Counting Protein Structures by DFS with
Dynamic Decomposition

Sebastian Will and Martin Mann

Chair for Bioinformatics, Institute of Computer Sciencebért-Ludwigs-University
Georges-Koehler-Allee, Gebh. 106, D-79110 Freiburg, Geyma
{will,mmann} @informatik.uni-freiburg.de

Abstract. We introduce depth-first search with dynamic decomposftionount-
ing the solutions of a binary CSP completely. In particuls,use the method for
computing the number of minimal energy structures for mpdeleins.

1 Introduction

The number of minimal energy structures of model proteirenismportant measure,
which is strongly related to protein stability. The enuntiera of optimal and subop-
timal structures has applications in the study of proteml@ion and kinetics [12, 20,
26, 25]. The prediction of protein structures in simplifiedtein models is a complex,
NP-complete [6] combinatorial optimization problem thateived lots of interest in
the past, e.g. [16, 27]. Importantly for our work here, it tensuccessfully modeled as
Constraint Satisfaction Problem (CSP) [2, 4].

Recently, counting solutions of a CSP and related probleaimed a lot of interest
over considering only satisfiability [1, 9, 17, 22]. This &rfly due to the increased com-
plexity of counting compared to deciding on satisfiabilit®]. Standard solving meth-
ods in constraint programming like Depth-First Search (PéeBnbined with constraint
propagation are therefore well suited for determining aslat®n, but leave room for
saving redundant work when counting all solutions. Herepvesent a method that is
especially tailored for this case. Applied to the CSP fomttiah of structure prediction,
it improves exhaustive counting and enumeration of optijpnalein structures.

Basically, our new methodynamicallydecomposes the constraint (sub-)problems
that emerge during the search into independent partial@mbalong connected com-
ponents of the problem’s associated constraint graph.r&epeounting in the partial
problems still allows to infer the number of solutions of ttmemplete problem.

Instead ofstatically exploiting only properties of the initial constraint grajty-
namic strategies analyze the emerging constraint graptisgiihe search and employ
their features. We believe this is a major advantage in mamgtcaint problems. In
particular, if the initial constraint network is very den(@e in our structure prediction
problem), static methods don’t make an impact.

Decomposing into connected components and, more genertlizing the special
structure of the constraint graph is discussed already f@ngtime. In the beginning,
[13] proposed statically decomposing a CSP and solving &négbproblems indepen-
dently. As a more recent example, [9] introduced AND/OR sleéor solution counting,

again this approach relies on static analysis of the cansgeaph. To our knowledge,

dynamic decomposition was discussed more thoroughly amyéry special cases.
[17] showed that adding this idea to counting models of 3-®#Ta Davis-Putnam

procedure [8] results in a very successful new strategyil&indeas are discussed for
SAT-solvers in [7].

As our main contribution, we demonstrate that the ideas gfleying the graph
structure dynamically are applicable to binary CSPs, eneluding certain global con-
straints, and are useful for constraint programming. Intipalar, this allows us to use
the strategy in the complex problem of protein structurentiog. Furthermore, we dis-
cuss several ideas going beyond previous approaches. &opéx, dynamic decompo-
sition can yield a more compact representation of the smlugpace. We discuss how
analyzing the constraint graph can further improve cogndind how search strategies
can be tailored in order to maximize the benefits from outetra

2 Dynamic Decomposition

Definitions A Constraint Satisfaction Problem (CSR)a triple(x, D, ¢) of variables
X = X1,...,Xn, associated domains = D1,...,Dy, i.e. finite sets of values, and a finite
set of constraintg’ on the variables ix. A solutionof the CSP is an assignment of
each variable i to one value in its associated domain. A variaKlés determined
by », iff its associated domaib; in 2 is singleton. We callx, D, ¢) solved iff each
variable inx is determined by . The CSP idailed, iff at least one of variables in
has an empty domain. Aubproblem of a CSPx,»,¢) is a CSP(x,D,c’), where

c Cc'.ACSP(x,D,c) is calledpartial problem of(x,»,c), wherex C x andD
andc are restrictions ob andc to x, respectively. We call a CSiary, iff each of its
constraints is at most n-ary. For a constrainive denote byX(c) the set of variables
of ¢. The constraint graphof a binary CSP(x, D, ¢) is the undirected graptV,E)
defined byv = x andE = {(X;,Xj) € x?|c€ ¢,{X,Xj} € X(c), X # X;}. Two partial
CSPs(x,D,c)and(x’,D’,¢") of (x, D,) areindependeniff x andx’ don't share
variables and there is no constrairih ¢, whereX (c) shares elements with and.x’.

Counting DFS The usual approach to counting solutions of a CSP is by DF&nm-c
bination with constrained propagation. As preparationuo approach, we present a
recursive formulation, which we temporarily call Countidgpth-First Search (CDFS).

1: function CDFS(, D, ()
2: (D',c") « PROPAGATHX , D,)
if ISFAILED (x, D', ¢’) then return O
else ifIsSOLVED(x ,»') then return 1
else ¢+ SELECT(x,D’)
return CDFS(x,n’,c’u{c}) + CDFS(x,n’,c’U{-c})

7: end if

8: end function

In our formulationCDFS(x, D, ¢) yields the number of solutions {oc, 2,). Note
that the function performs full propagation of constraiotthe domains (also, entailed
constraints of” are removed ir’) in line 2. The tests for failure and determination by
the propagated domaing’ are in line 3 and 4. Line 6 allows the algorithm an arbitrary

branching selection; often one selects a variahlérom x and a valued € »; and
enumerates by = (X = d). Finally, the solution count of each subproblem adds to the
total number of solutions in line 7.

We provide an example CSP P N -
and a corresponding search tree for (“’””” e Dc)
CDFS solution counting in Fig-
ure 1. Each node corresponds to a
subproblem of the initial problem AGT
given in the root and is visualized G R
as a constraint graph.

A B
p[]]c

AB1ED B
p[2][i]c

P @=@c

®=0 [@#1)

A= n]

Dynamically Decomposing DFS
Even in the minimal example of
Figure 1, the main problem of
CDFS is visible. The partial prob-
lem on variable€ andD is solved .

redundantly in each of the search Fig. 1. DFS search tree traversed by CDFS.
branches. This could be saved due to the independence afithegattial problems on
variablesA andB and variable€ andD. Our new methodecomposing Depth-First
Search (DDFSavoids such unnecessary work.

1: function DDFS(,D,C)

®=1[®7)

AG1G) 8| (AGIGE]B
o] ¢ pE]c

A
p[1]]c

AEs
p[2][]c

2: (D',c") « PROPAGATHX, D, ()

3: if ISFAILED(x,D’, ") then return O

4; else ifISSOLVED(x,»') then return 1

5: elses— 1 > initialize counter
6: D «— DEcomPOsEX,D',¢)

7: forall (x,D,c) €D do

8: C— SELECT(X,D) i i

o: s = s- (DDFS(,p,cU{c}) +DDFSX,D,cU{~c}))
10: end for

11: return s

12: end if

13: end function

The code differs from CDFS only in lines 5 to 11, which cori@sgp to the decom-
position into independent partial problems. In line 6, wenptetely decompose the
propagated CSPx, ', ¢’) into its pairwise independent partial problems.

Note that the independent o
) SABC A GD=GD B
partial problems correspond to (““"" pIbs Ca Dc J
(A=5) | (A#5)

the connected components in
the constraint graph. Conse-
quently, our decomposition can

be computed in linear time

by depth first traversal of the { {
graph. As a technicality, we
fuse all solved partial problems

to an (arbitrary) unsolved par- Fig. 2. Search tree traversed by DDFS.
tial problem. In consequence, all remaining problen®iare unsolved. In line 1Kis

®=1) | ®=1)

A[5][E]B
L EEEs) X {poEd pEmd)

the product of the solution counts of all CSP<InSince® is a complete decomposi-
tion of (x,®’,¢’) into pairwise independent partial problemsgquals the number of
solutions for(x, D, ¢).

Using this extension the CSP in Figure 1 can be solved as givEigure 2 with
DDFS avoiding the redundant work. With only one decomposgiand two branchings
instead of five branchings the overall solution number caddiermined.

Note that a simple modification of the counting algorithmdgs$ea nice enumeration
strategy. Instead of adding and multiplying solution ceumte can build up a tree-
like compact representation of the solution space. Exasrgole given at the bottom of
Figure 2 and later in Figure 3c. The compact representa#arfinally be expanded in
order to enumerate the solutions.

Further Improvements As a first important improvement, we can derive that a CSP
has no solution as soon as one of its independent partialgmathas no solution. This
is also reflected in multiplying the solution counts. A simjainprovement is to skip
counting in further partial problems, whenever a partialjem returns no solutions.

By this, the order of the partial problems is critical for aling unnecessary work.
Optimally, partial problems with high chance of failing aeplored first. The ordering
can be based on heuristics analogous to the variable s#ldotibranching. Additional
savings result from checking if all partial problems arasfiatble, before we start to
count all solution of any partial problem.

The solution number for partial problems with an empty setafstraints can be
derived directly without further decomposition or enuntiena In this case, the number
of solutions can be determined as product of the domain.sizas effect is already
shown in Figure 2.

DDFS profits most from early and well balanced decompositidmerefore, new
strategies for variable and value selection are desirdlalestupport good decomposi-
tion. Constraint graph based variable selection, e.gctleteof articulation points, can
guide the variable selection and domain splitting instdagingle value branching may
lead to sturdy decompositions.

Even deeper analysis of the constraint graph structure gigie ghe heuristics fur-
ther. Many techniques are already investigated and progrdflzial for the static case
[14,15, 18, 23]. For example, we could strive for the bregkificircles in the constraint
graph in order to obtain a tree structure. Solutions of a C8&R twee structure can be
enumerated much more efficiently. Note that the detectingnithe graph becomes a
tree comes for free if we already look for graph decompasétio

Albeit presented in this fashion, DDFS is not completelytrieted to binary con-
straint graphs. Many widely used n-ary and global constsgimg.Al | Di f f er ent)
can be used as well, if a suitable binarization is at handl[p,he method can then em-
ploy the strong propagation of the global constraint andhissemantically equivalent
set of binary constraints for checking dependencies in dimstcaint graph.

3 Application to Structure Prediction and Results

In [4], a constraint-based approach for exact structurdiptien in theHP-modelof
the cubic and face-centered cubic lattice has been preséntthis simplified protein

model, the amino-acids of the protein are classified midrophobic (H)and polar
(P) ones and each is represented by a single point, its centeasd.mstructureis a
placing of these H/P-monomers to nodes of the lattice, suathsuuccessive monomers
are lattice neighbors and each node is only occupied aatkgvoidanck The energy
is calculated as shown in Figure 3a by counting HH-contd¢ts.example structure for
the sequence HPPHPPHPHP in Figure 3b has an energy of -2.

HP Hoed g—i { 1
a)H[L0 b o—e-—e 0) b e yoo | oo bxd oo
Ploo o o § hepn | 1)U

Fig. 3. a) Energy function b) structure of square lattice HP-mod¢imonomer: black, P-
monomer: white, structure back bone: grey, HH-contacteditc) Structure space compression.

The prediction ofoptimal structures (with minimal energy) can be formulated as
CSP and was nameéZbnstraint-based Protein Structure Prediction (CPEB}]. Itis
a fast approach for enumerating all structures for a giversetiience using DFS.

Its main idea is the pre-calculation of so caltgttimal H-coresa set of positions for
a fixed number of H-monomers that minimizes the energy foncfrhe construction
of this sets is a hard problem by itself, which was solvedgistmstraint-programming
too [3,24]. Since H-cores are sequence-independent, thieybe pre-calculated and
used for the last sequence-specific part of CPSP. For thenemdask, its necessary
to search for self-avoiding walks with the restriction thktnonomers are placed in a
given H-core. Therefore, we introduce a variable for eacfusace position with lat-
tice nodes as values. H-monomers are constrained to H-ositgqms, P-domains are
left with a finite domain of non-H-core positions. The sealbaling walk condition can
be expressed by a global | Di f f er ent constraint and a sequence of neighbor con-
straints, which can be modeled ¥s— X; .1 = Ni. There, X represents the variable for
theith sequence position amdl contains all possible lattice specific neighbor vectors

CPSP is effectively solved using DFS and so CDFS for solutmmting can be
applied too. As mentioned before the number of optimal stines of a protein is an
important measure. It provides information about the otteraf the energy landscape
and the degeneracy and can be used for their further inegistig[11, 10, 12, 20, 26,
27].

As discussed before a semantically equal set of binary mlégeonstraints can be
used to represent the globAll Di f f er ent constraint in the constraint graph. DDFS
was applied using problem specific heuristics in additiomdde degree and articulation
point identification. A first prototypical implementatioses ILOG Solver 6.1V, We
present some results from this program in the followingedabl

test suit¢branchfail|time|pos. tim¢decomp.
T33 7.8 |10.7115 4.7 42
T54 7.7 (0.9 1.7 5.2 26

1In practice, lattice positions and the neighborhdbare indexed by integers such that standard
constraint solvers for finite domains over integers areiegble.

We investigated two test suites T33/T54 with random HP-saqges of length 33/54
in the cubic lattice. To show the contraction of the seareb the ratio of branchings
CDFS/DDFS is given in columbranch It can be reduced by decomposition up to
a factor of 8 in average with the presented average numbeeadndpositions. Due
to a non-optimal partial problem ordering DDFS yields ddittigher number ofails
during the enumeration. The ratio of the mean time consunpf CDFS/DDFS in
columntimeillustrates the reduced number of branching. This timeali can cer-
tainly be improved, since the current implementation isatadll optimized. The time
ratio in columnpos. timeis calculated using DDFS without versus with decomposi-
tion. It demonstrates the possible speedup using DDFS $terfamplementations and
is around 5 times. We expect further speedups and searctettaetions using better
partial problem ordering and variable selection heustic

4 Discussion

We presented a general method Decomposing DFS (DDFS) fopletaty counting
and enumerating the solutions of a binary CSP by dynamiealhjoiting decomposi-
tion of (sub-)CSPs. Furthermore, we demonstrated that #tbed can be generalized
such that even global constraints can be used. As we could, shw strategy of dy-
namically decomposing the (sub-)problemsinto partiabpgms reduces the search tree
significantly. Since partial problems can be efficientlyedt¢d using well established
graph algorithms, this results in a speed up of the searcgyor@ethis, we discussed
how the graph structure can guide the variable and valuetsaiein order to achieve
many balanced decompositions, e.g. by the identificatioartoulation points. Such
considerations go beyond previous work on constraint gdgglomposition.

The application of DDFS to the CPSP problem shows the largalikties of
the method. First results with a prototypic implementatdnready show a significant
speedup. Improving our ability for counting and enumeigatiptimal structures has im-
portant implications for the investigation of protein avibbn and the folding process.

We could give evidence that the more general approach ofrdipadly analyzing
the constraint graph during the search and employing itsiapstructure has a large
potential for solution counting in constraint programmifig our conviction, exploring
these possibilities even further is an interesting fieldfditure research.

AcknowledgmentsMartin Mann is supported by the EU project EMBIO (EC contract
number 012835). Sebastian Will is partly supported by theNetivork of Excellence
REWERSE (project reference number 506779).

References

1. Ola Angelsmark and Peter Jonsson. Improved algorithnofmting solutions in constraint
satisfaction problems. IRroc. of CP-2003)pages 81-95, Sep-Oct 2003.

2. Rolf Backofen and Sebastian Will. Fast, constraint-Babeeading of HP-sequences to
hydrophobic cores. IRroc. of CP’200] volume 2239, pages 494-508, 2001.

3. Rolf Backofen and Sebastian Will. Optimally compact &rgphere packings — hydrophobic
cores in the FCC. IRroc. of CPM2001pages 257-272, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Rolf Backofen and Sebastian Will. A constraint-based@ggh to fast and exact structure

prediction in three-dimensional protein modelsof Constraints11(1):5-30, 2006.

. Roman Bartk. Theory and practise of constraint programgmin CPDC2001 pages 7-14.

Wydavnictvo Pracovni Komputerowej, Gliwice, Poland, 2001

. B. Berger and T. Leighton. Protein folding in the hydropicehydrophilic (HP) model is

NP-completeJCB, 5(1):27-40, 1998.

. Armin Biere and Carsten Sinz. Decomposing sat problerts donnected components.

Journal on Satisfiability, Boolean Modeling and Computati?:191-198, 2006.

. Elazar Birnbaum and Eliezer L. Lozinskii. The good old idgwutnam procedure helps

counting modelsJournal of Al Researchl0:457—-477, 1999.

. Rina Dechter and Robert Mateescu. The impact of AND/ORckespaces on constraint

satisfaction and counting. @P’2004 2004.

Ken A. Dill and Hue S. Chan. From levinthal to pathwaysuorfels. Nature Structural
Biology, 4(1):10-19, 1997.

A. R. Dinner, A. Sali, and M. Karplus. The folding mectsmiof larger model proteins:
Role of native structureProc. Natl. Acad. Sci. USA3:8356-8361, 1996.

Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, anchisle! T. Wolfinger. Barrier trees
of degenerate landscap&Phys.Chen16:155-173, 2002.

Eugene C. Freuder and Michael J. Quinn. Taking advarghgtable sets of variables in
constraint satisfaction problems. Broc. of IJCAI-85 pages 1076—-1078, 1985.

G. Gottlob, N. Leone, and F.Scarcello. A comparisonrofcstiral CSP decomposition meth-
ods. Artif. Intell., 124(2):243-282, 2000.

G. Gottlob, N. Leone, and F. Scarcello. Hypertree deawsitipn and tractable queried. of
Computer and System Scienc@4(3):579—-627, 2002.

Peter Grassberger. Sequential Monte Carlo methodsdtaip folding. InNIC Symposium
2004 Juelich, oct 2004.

R. J. Bayardo Jr. and J. D. Pehoushek. Counting modelg ushnected components. In
Proc. of the 7th Nat'| Conf. on AR0OO.

Philippe Jgou and Cyril Terrioux. Hybrid backtrackingunded by tree-decomposition of
constraint networksLSIS 2002.

Gilles Pesant. Counting solutions of CSPs: A structapgroach. InJCAI-05 page 260,
2005.

A. Renner and E. Bornberg-Bauer. Exploring the fitnesddeapes of lattice proteins. In
2nd. Pacif. Symp. Biocomfingapore, 1997.

F. Rossi and V. Dhar. On the equivalenve of constraimsfaation problems. IEECAI9Q
pages 550-556. Stockholm, Sweden, 1990.

Dan Roth. On the hardness of approximate reasorintf. Intelligence 82(1-2):273-302,
1996.

Marko Samer. Hypertree-decomposition via branch-eosition. InlJCAI'05, pages
1535-1536, 2005.

Sebastian Will. Constraint-based hydrophobic corstroation for protein structure predic-
tion in the face-centered-cubic lattice. Pnoc. of PSB 2002pages 661-672, 2002.

M. Wolfinger, S. Will, I. Hofacker, R. Backofen, and P. @&. Exploring the lower part of
discrete polymer model energy landscapesrophysics Letters/4(4):725-732, 2006.
Richard Wroe, Erich Bornberg-Bauer, and Hue Sun Champaoing folding codes in sim-
ple heteropolymer models of protein evolutionary landscapbustness of the superfunnel
paradigm.Biophys J88(1):118-31, 2005.

K. Yue, K. M. Fiebig, P. D. Thomas, H. S. Chan, E. |. Shakficig and K. A. Dill. A test
of lattice protein folding algorithms?NAS 92(1):325-9, 1995.

