
Counting Protein Structures by DFS with
Dynamic Decomposition

Sebastian Will and Martin Mann

Chair for Bioinformatics, Institute of Computer Science, Albert-Ludwigs-University
Georges-Koehler-Allee, Geb. 106, D-79110 Freiburg, Germany

{will,mmann}@informatik.uni-freiburg.de

Abstract. We introduce depth-first search with dynamic decompositionfor count-
ing the solutions of a binary CSP completely. In particular,we use the method for
computing the number of minimal energy structures for modelproteins.

1 Introduction

The number of minimal energy structures of model proteins isan important measure,
which is strongly related to protein stability. The enumeration of optimal and subop-
timal structures has applications in the study of protein evolution and kinetics [12, 20,
26, 25]. The prediction of protein structures in simplified protein models is a complex,
NP-complete [6] combinatorial optimization problem that received lots of interest in
the past, e.g. [16, 27]. Importantly for our work here, it canbe successfully modeled as
Constraint Satisfaction Problem (CSP) [2, 4].

Recently, counting solutions of a CSP and related problems gained a lot of interest
over considering only satisfiability [1, 9, 17, 22]. This is partly due to the increased com-
plexity of counting compared to deciding on satisfiability [19]. Standard solving meth-
ods in constraint programming like Depth-First Search (DFS) combined with constraint
propagation are therefore well suited for determining one solution, but leave room for
saving redundant work when counting all solutions. Here, wepresent a method that is
especially tailored for this case. Applied to the CSP formulation of structure prediction,
it improves exhaustive counting and enumeration of optimalprotein structures.

Basically, our new methoddynamicallydecomposes the constraint (sub-)problems
that emerge during the search into independent partial problems along connected com-
ponents of the problem’s associated constraint graph. Separate counting in the partial
problems still allows to infer the number of solutions of thecomplete problem.

Instead ofstatically exploiting only properties of the initial constraint graph, dy-
namic strategies analyze the emerging constraint graphs during the search and employ
their features. We believe this is a major advantage in many constraint problems. In
particular, if the initial constraint network is very dense(as in our structure prediction
problem), static methods don’t make an impact.

Decomposing into connected components and, more generally, utilizing the special
structure of the constraint graph is discussed already for along time. In the beginning,
[13] proposed statically decomposing a CSP and solving the partial problems indepen-
dently. As a more recent example, [9] introduced AND/OR search for solution counting,



again this approach relies on static analysis of the constraint graph. To our knowledge,
dynamic decomposition was discussed more thoroughly only for very special cases.
[17] showed that adding this idea to counting models of 3-SATby a Davis-Putnam
procedure [8] results in a very successful new strategy. Similar ideas are discussed for
SAT-solvers in [7].

As our main contribution, we demonstrate that the ideas of employing the graph
structure dynamically are applicable to binary CSPs, even including certain global con-
straints, and are useful for constraint programming. In particular, this allows us to use
the strategy in the complex problem of protein structure counting. Furthermore, we dis-
cuss several ideas going beyond previous approaches. For example, dynamic decompo-
sition can yield a more compact representation of the solution space. We discuss how
analyzing the constraint graph can further improve counting and how search strategies
can be tailored in order to maximize the benefits from our strategy.

2 Dynamic Decomposition

Definitions A Constraint Satisfaction Problem (CSP)is a triple(X ,D ,C ) of variables
X = X1, . . . ,Xn, associated domainsD = D1, . . . ,Dn, i.e. finite sets of values, and a finite
set of constraintsC on the variables inX . A solutionof the CSP is an assignment of
each variable inX to one value in its associated domain. A variableXi is determined
byD , iff its associated domainDi in D is singleton. We call(X ,D ,C ) solved, iff each
variable inX is determined byD . The CSP isfailed, iff at least one of variables inX
has an empty domain. Asubproblem of a CSP(X ,D ,C ) is a CSP(X ,D ,C ′), where
C ⊆ C ′. A CSP(X̂ , D̂ , Ĉ ) is calledpartial problem of(X ,D ,C ), whereX̂ ⊆ X andD̂
andĈ are restrictions ofD andC to X̂ , respectively. We call a CSPn-ary, iff each of its
constraints is at most n-ary. For a constraintc, we denote byX(c) theset of variables
of c. The constraint graphof a binary CSP(X ,D ,C ) is the undirected graph(V,E)
defined byV = X andE = {(Xi,Xj) ∈ X

2|c∈ C ,{Xi,Xj} ⊆X(c),Xi 6= Xj}. Two partial
CSPs(X̂ , D̂ , Ĉ ) and(X̂ ′, D̂ ′, Ĉ ′) of (X ,D ,C ) areindependent, iff X̂ andX̂ ′ don’t share
variables and there is no constraintc in C , whereX(c) shares elements witĥX andX̂ ′.

Counting DFS The usual approach to counting solutions of a CSP is by DFS in com-
bination with constrained propagation. As preparation to our approach, we present a
recursive formulation, which we temporarily call CountingDepth-First Search (CDFS).

1: function CDFS(X ,D ,C )
2: (D ′,C ′)← PROPAGATE(X ,D ,C )
3: if ISFAILED (X ,D ′,C ′) then return 0
4: else if ISSOLVED(X ,D ′) then return 1
5: else c← SELECT(X ,D ′)
6: return CDFS(X ,D ′,C ′ ∪{c}) + CDFS(X ,D ′,C ′∪{¬c})
7: end if
8: end function

In our formulation,CDFS(X ,D ,C ) yields the number of solutions to(X ,D ,C ). Note
that the function performs full propagation of constraintsto the domains (also, entailed
constraints ofC are removed inC ′) in line 2. The tests for failure and determination by
the propagated domainsD ′ are in line 3 and 4. Line 6 allows the algorithm an arbitrary



branching selection; often one selects a variableXi from X and a valued ∈ D i and
enumerates byc = (Xi ≡ d). Finally, the solution count of each subproblem adds to the
total number of solutions in line 7.

Fig. 1.DFS search tree traversed by CDFS.

We provide an example CSP
and a corresponding search tree for
CDFS solution counting in Fig-
ure 1. Each node corresponds to a
subproblem of the initial problem
given in the root and is visualized
as a constraint graph.

Dynamically Decomposing DFS
Even in the minimal example of
Figure 1, the main problem of
CDFS is visible. The partial prob-
lem on variablesC andD is solved
redundantly in each of the search
branches. This could be saved due to the independence of the two partial problems on
variablesA andB and variablesC andD. Our new methodDecomposing Depth-First
Search (DDFS)avoids such unnecessary work.

1: function DDFS(X ,D ,C )
2: (D ′,C ′)← PROPAGATE(X ,D ,C )
3: if ISFAILED (X ,D ′,C ′) then return 0
4: else if ISSOLVED(X ,D ′) then return 1
5: else s← 1 ⊲ initialize counter
6: D← DECOMPOSE(X ,D ′,C ′)
7: for all (X̂ , D̂ , Ĉ ) ∈D do
8: c← SELECT(X̂ , D̂ )
9: s = s ·

(

DDFS(X̂ , D̂ , Ĉ ∪{c}) + DDFS(X̂ , D̂ , Ĉ ∪{¬c})
)

10: end for
11: return s
12: end if
13: end function

The code differs from CDFS only in lines 5 to 11, which correspond to the decom-
position into independent partial problems. In line 6, we completely decompose the
propagated CSP(X ,D ′,C ′) into its pairwise independent partial problems.

Fig. 2.Search tree traversed by DDFS.

Note that the independent
partial problems correspond to
the connected components in
the constraint graph. Conse-
quently, our decomposition can
be computed in linear time
by depth first traversal of the
graph. As a technicality, we
fuse all solved partial problems
to an (arbitrary) unsolved par-
tial problem. In consequence, all remaining problems inD are unsolved. In line 11,s is



the product of the solution counts of all CSPs inD. SinceD is a complete decomposi-
tion of (X ,D ′,C ′) into pairwise independent partial problems,s equals the number of
solutions for(X ,D ,C ).

Using this extension the CSP in Figure 1 can be solved as givenin Figure 2 with
DDFS avoiding the redundant work. With only one decompositions and two branchings
instead of five branchings the overall solution number can bedetermined.

Note that a simple modification of the counting algorithm yields a nice enumeration
strategy. Instead of adding and multiplying solution counts, we can build up a tree-
like compact representation of the solution space. Examples are given at the bottom of
Figure 2 and later in Figure 3c. The compact representation can finally be expanded in
order to enumerate the solutions.

Further Improvements As a first important improvement, we can derive that a CSP
has no solution as soon as one of its independent partial problems has no solution. This
is also reflected in multiplying the solution counts. A simple improvement is to skip
counting in further partial problems, whenever a partial problem returns no solutions.

By this, the order of the partial problems is critical for avoiding unnecessary work.
Optimally, partial problems with high chance of failing areexplored first. The ordering
can be based on heuristics analogous to the variable selection for branching. Additional
savings result from checking if all partial problems are satisfiable, before we start to
count all solution of any partial problem.

The solution number for partial problems with an empty set ofconstraints can be
derived directly without further decomposition or enumeration. In this case, the number
of solutions can be determined as product of the domain sizes. This effect is already
shown in Figure 2.

DDFS profits most from early and well balanced decompositions. Therefore, new
strategies for variable and value selection are desirable that support good decomposi-
tion. Constraint graph based variable selection, e.g. detection of articulation points, can
guide the variable selection and domain splitting instead of single value branching may
lead to sturdy decompositions.

Even deeper analysis of the constraint graph structure can guide the heuristics fur-
ther. Many techniques are already investigated and proved beneficial for the static case
[14, 15, 18, 23]. For example, we could strive for the breaking of circles in the constraint
graph in order to obtain a tree structure. Solutions of a CSP with tree structure can be
enumerated much more efficiently. Note that the detecting when the graph becomes a
tree comes for free if we already look for graph decompositions.

Albeit presented in this fashion, DDFS is not completely restricted to binary con-
straint graphs. Many widely used n-ary and global constraints (e.g.AllDifferent)
can be used as well, if a suitable binarization is at hand [5, 21]. The method can then em-
ploy the strong propagation of the global constraint and usethe semantically equivalent
set of binary constraints for checking dependencies in the constraint graph.

3 Application to Structure Prediction and Results

In [4], a constraint-based approach for exact structure prediction in theHP-modelof
the cubic and face-centered cubic lattice has been presented. In this simplified protein



model, the amino-acids of the protein are classified intohydrophobic (H)and polar
(P) ones and each is represented by a single point, its center of mass. Astructureis a
placing of these H/P-monomers to nodes of the lattice, such that successive monomers
are lattice neighbors and each node is only occupied once (self-avoidance). The energy
is calculated as shown in Figure 3a by counting HH-contacts.The example structure for
the sequence HPPHPPHPHP in Figure 3b has an energy of -2.

a)
H P

H -1 0
P 0 0

b) c)

Fig. 3. a) Energy function b) structure of square lattice HP-model (H-monomer: black, P-
monomer: white, structure back bone: grey, HH-contact: dotted) c) Structure space compression.

The prediction ofoptimal structures (with minimal energy) can be formulated as
CSP and was namedConstraint-based Protein Structure Prediction (CPSP)[2, 4]. It is
a fast approach for enumerating all structures for a given HP-sequence using DFS.

Its main idea is the pre-calculation of so calledoptimal H-cores, a set of positions for
a fixed number of H-monomers that minimizes the energy function. The construction
of this sets is a hard problem by itself, which was solved using constraint-programming
too [3, 24]. Since H-cores are sequence-independent, they can be pre-calculated and
used for the last sequence-specific part of CPSP. For the remaining task, its necessary
to search for self-avoiding walks with the restriction thatH-monomers are placed in a
given H-core. Therefore, we introduce a variable for each sequence position with lat-
tice nodes as values. H-monomers are constrained to H-core positions, P-domains are
left with a finite domain of non-H-core positions. The self-avoiding walk condition can
be expressed by a globalAllDifferent constraint and a sequence of neighbor con-
straints, which can be modeled asXi −Xi+1 = Ni . There,Xi represents the variable for
the ith sequence position andNi contains all possible lattice specific neighbor vectors1.

CPSP is effectively solved using DFS and so CDFS for solutioncounting can be
applied too. As mentioned before the number of optimal structures of a protein is an
important measure. It provides information about the character of the energy landscape
and the degeneracy and can be used for their further investigation [11, 10, 12, 20, 26,
27].

As discussed before a semantically equal set of binary inequality constraints can be
used to represent the globalAllDifferent constraint in the constraint graph. DDFS
was applied using problem specific heuristics in addition tonode degree and articulation
point identification. A first prototypical implementation uses ILOG Solver 6.1TM. We
present some results from this program in the following table.

test suitebranchfail time pos. timedecomp.
T33 7.8 0.7 1.5 4.7 42
T54 7.7 0.9 1.7 5.2 26

1 In practice, lattice positions and the neighborhoodN are indexed by integers such that standard
constraint solvers for finite domains over integers are applicable.



We investigated two test suites T33/T54 with random HP-sequences of length 33/54
in the cubic lattice. To show the contraction of the search tree the ratio of branchings
CDFS/DDFS is given in columnbranch. It can be reduced by decomposition up to
a factor of 8 in average with the presented average number of decompositions. Due
to a non-optimal partial problem ordering DDFS yields a little higher number offails
during the enumeration. The ratio of the mean time consumption of CDFS/DDFS in
columntime illustrates the reduced number of branching. This time-behavior can cer-
tainly be improved, since the current implementation is notat all optimized. The time
ratio in columnpos. timeis calculated using DDFS without versus with decomposi-
tion. It demonstrates the possible speedup using DDFS for faster implementations and
is around 5 times. We expect further speedups and search treereductions using better
partial problem ordering and variable selection heuristics.

4 Discussion

We presented a general method Decomposing DFS (DDFS) for completely counting
and enumerating the solutions of a binary CSP by dynamicallyexploiting decomposi-
tion of (sub-)CSPs. Furthermore, we demonstrated that the method can be generalized
such that even global constraints can be used. As we could show, our strategy of dy-
namically decomposing the (sub-)problems into partial problems reduces the search tree
significantly. Since partial problems can be efficiently detected using well established
graph algorithms, this results in a speed up of the search. Beyond this, we discussed
how the graph structure can guide the variable and value selection in order to achieve
many balanced decompositions, e.g. by the identification ofarticulation points. Such
considerations go beyond previous work on constraint graphdecomposition.

The application of DDFS to the CPSP problem shows the large capabilities of
the method. First results with a prototypic implementationalready show a significant
speedup. Improving our ability for counting and enumerating optimal structures has im-
portant implications for the investigation of protein evolution and the folding process.

We could give evidence that the more general approach of dynamically analyzing
the constraint graph during the search and employing its special structure has a large
potential for solution counting in constraint programming. To our conviction, exploring
these possibilities even further is an interesting field forfuture research.

AcknowledgmentsMartin Mann is supported by the EU project EMBIO (EC contract
number 012835). Sebastian Will is partly supported by the EUNetwork of Excellence
REWERSE (project reference number 506779).

References

1. Ola Angelsmark and Peter Jonsson. Improved algorithms for counting solutions in constraint
satisfaction problems. InProc. of CP-2003), pages 81–95, Sep-Oct 2003.

2. Rolf Backofen and Sebastian Will. Fast, constraint-based threading of HP-sequences to
hydrophobic cores. InProc. of CP’2001, volume 2239, pages 494–508, 2001.

3. Rolf Backofen and Sebastian Will. Optimally compact finite sphere packings — hydrophobic
cores in the FCC. InProc. of CPM2001, pages 257–272, 2001.



4. Rolf Backofen and Sebastian Will. A constraint-based approach to fast and exact structure
prediction in three-dimensional protein models.J. of Constraints, 11(1):5–30, 2006.

5. Roman Bartk. Theory and practise of constraint programming. InCPDC2001, pages 7–14.
Wydavnictvo Pracovni Komputerowej, Gliwice, Poland, 2001.

6. B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model is
NP-complete.JCB, 5(1):27–40, 1998.

7. Armin Biere and Carsten Sinz. Decomposing sat problems into connected components.
Journal on Satisfiability, Boolean Modeling and Computation, 2:191–198, 2006.

8. Elazar Birnbaum and Eliezer L. Lozinskii. The good old davis-putnam procedure helps
counting models.Journal of AI Research, 10:457–477, 1999.

9. Rina Dechter and Robert Mateescu. The impact of AND/OR search spaces on constraint
satisfaction and counting. InCP’2004, 2004.

10. Ken A. Dill and Hue S. Chan. From levinthal to pathways to funnels. Nature Structural
Biology, 4(1):10–19, 1997.

11. A. R. Dinner, A. Sali, and M. Karplus. The folding mechanism of larger model proteins:
Role of native structure.Proc. Natl. Acad. Sci. USA, 93:8356–8361, 1996.

12. Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wolfinger. Barrier trees
of degenerate landscapes.Z.Phys.Chem, 216:155–173, 2002.

13. Eugene C. Freuder and Michael J. Quinn. Taking advantageof stable sets of variables in
constraint satisfaction problems. InProc. of IJCAI-85, pages 1076–1078, 1985.

14. G. Gottlob, N. Leone, and F.Scarcello. A comparison of structural CSP decomposition meth-
ods.Artif. Intell., 124(2):243–282, 2000.

15. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decomposition and tractable queries.J. of
Computer and System Sciences, 64(3):579–627, 2002.

16. Peter Grassberger. Sequential Monte Carlo methods for protein folding. InNIC Symposium
2004, Juelich, oct 2004.

17. R. J. Bayardo Jr. and J. D. Pehoushek. Counting models using connected components. In
Proc. of the 7th Nat’l Conf. on AI, 2000.

18. Philippe Jgou and Cyril Terrioux. Hybrid backtracking bounded by tree-decomposition of
constraint networks.LSIS, 2002.

19. Gilles Pesant. Counting solutions of CSPs: A structuralapproach. InIJCAI-05, page 260,
2005.

20. A. Renner and E. Bornberg-Bauer. Exploring the fitness landscapes of lattice proteins. In
2nd. Pacif. Symp. Biocomp.Singapore, 1997.

21. F. Rossi and V. Dhar. On the equivalenve of constraint satisfaction problems. InECAI90,
pages 550–556. Stockholm, Sweden, 1990.

22. Dan Roth. On the hardness of approximate reasoning.Artif. Intelligence, 82(1-2):273–302,
1996.

23. Marko Samer. Hypertree-decomposition via branch-decomposition. InIJCAI’05, pages
1535–1536, 2005.

24. Sebastian Will. Constraint-based hydrophobic core construction for protein structure predic-
tion in the face-centered-cubic lattice. InProc. of PSB 2002, pages 661–672, 2002.

25. M. Wolfinger, S. Will, I. Hofacker, R. Backofen, and P. Stadler. Exploring the lower part of
discrete polymer model energy landscapes.Europhysics Letters, 74(4):725–732, 2006.

26. Richard Wroe, Erich Bornberg-Bauer, and Hue Sun Chan. Comparing folding codes in sim-
ple heteropolymer models of protein evolutionary landscape: robustness of the superfunnel
paradigm.Biophys J, 88(1):118–31, 2005.

27. K. Yue, K. M. Fiebig, P. D. Thomas, H. S. Chan, E. I. Shakhnovich, and K. A. Dill. A test
of lattice protein folding algorithms.PNAS, 92(1):325–9, 1995.


