluster hg18, chr13, positions 90800800–
90801699, projected to the human sequence; the known microRNAs are easily detected using
our method. (C) STAR plot for the LocARNA-P alignment of the human gene gas5 (hg18,
chr1, 172,099,662–172,103,748); the gene is aligned with four other mammalian sequences; the
introns of human gas5 host 10 C/D-box snoRNAs.
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only nine of the 287 loci, only a shorter context was
available. These extended locus alignments consist of at
average 8.5 sequences where the sequences have an average
length of z325 and a maximal length of 560 nt.

For each locus, we realigned its extended sequences in
both orientations and calculated according STARs, both
performed simultaneously by LocARNA-P. This resulted
in a STAR profile per locus, which we projected to the
D. melanogaster sequence. For predicting boundaries by
fitting the two-step function to the profile, we constrained
the fit to predict exactly one range. The predicted bound-
aries were then compared with the boundaries of both the
annotated ncRNA and the RNAz locus region.

We compare our predictions with the annotation in
FlyBase for the assembly used by the RNAz screen. Notably,
we make a single exception to this rule for microRNAs.
Since we expect to identify their structural precursors in-
stead of the (nonstructural) mature miRNA, we compared
our predictions with the pre-miRNA annotations from
miRBase.

Figure 2A shows the deviation of the boundaries de-
termined by LocARNA-P from the annotated boundaries
in a notched box plot. We measure this deviation as a
sum of differences between the predicted and annotated
39 end and 59 end. Non-overlapping notches indicate a
significant difference in the median because a notch rep-
resents the approximate 95% confidence interval of the
median (Chambers et al. 1983). For understanding the
dependency on the strand orientation, we show medians for
analyzing the plus and minus strands or even the annotated
strand, finding no significant differences. In particular,
boundary prediction does not rely on knowing the correct
orientation of the RNA. However, there is a significant
difference between the RNAz boundaries and the bound-
aries detected by LocARNA-P. The median for RNAz is 47,
whereas the median for our method is between 10 and 13
(depending on the strand orientation). This indicates that
significant improvements of the boundary prediction,
as shown in Figure 2B, are common. We emphasize that
this improvement is even more important for practical

FIGURE 2. Accurate ncRNA boundaries for Drosophilids RNAz screen. (A) Deviation from annotated boundaries. We compare the deviation of
RNAz (red) with the deviation of the boundaries as determined with our method (green). When the notches around the medians do not overlap,
there is strong evidence that the medians differ. We show results of our method in three variants, since the alignment quality could be expected to
depend on the sequence orientation: first, always aligning the sequences in forward orientation (+); second, in reverse orientation (�); third, in
the orientation of the ncRNA annotation (annotated). (B–D) STAR plots with LocARNA-P predictions (thick green lines on top), RNAz
predictions (red lines below), and annotated regions, RNAz predictions (red), and LocARNA-P predictions (green). (B) LocARNA-P precisely
locates the snoRNA:U5:38ABa annotated in FlyBase. (C) For tRNA:H:48F, our prediction is well correlated with the precursor (cyan line) as
described by Frendewey et al. (1985) (FlyBase annotation). (D) In the case of tRNA:N5:42Af, the magenta line shows the tRNA precursor,
including the flanking region given by Lofquist and Sharp (1986). Here, RNAz indicates a 39 extension, whereas LocARNA-P indicates the
structure in the 59 part of the precursor. As shown by Lofquist and Sharp (1986), the 59-flanking regions of the tRNA5Asn genes differentially
arrest RNA polymerase III.
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applications because RNA folding is well known to be very
context-sensitive.

We investigated cases in which the LocARNA-P pre-
diction differs from the given annotation to a greater
extent. Some of these cases are plainly due to incomplete
or incorrect annotation. For example, for snoRNA U3
(FlyBase ID snoRNA:U3:54Aa) and smnRNA:331, only par-
tial genes are annotated. In the case of SnoRNA:3, the
annotation is incorrect for the 2004 assembly used for the
RNAz screen (Rose et al. 2007). In the current assembly,
however, the annotation matches the predicted signal.

In many cases, the predicted extended signals may cor-
respond to precursors with conserved structure, as in the
case of miRNAs. For tRNAs, we analyzed this source of
incongruence between prediction and annotation in more
detail. The tRNAs are known to undergo processing after
being transcribed as precursors. The annotated tRNA
‘‘genes’’ are always the mature tRNAs. In contrast, the
precursor is in almost all cases unknown. There is no
agreement in the literature as to the exact extent of the
precursor. Morl and Marchfelder (2001) estimate a length
of only 5–15 nt for the 39 trailer, while recent deep
sequencing data show that this length often exceeds 20 nt
(e.g., Lee et al. 2009). Consistent with these findings, it
is not surprising that our method very often predicts
a signal that not only covers the complete mature tRNA,
but also extends in both the 59 and 39 direction, indicating
that the putative precursors may also form structures out-
side of the range of the mature products of functional
importance. In the two examples given in Figure 2, C and D
(respective FlyBase IDs tRNA:H:48F and tRNA:N5:42Af),
we compare the predictions with precursors described in
the literature. In the case of tRNA:N5:42Af, RNAz predicts
a 39 extension, whereas LocARNA-P unveils a signal in the
59-flanking region. The latter is consistent with the obser-
vation (Lofquist and Sharp 1986) that the 59-flanking
regions of the tRNA5

Asn genes differentially arrest RNA
polymerase III.

This disagreement between RNAz and LocARNA-P
concerning the 59- and 39-flanking regions motivated us
to look at the length distributions of 59- and 39-flanking
regions of tRNAs as predicted by LocARNA-P. If these
extensions were only due to random fluctuations, then one
would assume the same distribution for both 59 and 39

regions. However, Figure 3A shows that the distributions
are significantly different. Whereas the predicted 39 ends
coincide well with the mature tRNA, LocARNA-P tends
to detect an additional structure signal in the 59 region.
The nonrandomness of this signal strongly suggests that
LocARNA-P detects a true signal for structural conserva-
tion in the 59 part of the tRNA precursors.

Improving discrimination power of ncRNA screens

All current predictors of structural RNA suffer from a
high false discovery rate. In many cases, e.g., for exper-
imental analysis, one is interested in selecting a small
set of high-confidence predictions. In an RNAz screen,
the most straightforward and common method for
this purpose is to rely on RNAz’s own evaluation and
increase the threshold for positive predictions. Note that
RNAz evaluates a locus by the maximal ncRNA class
probability ‘‘RNAz max P’’ of the contributing windows,
since RNAz originally predicts probabilities that each
single window contains ‘‘structural RNA’’ and then
combines overlapping windows with P $ 0.5 into a
‘‘locus.’’

We propose an alternative strategy that rescores each
RNAz prediction based on its LocARNA-P STAR profile
and boundary prediction. We compared the resulting
LocARNA-P discriminator with the currently used RNAz
max P discriminator for discriminating RNAz loci, which
themselves are predictions of the RNAz screen. To avoid
confusion, we emphasize that this differs from estimat-
ing the false discovery rates of either tool RNAz or
LocARNA-P.

FIGURE 3. (A) Distribution of predicted lengths of 59 and 39 flanking regions for tRNAs. The figure omits four outliers with 39-trailers longer
than 100. (B) Discriminating ncRNAs. ROC curves for discriminating RNAz loci, which are positives of an RNAz screen, by RNAz itself (using
RNAz max P) and after rescoring with LocARNA-P by the STAR discriminator.
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For our experiment, we select a positive data set con-
sisting of the 287 annotated RNAz loci in fly determined for
the previous experiment. For the negative set, we generated
250 RNAz decoy alignments that consist of windows with
RNAz P-score $ 0.5 by shuffling. For shuffling, we apply
a greedy strategy based on the tool rnazRandomizeAln.pl
of RNAz. The details are described in Materials and
Methods. We preferred this strategy over a generate-and-
test approach, which is computationally expensive since
shuffling a large locus consisting of several windows will
rarely result in a RNAz decoy locus.

The resulting Figure 3B shows that the novel strategy
retains significantly more true positives for a given im-
provement in specificity. The lower ROC curve displays the
effect of using a higher RNAz threshold between 0.5 and
1.0, as commonly used to reduce the false discovery rate.
The upper curve shows the characteristic of the STAR-
based discriminator. For the negative set, we furthermore
extended the decoy loci alignments by their shuffled
original alignment context and obtained the context-
extended sequences as described in the previous section
for the positive locus alignments. For positive and negative
examples, we computed the LocARNA-P STAR profile of
the corresponding locus. From these profiles, we predicted
boundaries and determined the average columnwise STAR
inside and outside of the predicted boundaries. The ‘‘STAR
discriminator’’ is defined as the difference between average
inside and outside reliability.

The discriminative power of the two measures, given as
the area under the curve (AUC), is estimated at 0.71 for
RNAz max P compared with 0.87 for the new STAR-based
measure. This suggests that LocARNA-P significantly im-
proves the discriminative power over RNAz alone when
post-processing de novo ncRNA screens by RNAz.

Correlation of the STAR score

The structure-based alignment reliability STAR is a novel
feature that has not been used in ncRNA screens before.11

Thus, we compared the STAR score with features that
have been previously applied to measure the quality of
sequence–structure alignment within the prediction of
ncRNAs. To this end, we investigated how well certain
features—including the average pairwise sequence identity
(APSI), the structural conservation index (SCI) (Washietl
et al. 2005a), and the STAR score—correlate with align-
ment quality on a benchmark set of 10-way (reference)
alignments from the Rfam database. For each benchmark
alignment, we realigned the sequences using LocARNA-P
and compared the produced alignment with the reference
alignment using the compalign score. The latter measures

the similarity between two multiple alignments; it refers to
the sum-of-pairs score (SPS) introduced with Bralibase 2.1
(Wilm et al. 2006).

Correlation plots are provided as Supplemental Figure 1.
We observed that the SCI does not correlate well with the
quality of the alignments as measured by the compalign
score. APSI shows better correlation (0.69), which is ex-
pected because sequences with high APSI are much easier
to align than sequences with low APSI. However, the
highest correlation (0.78) is achieved by the STAR score.
To rule out the possibility that this correlation is observed
only in LocARNA-P-generated alignments, we also calcu-
lated the STAR scores for alignments that were produced
by a second sequence–structure alignment method (Lara)
(Bauer et al. 2007). We found a very strong correlation
(0.99) between the STAR scores for the alignments of the
different methods. This finding indicates that LocARNA-P
STARs yield a very good general model of sequence–structure
alignment.

DISCUSSION

Finding structurally conserved regions is one of the main
tasks in the analysis of noncoding RNA. Approaches using
sequence alignments as input heavily rely on alignment
quality and are thus strongly limited by the low availability
of high-quality alignments. Sankoff-style methods for the
simultaneous alignment and folding of the homologous
RNA sequences overcome this limitation and are thus con-
sidered the gold standard for that purpose. However, the
biological interpretation of such alignments poses major
problems because straightforward resampling methods,
which are routine in assessing the significance of pair-
wise sequence alignments, are precluded by their exten-
sive resource consumption.

By defining the sequence and structure similarity-based
alignment reliabilities STARs, we introduced novel mea-
sures of the local and global quality of sequence–structure
alignments. The STAR score can even be used to analyze
the quality of alignments computed by independent methods.
Furthermore, they improve the prediction of ncRNAs.
Columnwise STARs, which capture the confidence in spe-
cific alignment columns, are calculated from match proba-
bilities. In addition, we distinguish STARs for nonstructural
and structural columns, as well as STARs for structurally
aligned column pairs; we have shown that this efficiently
discriminates structural regions from nonstructural regions
of the alignment. The STAR profile plots allow visual in-
spection and interpretation.

The STAR score, based on columnwise STARs, turned
out to be highly correlated with the alignment quality of
sequence–structure alignments, where quality is understood
in terms of similarity to reference alignments measured
by the compalign score. The correlation is independent of
whether these alignments were generated by LocARNA-P

11Interestingly, the term reliability has been used in the related context
of RNA structure prediction before, albeit obviously with a very different
definition (Knudsen and Hein 2003).
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or other tools. This result shows that STARs capture general
properties of correct sequence–structure alignments. Re-
markably, the structural conservation index (SCI), reported
in Gruber et al. (2008b) as the best method for detecting
conserved secondary structure in sequence alignments, is a
much worse measure of the alignment quality of sequence–
structure alignments.

Furthermore, the STAR profiles can even be used to
improve the computational prediction of ncRNA tran-
scripts. We evaluated the two most important tasks of
such an analysis. Albeit we performed this study for a de
novo ncRNA prediction by RNAz, the suggested refinement
would as well work for other RNA predictors. In addition,
the method enables further analysis of deep-sequencing
experiments (RNA-seq); for example, it can detect struc-
tural motifs in discovered transcripts, whereas RNA-seq
cannot distinguish between structural and unstructural RNA.
Furthermore, it is not straightforward to define the exact
boundaries of transcripts from RNA-seq data (Langenberger
et al. 2009); among the reasons are processing of ncRNA
precursors, degradation products, and sequencing artifacts.
Here, LocARNA-P provides additional hints on the true
boundaries.

In our study, we determined accurate ncRNA bound-
aries for RNAz predictions from the projected STAR
profiles; in particular, we improved the boundary accu-
racy by a factor of 3 from a median deviation of 47 to
13 nt. Boundary prediction is of particular importance
because incorrect boundaries compromise all subsequent
analysis steps that require a model of the secondary struc-
ture. Furthermore, based on the profile combined with the
predicted boundaries, we computed a new discriminator for
ncRNAs. Applied in the post-processing step of an RNAz
screen, this discriminator is significantly stronger in
distinguishing true RNAz predictions from false-positive
predictions than the max P discriminator that is currently
proposed by RNAz for this purpose. This improvement is of
particular relevance because it reduces the number of
ncRNA candidates for subsequent, more expensive, analy-
sis steps.

MATERIALS AND METHODS

Efficient calculation of match probabilities

The match probabilities are efficiently calculated by LocARNA-P
using dynamic programming for computing partition functions
inside and outside of subsequence pairs Ai . . . Aj and Bk . . . Bl.
Finally, these partition functions are combined for obtaining
probabilities. The use of inside and outside algorithms for this
purpose is well known from stochastic context-free grammars.
However, a naive application of this algorithm results in a very
high time complexity of O(n6) and space complexity of O(n4),
where n is the length of the input sequence. This rapid growth of
space and time requirements with the input size would limit the
algorithm to only small instances. As we describe in detail in the

Appendix, we calculate the match probabilities in a much lower
complexity of O(n4) time and O(n2) space, which is essential for
the applicability of the approach in practice. This low complexity
of LocARNA-P, as well as of LocARNA, results from the use of
sparsity at the structure level. LocARNA (Will et al. 2007)
introduced this use of sparsity to Sankoff-style approaches. The
same idea is found in FoldAlignM (Torarinsson et al. 2007) and
was later picked up by RAF (Do et al. 2005). Interestingly, RAF
(Do et al. 2005) combines sparsity at the structure and sequence
level, a combination first seen in Stemloc (Bradley et al. 2008),
which further improves the efficiency of Sankoff-style methods at
the cost of strong sequence-based heuristics.

Predicting boundaries from a STAR profile

We predict the regions of conserved secondary structure from a
STAR profile by fitting a two-step function to the profile. Ex-
tending the idea of least-squares fitting, the quality of a fit is the
sum of square deviations plus a penalty D for each switch between
the values a and b. For a given a and b, the optimal fit is cal-
culated by an exact approach using dynamic programming.
Instead of fitting all profiles with the same a and b values, we
determine optimal values of a and b for each STAR profile using
gradient descent optimization.

Formally, let f:{1, . . ., n} / R denote a STAR profile of length
n, i.e., f(q) = seqSTARA(q) + v strSTARA(q). We fit a two-step
function g to f, such that g approximates f as well as possible.
Therefore, we determine constants a and b, such that

+n

i = 1 f ið Þ � g ið Þð Þ2 + d f i� 1ð Þ; f ið Þð Þ D

is minimal for all g: 1, . . ., n / {a, b}, where d(x, x) = 0 and
d(x, y) = 1 for x 6¼ y, D 2 R is a penalty for switching between
the values of g, and g(0): = a. Basically, we perform a least-square
distance approximation of f extended by a penalty term. The
larger value of a and b represents the signal level, whereas the
smaller value represents the background.

For given constants a and b, an optimal function g can be
computed by dynamic programming. For this purpose, we solve
the recursion equations

A ið Þ= f ið Þ�að Þ2 + min A i � 1ð Þ; B i � 1ð Þ+ Dð Þ
B ið Þ= f ið Þ�bð Þ2 + min A i�1ð Þ+ D;B i � 1ð Þð Þ

ð3Þ

with initialization A(0) = 0 and B(0) = 0 for A(n) and B(n) and
obtain g by traceback.

For finding optimal constants a and b, we formulate a partition
function variant of these equations. Minimizing the partition
function ZA(n) + ZB(n) by gradient descent optimization, we
determine optimal constants a and b. Note that we choose to
optimize ZA(n) + ZB(n) instead of the cost A(n) + B(n), because
for the partition function recursions, one can calculate partial
derivatives. At sufficiently low temperature, such constants will
also minimize the cost A(n) + B(n). More details are given in the
Supplemental Material.

Generating decoy locus alignments

Rose et al. (2007) define an ‘‘RNAz locus alignment’’ as a slice of
the 12-flies whole-genome alignment that is covered by window
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alignments of at most 120 columns with RNAz probability of
P $ 0.5 for either the + or � strand. A ‘‘decoy locus alignment’’ is
covered by windows with RNAz probability P $ 0.5 and has
identical length, base composition, and gap pattern and similar
conservation pattern to an existing RNAz locus alignment. How-
ever, a decoy locus alignment is not contained in any genome
alignment and therefore cannot be a true positive.

We generate such decoys from true RNAz locus alignments
by gentle shuffling as described in Rose et al. (2007). Gentle
shuffling randomly permutes alignment columns but exchanges
only columns with identical gap pattern and similar sequence
conservation. We apply gentle shuffling to successive non-over-
lapping windows in the locus alignment but do not shuffle
overlapping windows to maintain the locality of the base com-
position and conservation pattern. To speed up the approach for
larger loci, we apply a greedy strategy and allow several attempts
per window (at most 25 times) until RNAz evaluates to P $ 0.5.
Each window of the resulting alignment is tested for coverage by
RNAz P $ 0.5 windows in exactly the way of Rose et al. (2007).
Finally, decoy context is generated by gentle shuffling of the
original context in the whole-genome alignment.

Benchmarks

We measure the performance of LocARNA-P using the Bralibase
2.1 (Wilm et al. 2006) benchmark set. We have shown (Supple-
mental Fig. 4) that there is a significant improvement in the
quality of multiple alignment compared with competing methods
(Supplemental Material).

Running LocARNA-P

Information on obtaining the LocARNA-P software can be found
under Supplemental Material. The Supplemental Material provides
extensive documentation of the software. The core functionality
of LocARNA-P is accessible via parameters of LocARNA’s mul-
tiple alignment tool mlocarna. mlocarna provides a high-level
interface to the low-level C++ tools for computing pairwise
alignments and match probabilities in the LocARNA package.
Reading multiple input sequences in fasta format, mlocarna with
option ‘‘probabilistic’’ computes a multiple alignment and col-
umnwise STARs. All results, including columnwise sequence and
structure reliabilities, are written to text files. Further functional-
ity, like computing the STAR score and estimating ncRNA bound-
aries, is accessible via scripts. In particular, we provide scripts and
documentation for running the refinement of an RNAz screen,
including the generation of reliability profile plots.

SUPPLEMENTAL MATERIAL

Supplemental Material is available for this article on both the
journal site and at http://www.bioinf.uni-freiburg.de/Supplements/
LocARNA-P/. LocARNA-P can be downloaded as part of the
LocARNA software package, which is freely available under the
GNU general public license.
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APPENDIX: THE LocARNA-P ALGORITHM

In this Appendix, we explain the dynamic programming
algorithm of LocARNA-P and the necessary foundations
due to LocARNA in formal detail. Recall that in the Re-
sults, we defined probabilities for matches in the alignment
of two RNA sequences A and B with associated base-pair
probability matrices PA and PB, respectively. Suitable matrices
are usually obtained from the respective RNA sequence
using McCaskill’s algorithm (RNAfold -p). The probabil-
ities are defined on the basis of the alignment score of
LocARNA, by assuming a Boltzmann distribution of align-
ment consensus structure pairs. This allows building on the
established LocARNA score. After describing the LocARNA
score and the algorithm of LocARNA, we present the algo-
rithm of LocARNA-P, which efficiently computes these
probabilities. The use of these probabilities in a probabi-
listic consistency transformation for progressive multiple
alignment and iterative alignment refinement is discussed
in the Supplemental Material.

Preliminaries: RNA alignment by LocARNA

LocARNA is a Sankoff-style algorithm, which simulta-
neously folds and aligns RNA sequences. The original
Sankoff algorithm (Sankoff 1985) provides a general solu-
tion to the problem of simultaneously computing an align-
ment and a common secondary structure of the two
aligned sequences. Without heuristic restrictions, the prob-
lem requires O(n6) CPU time and O(n4) memory, where n
is length of the RNA sequences to be aligned. In contrast
to Sankoff-style methods like FoldAlign (Havgaard et al.
2005) and dynalign (Mathews and Turner 2002), PMcomp
(Hofacker and Stadler 2004) and LocARNA use structure
models of the RNAs, which are reasonably obtained using
McCaskill’s algorithm (McCaskill 1990) on the basis of a
full-featured energy model.

Alignment score

Define the single-stranded part of the alignment, denoted
by As, by: if i z k 2 As, then there is no pair j zl such that
(i, j) z (k, l) 2 S or (j, i) z (l, k) 2 S.

LocARNA determines the pair (A, S) that maximizes the
score function:

Sc A;Sð Þ= +
i;jð Þz k;lð Þ2S

t i; j; k; lð Þ+ +
izk2As

s i; kÞ � Ngapg;
�
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where t(i, j; k, l) is the score for matching the arcs (i, j)
and (k, l), s(i, k) is the similarity score for a (mis)match
of positions i and k in A and B, respectively, g is the gap
score parameter, and Ngap is the number of insertions and
deletions in the alignment A. Although we define and
henceforth discuss only linear gap cost to ease presenta-
tion, the actual LocARNA score features affine gap cost,
which is supported by LocARNA, as well as by our imple-
mentation of LocARNA-P, with very moderate space and
time overhead.

We use arc-match scores

t i; j; k; lð Þ := CA
ij + CB

kl;

where CA
ij and CB

kl are base-pair scores that are derived
from the base-pairing probability matrices of the two in-
dividual sequences. More precisely, we define:

CX
ij = log

PX
ij

pX
0

.
log 1

pX
0

if PX
ij $ p�

�‘ otherwise;

(
ð5Þ

where PX
ij is the equilibrium pairing probability for se-

quence X 2 {A, B} as computed by McCaskill’s algorithm
(McCaskill 1990), PX

0 is the expected probability for a
pairing to occur at random in sequence X, and p* is the
cut-off probability, below which the arcs are ignored.
Formally, this is expressed by assigning �N as weight in
this case. We call base pairs with probability $p* ‘‘signif-
icant.’’ The term log pX

ij

.
pX

0 is the log-odds score for having
a specific base-pairing against the null model of a random
pairing, and log 1=pX

0 is a normalization factor that trans-
forms the weights to a maximum of 1. This normalization
is introduced to ease balancing the sequence score against
the structure score.

LocARNA-P uses exactly the same scoring function
as LocARNA. However, it does not maximize the score
according to this function but computes match probabil-
ities based on this scoring function. How match probabil-
ities relate to the scoring function is detailed in the ‘‘Match
Probabilities’’ section of Results.

Efficient alignment using base-pair probabilities

LocARNA maximizes its score by efficiently evaluating a
recursion equation using dynamic programming. The es-
sential improvement of LocARNA over PMcomp is due to
considering only significant base pairs in predicted struc-
tures. As we argued earlier (Will et al. 2007), by filtering we
keep only O(n) significant base pairs in each sequence and
only O(1) that share a given right end. Consequently,
LocARNA improves the time complexity of PMcomp from
O(n6) to O(n4) and, even more importantly, the space
complexity from O(n4) to O(n2). The favorable time and
space complexity of LocARNA is retained when extending
the approach for the computation of match probabilities

in LocARNA-P. Because of this structural analogy of the
algorithms, we review the recursion structure of LocARNA
in detail.

Both PMcomp and LocARNA define two four-dimensional
(4D) matrices M and D that are filled recursively. Mij;kl is de-
fined as the maximal score of an alignment of subsequences
Ai..j and Bk..l. Dij;kl is the best score of an alignment of Ai..j

and Bk..l with the additional condition that the base pairs (i, j)
and (k, l) are matched. The LocARNA/PMcomp recursion
can be written in the form:

Mi i�1;k k�1 = 0

Mi j;k l = max

Mi j�1;k l�1 + s j; lð Þ
Mi j�1;k l�1 + g

Mi j;k l�1 + g

maxj0 l0 Mi j0�1;k l0�1 + Dj0 j;l0l

8>>><
>>>:

Di j;k l = Mi + 1j + 1;k�1 l�1 + t i; j; k; lð Þ:

In contrast to PMcomp, LocARNA evaluates this re-
cursion keeping only O(n2) entries in memory at any time.
Due to the restriction to significant base pairs, the fourth
case of the M recursion runs over only O(1) pairs of sig-
nificant base pairs; consequently, the total algorithm has
O(n4) time complexity.

For space complexity, we first observe that D-entries
are needed only for matches (i, j) z (k, l) of significant
base pairs, which are only O(n2) many matches. Thus, the
D-matrix can be easily represented by a two-dimensional
(2D) matrix indexed by base pairs. Second, due to the
special structure of the M recursion, which fixes the left
subsequence ends i and k, we can compute all entries
Did;kd recursing only to entries Mi+1d;k+1d.

12 Thus, a single
O(n2) sized M matrix is sufficient for the computation of
all Did;kd, since the matrix can be reused for all left ends i
and k.

An extension that explicitly incorporates base-pair
stacking without increasing complexity is described by
Bompfünewerer et al. (2008).

LocARNA-P’s core algorithm: Partition function
version of LocARNA

The calculation of alignment match probabilities by
LocARNA-P is based on partition functions. Recall that
the probability of a pair of alignment and consensus
structure (A, S) is given by

Pr A;Sð ÞjA;B½ �= exp �bSc A;Sð Þð ÞZ�1
AB

12We introduce notation using index d as a wildcard. For example,
Mi+1d;k+1d refers to the matrix slice of entries Mi+1j;k+1l, where i + 1 # j # n
and k + 1 # l # m. We freely use analogous notation in the following.
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where the partition function ZAB for sequences A and B is
defined as

ZAB : = +
A;Sð Þ of A;B

exp �bSc A;Sð Þð Þ

and b is a parameter that controls the distribution, called
the ‘‘inverse temperature.’’

Calculating match probabilities in LocARNA-P consists
of three phases, which are comparable to the algorithm
of Hofacker and Stadler (Hofacker et al. 2004) but go
beyond this algorithm in terms of complexity. First, an
inside dynamic programming algorithm computes inside
partition functions. This part of the LocARNA-P algorithm
has the same recursion structure as the LocARNA algo-
rithm. Second, a corresponding outside algorithm calcu-
lates outside partition functions. We devise a dynamic
programming algorithm that computes these values in the
given complexity envelope. Finally, we show how to obtain
the single-base and base-pair match probabilities. Again,
this phase remains within the complexity bounds.

Inside algorithm

We define two 4D matrices:

ZM
i j;k l = + exp �b Sc A;Sð Þð Þ

A alignment of
Ai::j and Bk::l;
S consensus secondary
structure forA

��������

8>><
>>:

9>>=
>>;

and

ZD
i j;k l = + exp �b Sc A;Sð Þð Þ

A alignment of
Ai::j and Bk::l;
S consensus secondary
structure forA;
where i; jð Þz k; lð Þ 2 S

����������

8>>>><
>>>>:

9>>>>=
>>>>;

Note that ZD
i j;k l is valid (and later has to be computed) only

for significant13 base pairs (i, j) and (k, l).
The matrix entries are recursively computed by the

following equations (cf. Fig. 4A):

ZM
i i�1;k k�1 = 1

ZM
i j;k l = +

ZM
i j�1;k l�1 � exp �bsðj; lÞð Þ

ZM
i j�1;k l � exp �bgð Þ

ZM
i j;k l�1 � exp �bgð Þ

+j0 l0Z
M
i j0�1;k l0�1 � ZD

j0 j;l0 l

8>>>>><
>>>>>:

ZD
i j;k l = ZM

i + 1j + 1;k�1 l�1 � exp �bt i; j; k; lð Þð Þ:

These equations are a direct translation of the LocARNA
recursion to its partition function variant. The transla-
tion is straightforward because the decomposition of the
LocARNA recursion is unambiguous. Finally, the total
partition function is obtained as ZAB = ZM

1n; 1 m.
A good space and time complexity is achieved using

the same ideas as in the original LocARNA recursion
for maximizing the score. When evaluating the recursion
for ZM

1 n; 1 m, we compute and store the entries ZD
i j; k l for

significant base pairs (i, j) and (k, l). A computation order
of increasing j � i avoids dependency conflicts. The entries
require O(n2) space due to the number of significant base
pairs. Note that the matrix ZD is conveniently implemented
as a 2D array that is indexed with base pairs. One entry
ZD

i j; k l depends only on entries of the matrix slice ZM
i � ;k� and

other values in ZD. Therefore, efficient computation re-
quires only O(n2) additional space for the matrix slice. The
matrix slice is implemented as a 2D array, which is reused
for the computation of each ZD entry. Time complexity is
only O(n4), since computing one entry in ZM is performed
in time O(1/p*) = O(1), when only significant base pairs are
considered.

The outside algorithm needs to access ZD, hence this
matrix is kept in memory throughout.

Outside algorithm

The outside algorithm computes partition functions of
alignments outside of subsequences Ai..j and Bk..l and cor-
responding consensus structures. An alignment of A and B
outside i..j and k..l contains only matches i9 z k9, where
i9 < i and k9 < k or j < i9 and l < k9.

We define

Z 0
M
i j;k l = + exp �b Sc A;Sð Þð Þ

A alignment of A and B
outside i::j and k:: l;
S consensus secondary
structure forA:

��������

8>><
>>:

9>>=
>>;

Z 0Di j;k l is valid only for i, j, k, and l, where significant base
pairs (i, j) and (k, l) exist for PA and PB, respectively. Then,
it is defined as Z 0Di j;k l : = Z 0Mi j;k l and is understood as the
partition function outside of the match of base pairs (i, j)
and (k, l). Note that we introduce the extra matrix Z9D for
preparing the space optimization.

The matrix entries are recursively computed after ini-
tialization Z 0Mi n; k m = ZM

1i�1; k�1 by

Z 0
M
i j;k l = +

Z 0Mi j + 1;k l + 1 � expð�bsðj; lÞÞ
Z 0Mi j + 1;k l � exp �bgð Þ
Z 0Mi j;k l + 1 � exp �bgð Þ
+i0 < i;k0 < kZ 0Di0 j + 1;k0 l + 1 � ZM

i0 + 1 i�1;k0 + 1 k�1

�exp �bt i0; j + 1; k0; l + 1ð Þð Þ
+j0 > j;l0 > lZ

0M
i j0;k l0 � ZD

j + 1 j0;l + 1 l0

8>>>>>>>><
>>>>>>>>:13That is, significant according to respective base-pair probability

matrices PA and PB.
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and Z 0Di j;k l = Z 0Mi j;k l. An illustration of the underlying de-
composition is given in Figure 4B.

So far, the recursion follows the lines of Hofacker and
Stadler (Hofacker et al. 2004). However, we restructure the
evaluation of these recursions in LocARNA-P in order to
maintain the complexity bounds. For initialization, we use
the inside matrix slice ZM

�1;�1, which can be recomputed in
O(n2) time.14

Then, we compute all entries Z 0Di j;k l for significant base
pairs (i, j) and (k, l) in the order from outside to inside,
i.e., for decreasing distances j � i. As in the case of the
inside partition functions, Z9D is implemented as a 2D
array of size O(n2). For obtaining all entries Z 0Di�;k�, we fill
a matrix slice Z 0Mi�;k�. During this computation for fixed i
and k, we recurse to four different kinds of matrix entries.
First and second, we recurse to entries of matrices Z9D and
ZD. Both are maintained in O(n2) space, and dependencies
are resolved due to computation order. The same holds for
the third kind of entries in the matrix slice Z 0Mi�;k�, where
dependencies are resolved by computation of entries Z 0Mi j;k l

in the order of decreasing j and l. However, there is a fourth
kind of entry, namely, those of the form ZM

�i;�k. This matrix
slice is recomputed in O(n2) time each time before we start
filling a matrix slice Z 0Mi �;k � . Clearly, this slice adds another
space of O(n2). The space for the matrix slices Z 0Mi�; k� and
ZM
�i;�k is reused for each left end i and k of significant base

pairs.
Despite the necessary recomputation of slices ZM

�i;�k, the
time complexity is O(n4). Here, we argue again that sum-
mations run only over pairs of significant arcs and, con-
sequently, take constant time.

Calculation of alignment match probabilities

The probability of a structural alignment match is easily
computed as

P i; jð Þz k; lð ÞjA;Bð Þ=
1

ZAB
� ZD

i j;k l � Z 0
D

i j;k l

from the efficiently computed matrices ZD and Z9D.

Computing the probabilities of base matches requires a
case distinction on the ‘‘immediately enclosing’’ arc match
(i, j) z (k, l) of a base match x z y. P(x z y|A, B) is
efficiently computed as

exp �bs x; yð Þð Þ
ZAB

+
ði;jÞzðk;lÞ

Z 0Di j;k l

�exp �bt i; j; k; lð Þð Þ
�ZM

i + 1x�1;k + 1y�1

�ZM
x + 1j�1;y + 1 l�1

0
BBB@

1
CCCA

+ ZM
1x�1;1y�1 � ZM

x + 1 n;y + 1m

0
BBBBB@

1
CCCCCA: ð6Þ

Note that we need to cover the case of no enclosing arc
match explicitly.

The quadratic space envelope requires recomputation of
ZM

i + 1�;k + 1� and ZM
�k�1; �l�1, for each (i, j) z (k, l). Given ZD,

all ZM
i + 1�;k + 1� can be clearly recomputed in O(n2). Note that

also all ZM
�k�1; � l�1 can be recomputed in O(n2) by a right-

reducing variant of the given left-reducing recursion for the
matrix ZM.

For efficient evaluation, one regroups the computation
by iterating over all (i, j) z (k, l) and accumulating the
probability contributions of each arc pair to all P(x z y|A,
B). In this way, recomputation causes a time complexity of
O(n4) for the computation of all base match probabilities.
However, this computation is still an expensive step of
the entire algorithm. Considering only pairs of arcs with a
match probability $p* (or some independently chosen cut-
off probability) is a reasonable, easily applicable heuristic
that reduces the cost of this computation step in practice.

Received July 1, 2011; accepted January 18, 2012.
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Bompfünewerer AF, Backofen R, Bernhart SH, Hertel J, Hofacker IL,
Stadler PF, Will S. 2008. Variations on RNA folding and alignment:
Lessons from Benasque. J Math Biol 56: 129–144.

FIGURE 4. Inside and outside decomposition by the recursions. (A) Inside. The gray inside regions correspond to the matrix ZM and the white
inside region to ZD. (B) Outside. The gray outside regions correspond to entries in Z9M; the white outside region represents an entry of Z9D.

14In our implementation, we skip this recomputation, since the matrix
is still available from the last step of the inside algorithm.

912 RNA, Vol. 18, No. 5

Will et al.

 Cold Spring Harbor Laboratory Press on April 15, 2013 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


Bradley RK, Pachter L, Holmes I. 2008. Specific alignment of structured
RNA: Stochastic grammars and sequence annealing. Bioinformatics
24: 2677–2683.

Chambers JM, Cleveland WS, Kleiner B, Tukey PA. 1983. Graphical
methods for data analysis. Wadsworth/Cengage Learning, Florence, KY.

Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J,
Stern D, Tammana H, Helt G, et al. 2005. Transcriptional maps of
10 human chromosomes at 5-nucleotide resolution. Science 308:
1149–1154.

Clark AG, Eisen MB, Smith DE, MacCallum I. 2007. Evolution of genes
and genomes on the Drosophila phylogeny. Nature 450: 203–218.

Coventry A, Kleitman DJ, Berger B. 2004. MSARI: Multiple sequence
alignments for statistical detection of RNA secondary structure.
Proc Natl Acad Sci 101: 12102–12107.

Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. 2005. ProbCons:
Probabilistic consistency-based multiple sequence alignment. Ge-
nome Res 15: 330–340.

Do CB, Foo C-S, Batzoglou S. 2008. A max-margin model for efficient
simultaneous alignment and folding of RNA sequences. Bioinfor-
matics 24: i68–i76.

The FANTOM Consortium and RIKEN Genome Exploration
Research Group and Genome Science Group. 2005. The transcrip-
tional landscape of the mammalian genome. Science 309: 1559–
1563.

Frendewey D, Dingermann T, Cooley L, Soll D. 1985. Processing of
precursor tRNAs in Drosophila. Processing of the 39 end involves
an endonucleolytic cleavage and occurs after 59 end maturation.
J Biol Chem 260: 449–454.

Gardner PP, Wilm A, Washietl S. 2005. A benchmark of multiple
sequence alignment programs upon structural RNAs. Nucleic Acids
Res 33: 2433–2439.

Gorodkin J, Heyer L, Stormo G. 1997. Finding the most significant
common sequence and structure motifs in a set of RNA sequences.
Nucleic Acids Res 25: 3724–3732.

Gruber AR, Kilgus C, Mosig A, Hofacker IL, Hennig W, Stadler PF.
2008a. Arthropod 7SK RNA. Mol Biol Evol 25: 1923–1930.

Gruber AR, Bernhart SH, Hofacker IL, Washietl S. 2008b. Strategies
for measuring evolutionary conservation of RNA secondary
structures. BMC Bioinformatics 9: 122. doi: 10.1186/1471-2105-9-
122.

Gruber AR, Findeiss S, Washietl S, Hofacker IL, Stadler PF. 2010.
RNAZ 2.0: Improved noncoding RNA detection. Pac Symp Bio-
comput 15: 69–79.

Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. 1983.
The RNA moiety of ribonuclease P is the catalytic subunit of the
enzyme. Cell 35: 849–857.

Harmanci AO, Sharma G, Mathews DH. 2008. PARTS: Probabilistic
alignment for RNA joint secondary structure prediction. Nucleic
Acids Res 36: 2406–2417.

Havgaard JH, Lyngso RB, Stormo GD, Gorodkin J. 2005. Pairwise
local structural alignment of RNA sequences with sequence simi-
larity less than 40%. Bioinformatics 21: 1815–1824.

Heyne S, Will S, Beckstette M, Backofen R. 2009. Lightweight
comparison of RNAs based on exact sequence–structure matches.
Bioinformatics 25: 2095–2102.
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