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Supplement to LocARNA-P: Accurate Boundary Prediction and Im-
proved Detection of Structural RNAs

Extensive supplementary information including figures and raw data of our experiments is
available online as web supplement at

http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/.

The site furthermore provides the LocARNA software package, which comprises LocARNA-P and
scripts for the ncRNA screen refinement pipeline, and points to documentation of the tools.

S1 Methods

S1.1 Inside and Outside Algorithm in the Context of Local Folding

Very large alignments, as computed for Figures 1B and C of the main text, can be computed
in reasonable time only because LocARNA-P profits from local folding. Local folding imposes a
restriction of the span (j − i) of base pairs (i, j) to be less or equal L. The idea of local folding
is similarly used by the tool RNAfold, which computes base pair probabilities suited as input
for LocARNA. The inside algorithm directly profits from a reduced span of base pairs without
changing the algorithm. Its time complexity is reduced from O(n4) to O(n2L2) in terms of the
sequence length n and the maximal span L. For this result, consider that for each of the O(n2)
base pair matches, corresponding to ZD-entries, O(L2) ZM -entries are computed. Because we
consider only significant base pairs, each entry is computed in constant time.

The outside algorithm does not immediately profit from a limited base pair span, because
the number of computed Z ′M -entries is not straightforwardly bounded by O(L2) as the number
of ZM -entries in the case of the inside. For obtaining such a bound, we need to modify the
outside recursion making use of the following lemma.

Lemma 1 Assume that all significant base pairs in PA and PB have span less or equal L. For
j − i > L or l − k > L, Z ′Mi j;k l = ZM

1 j;1 l · ZM
kn;l m.

This is easily seen, because no base pairs matches that bridge the hole of alignments outside
i..j and k..l are considered under the conditions of the lemma. Maintaining matrix slices ZM

1 ·;1 ·
and ZM

·n;·m, only O(L2) many entries Z ′Mi j;k l with j− i ≤ L and l−k ≤ L need to be computed in

order to compute an Z ′D-entry. Computing one such Z ′Mi j;k l entry either recurses to other such

entries with j− i ≤ L and l−k ≤ L or to at most constantly many entries Z ′Mi j;k l that satisfy the
condition of the lemma and can therefore be computed without further recursion in constant
time. With respective modifications, the outside algorithm runs in O(n2L2) time. Recall that
computing base pair match probabilities is in O(n2) and therefore dominated. Finally, also the
computation of base match probabilities is O(n2L2), because for each of the O(n2) base pair
matches (g, h) ∼ (k, l) of Eq. 6, the necessary matrix slices are recomputed in O(L2) and there
are O(L2) contributions to each match probability.

http://www.bioinf.uni-freiburg.de/Supplements/LocARNA-P/
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S1.2 Multiple Alignment and Probabilistic Consistency Transformation

Based on pairwise maximum expected accuracy (MEA) alignment, we construct a multiple
alignment A of sequences S1, . . . , SK following a progressive alignment strategy.

For the pairwise alignments, we maximize the expected accuracy that is defined as weighted
sum of base match and arc match probabilities. MEA maximizes the expected overlap of the
found alignment with suboptimal alignments according to the Boltzmann distribution. We
weight base matches against arc matches because structural matches contribute more to the
accuracy than sequence matches.

Finally, we use a progressive approach based on the pairwise MEA alignments to build a
multiple alignment ~A of alignment columns together with a consensus secondary structure S on
the columns of ~A. A large improvement is obtained by re-estimating the probabilities of base
match and arc matches by probabilistic consistency transformation. This method is known from
the approach Probcons by Do et al. (9), where it is used in the simpler case of transforming
base match probabilities for sequence alignment.

Due to this transformation, the probabilities are re-calculated as

P ′(i ∼ k|Sa, Sb) =
1

K

∑
1≤c≤K

∑
1≤k′≤|Sc|

P ′(i ∼ k′|Sa, Sc) · P ′(k ∼ k′|Sb, Sc)

for base matches and

P ′((i, j) ∼ (k, l)|Sa, Sb) =
1

K

∑
1≤c≤K

∑
1≤k′<l′≤|Sc|

P ′((i, j) ∼ (k′, l′)|Sa, Sc)·P ′((k, l) ∼ (k′, l′)|Sb, Sc)

for arc matches.
Do et al. suggest to iterate this transformation several times. This iterative re-estimation

leads to an extinction of probabilities, however, because in general
∑

k P (i ∼ k|Sa, Sb) < 1 since
position i has a non-zero probability of being deleted. Therefore, we apply the reestimation only
once.

This extinction of probabilities can be avoided when deletion probabilities are explicitly
considered in the correct way. One introduces P (i ∼ −k|Sa, Sb) as the probability that i is
deleted, where the first matched i′ < i is matched to k. However, this increases the cost of the
consistency transformation considerably. We therefore omitted this correction (as has been done
for similar reasons in Probcons (9)).

Iterative Refinement LocARNA-P improves progressive multiple alignment further by the
technique of iterative refinement. Therefore, we iteratively split a multiple alignment into sub-
alignments of two bi-partitions of the sequences S1, . . . , SK and realign them. Over the iterations,
one evaluates the alignments and further refines the best alignment. We make two significant
choices in implementing this scheme. We iterate in several rounds; in each round the alignment
is split and realigned for all bipartitions of sequences that are induced by the tree. Secondly, we
use the reliability score for evaluating the alignment.
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S1.3 Finding Optimal Parameters for Boundary Prediction

As described in Section Predicting Boundaries from a STAR Profile of the main text,
we want to fit a two-step function to a reliability profile f : {1, . . . , n} → R.. Hence, we want to
find values a and b, where the larger value represents the signal level and the smaller value the
background. As described, we can solve for given constants a and b, the recursion equations

A(i) = (f(i)− a)2 + min(A(i− 1), B(i− 1) + ∆)

B(i) = (f(i)− b)2 + min(A(i− 1) + ∆, B(i− 1)) (1)

with initialization A(0) = 0 and B(0) = 0 for A(n) and B(n) and obtain g by traceback.
For finding optimal constants a and b, we formulate a partition function version of these

equations. We choose to optimize the partition function ZA(n) + ZB(n) instead of the cost
A(n) + B(n), since the partition functions allows computing partial derivations. This allows
finding constants that minimize ZA(n)+ZB(n) by gradient descent optimization. For sufficiently
high β, such constants will also minimize the cost A(n) +B(n).

The partition function variant of Eq. 3 of the main text is

ZA(i) = exp(−β(f(i)− a)2) · (ZA(i− 1) + ZB(i− 1) · exp(−β∆))

ZB(i) = exp(−β(f(i)− b)2) · (ZA(i− 1) · exp(−β∆) + ZB(i− 1)) (2)

with initialization ZA(0) = 1 and ZB(0) = 1.
The four partial derivatives of Eq. 2 in directions of a and b are

∂

∂a
ZA(i) = exp(−β(f(i)− a)2) · ( ∂

∂a
ZA(i− 1) +

∂

∂a
ZB(i− 1) exp(−β∆))

+ 2β(f(i)− a) exp(−β(f(i)− a)2) · (ZA(i− 1) + ZB(i− 1) exp(−β∆))

∂

∂b
ZA(i) = exp(−β(f(i)− a)2) · ( ∂

∂b
ZA(i− 1) +

∂

∂b
ZB(i− 1) exp(−β∆))

∂

∂a
ZB(i) = exp(−β(f(i)− b)2) · ( ∂

∂a
ZB(i− 1) +

∂

∂a
ZA(i− 1) exp(−β∆))

∂

∂b
ZB(i) = exp(−β(f(i)− b)2) · ( ∂

∂b
ZB(i− 1) +

∂

∂b
ZA(i− 1) exp(−β∆))

+ 2β(f(i)− b) exp(−β(f(i)− b)2) · (ZB(i− 1) + ZA(i− 1) exp(−β∆)).

The four partial derivatives ∂
∂aZ

A(n), ∂
∂bZ

A(n), ∂
∂aZ

B(n), and ∂
∂bZ

B(n) can be computed by
dynamic programming from the above recursion equations. Thus, we can efficiently determine
the gradient vector

v =

(
∂
∂aZ

A(n) + ∂
∂aZ

B(n)
∂
∂bZ

A(n) + ∂
∂bZ

B(n)

)
for optimizing the partition function ZA(n) + ZB(n).

After finding optimal a and b, we continue as in the case of given constants by solving Eq. 3
of the main text by dynamic programming and performing traceback.
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S1.4 Computing the Reliability Score of an Alignment

The reliability score, defined in Section Column-wise STARs, Boundary Prediction, and
global STAR Scores of the main text, is computed efficiently by dynamic programming.
The algorithm evaluates the following Nussinov-style recursion equation for 1 ≤ q ≤ q′ ≤ |A|:

N(q, q − 1) = 0

N(q, q′) = max(N(q, q′ − 1) + seqSTARA(q′), max
q≤k<q′

N(q, k − 1) + ω bpSTARA(q, q′) +N(k + 1, q′ − 1)).

Finally, STARSA = |A|−1N(1, |A|).

S2 Results

S2.1 Reliabilities of Alignments as Quality Measurement

S2.1.1 Correlation of Different Alignment Features with Alignment Quality

LocARNA already provided an alignment score, which is used to determine the optimal align-
ment for a pair of sequences. However, note that raw alignment scores are usually not suited
for our purpose since they were not designed to be used as estimates of the quality of the out-
put alignment. Rather, they are used to distinguish between different alignments of the same
sequences in order to predict the best alignment. Thus there is no reason why the numerical
values should be comparable between different sets of input sequences. Many sequence-structure
alignment programs, such as Lara, PMcomp or LocARNA do not compute an alignment score
for their multiple alignments at all. FoldAlignM is one of the few programs that returns such
alignment scores. In this particular case there is a weak correlation between alignment quality
and alignment score (cf. Supplementary Figure 3).

Column reliabilities, on the other hand, provide a theoretically well-founded basis for com-
puting a reliability score of a complete LocARNA-P alignment that assesses how trustworthy
the generated alignment is. The reliability score of an alignment A and a consensus structure
is defined as the sum of sequence reliabilities seqSTARA(q) for single-stranded positions q of
the consensus structure, and base pair reliabilities bpSTARA(q, q′) for consensus base pairs (q,
q′). The reliability score of the alignment A is then defined as the maximum reliability score
of the alignment over all possible consensus structures normalized by alignment length. It can
be calculated efficiently using a Nussinov-style algorithm (cf. Section Column-wise STARs,
Boundary Prediction, and global STAR Scores of the main text and Section Com-
puting the Reliability Score of an Alignment ).

We study the ability of several features to predict the quality of LocARNA-P alignments by
computing LocARNA-P alignments for a benchmark data set of 10-fold alignments. The bench-
mark data set is drawn from Rfam, such that hand-curated reference alignments are available
and it covers the variety of ncRNA families (55) (details given in Section Benchmark set used
for Correlation Analysis ). For each alignment, we obtain the compalign score that com-
pares the generated alignment with the reference alignment. This score is a good measure of the
true alignment quality. The features are compared against this quality measure and correlation
is measured as Pearson correlation coefficient.
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Supplementary Figure 1. Correlation plots for features over the benchmark data set. We
distinguish members of different families as described in the legend. Alignment quality (as
measured by compalign) versus A) SCI B) APSI and C) reliability. Note that the comparison
to SCI in (A) shows very weak correlation (correlation coefficient 0.31.)

Other features of an alignment are average pairwise sequence identity (APSI) and structure
conservation index (SCI); the latter compares the free energy of the consensus structure with
the average of minimum free energy of individual sequences. Those measures have been used as
additional features for assessing alignment quality (e.g., see Rose et al. (41)).

Supplementary Figure 1A shows that the SCI is not correlated well to the quality of LocARNA-
P alignments (correlation 0.31). APSI shows better correlation of 0.69 (see Suppl. Fig. 1B).
However, this correlation is not surprising since sequences with high APSI are much easier to
align than sequences with low APSI. Interestingly, the correlation of APSI with the alignment
reliability score is comparably weak (correlation 0.52.)

We calculated the reliability scores for all LocARNA-P-alignments of the benchmark set.
Supplementary Figure 1C shows the reliability score against alignment quality with correlation
coefficient of 0.78.

Inspired by this, we study the reliability score also for alignments that are not produced by
LocARNA-P, but by other methods (like Lara), or even for the reference alignments. For this
purpose, we calculate base match and base pair match probabilities using LocARNA-P. Then,
we calculate the column-wise reliabilities by equations 1 and 2 of the main text, using the given
alignment instead of the LocARNA-P alignment, and combine these column-wise reliabilities to
a reliability score as described above. We have found a very strong correlation between the
reliability of the best alignment produced by LocARNA-P and reliabilities of both, the reference
alignment from Rfam and the best alignment produced by Lara (see Supplementary Figure 2A,
B and C). This indicates that LocARNA-P probabilities approximate true alignment match
probabilities very well and yield an excellent general model of sequence structure alignment.
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Supplementary Figure 2. Correlation over the benchmark set between reference reliability
and reliability of best alignment produced by LocARNA-P (A) and Lara (B), as well as between
LocARNA-P and Lara (C), respectively

Therefore, the reliability score calculated by LocARNA-P can be utilized as quality measure
even for alignment that are not produced by LocARNA-P.

S2.1.2 Benchmark set used for Correlation Analysis

For studying the ability of several features to predict the quality of sequence-structure align-
ments, we choose a subset of Rfam as our benchmark set. For the benchmark set, one draws
k-way alignments from Rfam, such that we get sets of k sequences each with known hand-curated
reference alignments. Such a set covers the variety of families in the Rfam. This protocol was
already performed for the benchmark sets of Bralibase 2.1 (55). Therefore, we choose the Bral-
ibase benchmark set k10 of 10-way alignments as starting point for our benchmark set. k10
consists of 845 sets of 10 related RNA sequences from 36 RNA families. When inspecting the
set, we noticed that all instances from the family IRES HCV deviate from the other benchmark
instances by their large length diversity. Therefore, we exclude IRES HCV to obtain a more
homogeneous set.

For the correlation analysis, we determine several features for each benchmark instance
and its LocARNA-P alignment. Notably, the compalign score is computed, which compares the
generated alignment with the reference alignment. This score is a good measure of the true
alignment quality since we can believe in the reference alignment. Correlation is measured as
Pearson correlation coefficient.

For the family IRES HCV, which we didn’t include in our benchmark set, we observe the
following. The quality of alignments in this family is not as well correlated to reliabilities as for all
other RNA families. Whereas for our benchmark set, we observe a correlation of the reliability
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Supplementary Figure 3. FoldAlign score versus alignment quality (as measured by
compalign). In the plot, we distinguish members of different RNA families by colors and
symbols as given in the legend on the right.

score and the alignment quality of 0.78, doing the same analysis for the k10 benchmark set
(including IRES HCV instances) yields correlations 0.57. The reason for the different behavior
is that while the family shows a very high APSI between 84% and 95% making them easy to
align, the family members largely vary in sequence lengths. This leads to the insertion of many
gaps and therefore weakens the reliability score. Recall that gaps do not contribute to the
reliability score as explained on Section Column-wise STARs, Boundary Prediction, and
global STAR Scores of the main text.

S2.1.3 Correlation of Alignment Scores and Alignment Quality

FoldAlignM is one of the few programs that yield an alignment score, whereas programs such
as PMcomp and Lara as well as LocARNA do not return a score for their multiple alignments.
Therefore, we investigate the correlation of the FoldAlignM score and PMcomp score of the
FoldAlignM alignments to reference alignments for the previously described benchmark set of
10-fold alignments from Rfam.

As we did before for features of the LocARNA-P alignments, we study the ability of the
FoldAlignM score to predict alignment quality by computing FoldAlignM alignments for the
benchmark set and determining the compalign score for measuring the alignment quality.

Supplementary Figure 3 shows the correlation between FoldAlignM’s score and the alignment
quality (correlation coefficient 0.41). Since FoldAlignM didn’t yield single alignments for all of
the benchmark instances, we excluded those 31 instances from the FoldAlignM comparison.
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S2.2 Assessing Multiple Alignment Performance by the Bralibase 2.1 Bench-
mark

We measure the performance of LocARNA-P using the Bralibase 2.1 benchmark. The benchmark
consists of a series of multiple alignment problem instances with known reference alignments.
The sequences and their reference alignments are selected from the Rfam such that the reference
alignments can be trusted (55). The benchmark distinguishes data sets k2, k3, k5, k7 k10, k15
respectively for pairwise, 3-way, 5-way, 7-way, 10-way, and 15-way alignments. For benchmark-
ing an alignment program, it is suggested to compute all multiple alignment for each data set
and evaluate the alignments by their compalign score to the reference and structure conservation
index (SCI). For comparing the performance of several algorithms, one plots the evaluations ver-
sus the average pairwise sequence identity of the reference alignment (APSI). We compared the
predecessor tool LocARNA, Lara (1) and the new method LocARNA-P. We used the most recent
released version of Lara (1.3.2a). For the LocARNA-P alignments, we performed consistency-
transformation and two rounds of iterative refinement. A more comprehensive Bralibase 2.1
comparison of alignment tools was given by Bauer et al. (1) and is therefore not repeated here.
Supplementary Figure 4 shows the outcome on the benchmark sets k5, k7, and k10 of 5-, 7-, and
10-way alignments. The complete benchmark results are available online in the web supplement
to the paper. Our results show a significant performance improvement over the non-probabilistic
tool LocARNA and better alignment accuracy than Lara on the Bralibase 2.1 benchmark. The
latter is clearly significant for up to 10-way multiple alignments. For the k15 benchmark set, the
slight advantage of LocARNA-P over Lara should be judged critically. For 15-way alignments,
there are only few multiple alignment instances in the important low APSI range. Even worse,
there is almost no diversity, since the instances are mainly tRNA alignments.
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Supplementary Figure 4. Bralibase 2.1 benchmark for A) 5-way, B) 7-way, and C) 10-way
alignments. Alignment accuracy is measured by comparison to the reference alignment
(compalign score, left) and structure conservation index (SCI, right). The measures are plotted
vs. average pairwise sequence identity (x-axis). The figures show that LocARNA-P significantly
improves alignment accuracy for the hard low sequence identity instances over Lara, which in
(1) performed best in this benchmark among a series of competitors, and its non-probabilistic
older sibling LocARNA.
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