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The RFAM database defines families of ncRNAs by means of sequence similarities that are sufficient to establish
homology. In some cases, such as microRNAs and box H/ACA snoRNAs, functional commonalities define classes of
RNAs that are characterized by structural similarities, and typically consist of multiple RNA families. Recent advances in
high-throughput transcriptomics and comparative genomics have produced very large sets of putative noncoding
RNAs and regulatory RNA signals. For many of them, evidence for stabilizing selection acting on their secondary
structures has been derived, and at least approximate models of their structures have been computed. The
overwhelming majority of these hypothetical RNAs cannot be assigned to established families or classes. We present
here a structure-based clustering approach that is capable of extracting putative RNA classes from genome-wide
surveys for structured RNAs. The LocARNA (local alignment of RNA) tool implements a novel variant of the Sankoff
algorithm that is sufficiently fast to deal with several thousand candidate sequences. The method is also robust against
false positive predictions, i.e., a contamination of the input data with unstructured or nonconserved sequences. We
have successfully tested the LocARNA-based clustering approach on the sequences of the RFAM-seed alignments.
Furthermore, we have applied it to a previously published set of 3,332 predicted structured elements in the Ciona
intestinalis genome (Missal K, Rose D, Stadler PF (2005) Noncoding RNAs in Ciona intestinalis. Bioinformatics 21
(Supplement 2): i77–i78). In addition to recovering, e.g., tRNAs as a structure-based class, the method identifies several
RNA families, including microRNA and snoRNA candidates, and suggests several novel classes of ncRNAs for which to
date no representative has been experimentally characterized.
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Introduction

Starting with the discovery of microRNAs [1–3] and the
advent of genome-wide transcriptomics [4–6], it has become
obvious that RNA plays a large variety of important, often
regulatory, roles in living organisms that extend far beyond
being a mere intermediate one in protein biosynthesis. The
elucidation of the functional roles of the plethora of newly
discovered ncRNAs has thus become a central research
interest in molecular biology.

Recent advances in computational RNomics have resulted
in numerous software packages that can be employed to
detect ncRNAs with evolutionarily conserved secondary
structures [7–12]. Two of these, EvoFold [10] and RNAz
[9,13], are efficient enough to be applied to genome-wide
surveys in mammals [10,13] and other metazoan clades
[14,15]. Both approaches start from multiple sequence align-
ments. While EvoFold uses the SCFG approach pioneered by
qrna [7], RNAz is based on evaluating the folding thermody-
namics. Both approaches classify input alignments either as
unstructured or as possessing a common RNA secondary
structure; in the latter case they provide a prediction for the
consensus structure of the aligned sequences.

Just as in the case of proteins, ncRNA sequences can be
grouped into families that are characterized by clear
homologies. Usually the members in a family share functional
characteristics as well as conserved sequence and structure

motifs. Indeed, the RFAM database [16] compiles several
hundred families of ncRNAs based on this observation.
Examples include the individual snRNAs U1, U2, U4, U5,
and U6, 5S rRNA, RNAse P RNA, the RNA component of
telomerase, more than a hundred families of snoRNAs, and
several hundred microRNA families collected in mirbase [17].
In many cases, RNA families can be grouped together,
forming a ncRNA class whose members have no discernible
homology at sequence level, but still share common structural
and functional properties. The best-known classes are tRNAs
(although it is well-established that all tRNAs derive from a
common ancestor [18]), the two distinct classes of snoRNAs
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(box H/ACA and box C/D), RNAse P and MRP RNAs, and
microRNAs. It is thus natural to ask whether the many ncRNA
candidates that have been predicted computationally can be
grouped into families or even classes, and in particular,
whether there is evidence for novel families and classes for
which we have not yet seen experimentally verified repre-
sentatives.

As sequence similarity is often remote even within well-
established RNA families, we cannot rely on pure sequence
alignment techniques for this task. Indeed, it has been shown
that sequence alignments of structured RNAs fail at pairwise
sequence identities below about 60% [19]. Several different
algorithmic approaches have been introduced in the past to
determine structural similarities and to derive consensus
structure patterns for RNAs that are too diverse to be
alignable at sequence level. The corresponding software tools,
such as MARNA [20], PMmulti [21], and RNAforrester [22]
cannot be applied without modifications to the problem of
clustering predicted structures from RNAz or EvoFold
surveys, however. The main reason is that these ncRNA
detectors are not guaranteed to find the complete ncRNA
genes; rather they usually detect particularly conserved
substructures and sometimes the predictions are contami-
nated with spurious predictions in the flanking sequences.
Thus, a local structure-based alignment algorithm is neces-
sary. This is already implemented in RNAforrester [22], which
is based on tree-alignment, and in the local sequence–
structure alignment approach described [23], which in
addition can also detect structurally local motifs. A related
approach detects exact local sequence structure patterns in
O(n2) [24]. However, all these approaches require a single
known or predicted input structure. Tree-alignment and
tree-editing in addition have only limited capabilities to

repair incorrect base pairs. Tree-alignment is particularly
restrictive in this respect since even broken arcs must be
nested. As a consequence, RNAforrester tends to produce
many alignment columns that contain mostly gap characters
in the multiple alignment mode.
In contrast, derivates of the Sankoff algorithm [25] solve

the problem of simultaneous folding and alignment, which
turned out to be more appropriate. However, the large
number of predicted ncRNAs, several thousands in the case
of nematode and urochordate genomes and close to 100,000
in the case of mammals, calls for more efficient variants of
these algorithms.
In this contribution we introduce LocARNA (local align-

ment of RNA), a local pairwise structural alignment algorithm
for pseudoknot-free RNA secondary structures, and its
multiple version mLocARNA. (m)LocARNA is a Sankoff-style
algorithm, similar to PMmulti, that is efficient enough to be
used for large clustering of predicted ncRNAs. We have
successfully tested the LocARNA-based clustering approach
on the sequences of the RFAM-seed alignments to demon-
strate the feasibility of the approach, and to evaluate the
results. Furthermore, we use the data from a survey of the
ascidians C. intestinalis and C. savignyi [14] to achieve the
following goals. (1) We search for novel, clade-specific RNA
families in Ciona, which is of interest in itself. (2) In doing so,
we can increase the credibility of some of the predicted
ncRNAs, since being part of larger family of related RNAs
with similar structure reduces the likelihood of being a false
positive prediction. (3) We improve the genome annotation
by assigning additional ncRNAs to known families. (4) The
inferred consensus structures of novel families form a
starting point for subsequent searches in related organisms.

Methods

Structure-Based Clustering
In this work, we set up a pipeline for automated clustering

of ncRNAs (or ncRNA candidates) and semi-automated
selection of novel, complex clusters of RNAs. The input is a
set of RNAs R1,. . .,RN, which are given by their sequences, and
the output is a hierarchical clustering of these RNAs. In
addition, we will generate a fast, presorted, and annotated
overview of the clusters for further inspection by an expert.
Our pipeline is built from the following steps:
1. For each of the RNAs, we compute structural informa-

tion using McCaskill’s algorithm, implemented in RNAfold.
This algorithm computes a matrix of pair probabilities based
on a complete energy model of RNAs.
2. The next step is to compute all pairwise alignments of

the structurally annotated sequences using LocARNA. Note
that this requires computation of O(N2) pairwise sequence–
structure alignments for determining the distance matrix.
Note further that performing all pairwise comparisons
cannot be reasonably circumvented or replaced in a full-
featured clustering procedure. For genomic-scale datasets,
O(N2) comparisons are way too costly for most existing
sequence–structure approaches. The computational effi-
ciency remains crucial, even if this computationally most
intensive procedure is distributed for parallel computation,
which we do in a straightforward manner. As a result, we
assign a LocARNA-alignment score (i,j) to each pair of RNAs
(Ri,Rj).
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Author Summary

For a long time, it was believed that the control of processes in
living organisms is almost only performed by proteins. Only recently,
scientists learned that a further class of molecules, namely special
RNAs, plays an important role in cell control. In consequence,
research on such RNAs enjoys increasing attention over the last few
years. These RNAs were called noncoding RNAs (ncRNA), because,
unlike most other RNAs, these molecules do not code for proteins.
Due to recent research successes, one can predict a lot of potential
new ncRNAs by comparing the genomes of related organisms.
Technically, comparing such RNAs is challenging and computation-
ally expensive, since related ncRNAs often show only weak similarity
on the sequence level, but share similar structures. In the paper, we
present the new method LocARNA for fast and accurate comparison
of RNAs with respect to their sequence and structure. Using this
method, we define a distance measure between pairs of ncRNAs
based on sequence and structure. This is then used for combining
RNAs into a cluster for identifying groups of similar RNAs in large
unorganized sets of RNA. The final aim of such a comparison is to
identify new classes of ncRNAs. We applied our clustering procedure
to a previously published set of 3,332 predicted ncRNAs in the C.
intestinalis genomes. In addition to rediscovering known classes of
RNAs, e.g., tRNAs, the method predicts microRNA candidates, and
suggests several novel, experimentally uncharacterized classes of
ncRNAs. For verification, we clustered about 4,000 RNAs of RFAM,
which is a large database that contains RNAs with an already known
classification into families. Our results show good performance of
the presented structure-based clustering approach.

Structure-Based Clustering of RNAs



3. A cluster-tree is generated by applying the weighted pair
group method algorithm (WPGMA), which is also known as
average-linkage clustering, to a matrix of pairwise distances
of the RNAs. There, the distances d(i,j) correspond directly to
our LocARNA-scores. Instead of computing distances as maxij-
score(i,j), we define distances by

dði; jÞ ¼ maxð0; q� scoreði; jÞÞ;

where q is the x-quantile (e.g., x¼ 99%) of all pairwise scores.
This decision avoids the fact that exceptionally large scores
influence the distance-transformation. In the resulting tree,
internal nodes correspond to clusters of RNAs. Their heights
correspond to the mean pairwise LocARNA-scores of their
constituents and thus give a single-value measure of cluster
quality.

4. A good overview and a true quality assessment of the
clusters can be best provided through multiple alignments of
each cluster. We simultaneously construct all multiple
sequence–structure alignments, i.e., one for each cluster, by
only O(N) runs of the pairwise alignment algorithm. This can
be done by constructing the multiple alignments progres-
sively, using the already constructed cluster-tree as guide tree.

From each of the multiple alignments, we collect informa-
tion that can guide a quality assessment of the cluster. We
compute the mean pairwise sequence identity (MPI) and,
using RNAalifold, the structure conservation index (SCI), the
consensus minimum free energy (MFE), the consensus MFE
structure, and the consensus base pair probabilities. Sorting
the list of generated clusters by the quantities size of cluster,
SCI, MPI, and MFE provide the expert with an automatically
proposed order for his manual inspection of the clusters. The
multiple alignment itself and the consensus structure
information facilitate the selection of ‘‘interesting’’ clusters.

This pipeline crucially depends on pairwise sequence–
structure alignments. Therefore, we require the following
algorithmic components which we describe in some detail in
the next two sections, (1) LocARNA: Efficient Pairwise Local
Sequence–Structure Alignment and (2) Local Multiple Se-
quence Structure Alignments. In (1), we develop an efficient
algorithm for high-quality pairwise alignments of RNAs that
considers both sequence and structure information. For this
purpose, the best results are achieved with Sankoff-style
algorithms. We provide the new method called LocARNA,
which is much more efficient than current approaches and
uses base pair probabilities as structural input. Regarding (2),
for the selection of clusters, one important subproblem is to
extract consensus structure information from the clustered
RNAs, which is done by using RNAalifold. For producing the
input for RNAalifold, we introduce the local multiple align-
ment method mLocARNA.

LocARNA: Efficient Pairwise Local Sequence–Structure
Alignment

For the pairwise alignments of RNA, we use our novel tool
LocARNA, which computes local alignments of RNA. It is a
Sankoff-style algorithm in the spirit of PMcomp, but goes
beyond its ancestor by introducing local alignment and
significantly improving the efficiency.

The Sankoff algorithm [25] provides a general solution to
the problem of simultaneously computing an alignment and
the common secondary structure of the two aligned sequen-
ces. In its full form, the problem requires O(n6) CPU time and

O(n4) memory, where n is the length of the RNA sequences to
be aligned. In general, one can distinguish two variants of the
Sankoff algorithms: programs such as foldalign [26,27] and
dynalign [28] implement a more or less complete energy
model for the RNA folding part. In contrast, PMcomp [21]
assumes that a structure model for the two input sequences is
already known and given in the form of weights for the
individual base pairs. However, note that such a structure
model is reasonably obtained using McCaskill’s algorithm
[29], again on the basis of a full-featured energy model.
Consider two sequences A and B with associated base pair

probability matrices PA and PB, respectively. The goal is to
compute a sequence alignment A of A and B together with
secondary structure S on A. A consists of a set of (mis)matches
written as pairs (i,k), where i is a position in A, and k a position
in B. The consensus secondary structure S for an alignment A
consists of a set of quadruples (ij;kl), where (i,k)2A and (j,l)2A
are two matches in A, (i,j) is a base pair on sequence A, and
(k,l) is a base pair on sequence B. Furthermore, denote by As

the single-stranded part of the alignment; i.e., if (i,k)2As then
there is no pair (j,l) such that (ij;kl)2S or (ji;kl)2S. The goal is to
determine the pair (A,S) that maximized the score functionX

ðij;klÞ2S
ðWA

ij þWB
klÞ þ

X
ði;kÞ2As

rðAi;BkÞ � Ngapc; ð1Þ

where WA
ij and WB

ij are base pair scores (see below),
r:fA,C,G,Ug2 ! R is the similarity score for (mis)matches, c
is the gap score parameter, and Ngap is the number of
insertions and deletions in the alignment A.
Both PMcomp and our novel tool, LocARNA, use base pair

scores that are derived from the base pairing probability
matrices of the two individual sequences. More precisely, we
use here

Wij ¼ log
Pij

p0
=log

1
p0

if Pij � p�

�‘ otherwise

8<
: ð2Þ

where Pij is the equilibrium pairing probability as computed
by McCaskill’s algorithm [29], p0 is the expected probability
for a pairing to occur at random, and p* is the cutoff
probability, below which the arcs are ignored. Formally, this
is expressed by assigning �‘ as the weight in this case. The
term log Pij

p0
is the log-odds score for having a specific base

pairing against the null model of a random pairing, and log 1
p0

is a normalization factor that transforms the weights to a
maximum of 1. The reason for this normalization is just that
it is easier to balance the sequence score against the structure
score.
LocARNA improves the PMcomp approach in several ways.

First of all, it uses a modified dynamic programming
approach that allows us to utilize the fact that typically the
number of significant base pairs does not grow withO(n2), i.e.,
that the base pair probability matrices PA and PB are usually
sparse. In particular, if p is constant for different n, then each
base can take part in at most 1/p*, and thus O(1) base pairs.
Hence, there are only m ¼O(n) significant entries in P.
We define Dij;kl as the maximal similarity score of an

alignment for the subsequences A[i..j] and B[k..l] with the
additional condition that (i j;k l) is part of consensus
secondary structure. To profit from the reduced number of
significant base pairs in time and space complexity, we
calculate and store only Dij;kl that correspond to significant

PLoS Computational Biology | www.ploscompbiol.org April 2007 | Volume 3 | Issue 4 | e650682

Structure-Based Clustering of RNAs



base pairs. Due to this modification, we need to take special
care to avoid redundant computation. Therefore, we com-
pute the entries Dij;kl by fixing i and k and varying only j and l.
We introduce the notation Di�;k� to denote the matrix slice
where i and k are fixed. The efficient calculation of Di�;k� in
O(n2) time requires an auxiliary matrix M, where the entries
Mij;kl are the optimal similarity score of subsequences A[i þ
1. . .j] and B[kþ 1. . .l], and leads to a computation order that
differs from PMcomp. Finally, the dynamic programming
recursion for M and D takes the usual form of a Sankoff-style
algorithm:

Mi j;k l ¼ max

Mi j�1;k l�1 þ rðAj;BlÞ
Mi j�1;k l þ c
Mi j;k l�1 þ c
maxj 9l9 Mi j 9�1;k l9�1 þ Dj 9 j;l9 l

8>><
>>:

Di j;k l ¼ Mi j�1;k l�1 þWA
ij þWB

kl ð3Þ

The important observation is that the last, computationally
most expensive, alternative in the M recursion needs to be
evaluated only for PA

j9j � p* and PB
l9l � p*, and, analogously, D

needs to be stored only for matching base pairs. We observe
that Di�;k� depends only on Mi�;k�, which in turn can be
computed from other Mi�;k� entries. Thus, we only need to
store the entries of M for the current values of i and k, i.e.,
O(n2) entries. The recursion can therefore be evaluated in
O(m2 þ n2) memory and O(n2(n2 þ m2)) time.

From the matrices M and D, we can now compute the score
of the best global alignment as well as the score of the best
local alignment. In our study, we are only interested in the
latter. Global alignment is only explained for better under-
standing and for comparison to the global alignment
algorithm PMcomp. The score of the global alignment can
be computed by evaluating the recursion for M0j;0l, i.e., the
optimal global alignment score is M0jAj;0jBj.

Recall that our main goal is to apply the procedure to the
prediction of ncRNA detectors (e.g., such as RNAz) as
generated by genome-wide screens. These detectors are not
guaranteed to find the complete ncRNA genes and usually
detect conserved substructures. Moreover, the predictions
can be contaminated with spurious predictions in the
flanking sequences. Hence, we need local sequence–structure
alignment.

Concerning local alignment, in a Sankoff-style approach
usually we compute a four-dimensional matrix of alignment
scores for each pair of subsequences A[i. . .j] and B[k. . .l]. In
this case, we could trivially obtain the best local alignment
score by searching for the maximal score.

In our case, however, we cannot apply this simple method,
since we do not compute entries for all possible pairs of
subsequences. Rather, we compute only scores for subse-
quences that are closed by (significant) base pairs or prefixes
of them. Those scores are either stored in Dij;kl (in the case of
closing a base pair match) or in Mij;kl.

Instead, we will borrow, slightly tailored for our purpose,
the trick of standard sequence alignment, which is to add an
additional zero entry in the recursion for cutting off
dissimilar prefix-alignments. Note that this assumes that the
score parameters yield a score greater than zero only for
similar subsequences. The best local alignment is then
obtained as the maximal entry of the matrix.

However, note that we must not change the recursion
equations for all Mij;kl, which serve for computing some entry
of D. Only for alignments of subsequences A[i. . .j] and B[k. . .l],
where at least one of the subsequences is not enclosed by a
(significant) base pair, is it correct to cut off dissimilar prefix-
alignments. All these cases are accounted for when consid-
ering the alignments of all pairs of prefixes of A and B, which
are stored in the M0�;0� slice.
Therefore, we use for local alignment the following variant

of Equation 3 that extends Equation 3 only for the slice
M0�;0�.

Mij;kl ¼ max

Mij�1;kl�1 þ rðAj;BlÞ
Mij�1;kl þ c
Mij;kl�1 þ c for i . 0 or j . 0
maxj 9l9 Mij 9�1;kl9�1 þ Dj 9j;l9l

8>><
>>:

M0j;0l ¼ max

0
M0j�1;0l�1 þ rðAj;BlÞ
M0j�1;0l þ c
M0j;0l�1 þ c
maxj 9l9 M0j 9�1;0l9�1 þ Dj 9j;l9l

8>>>><
>>>>:

Dij;kl ¼ Mij�1;kl�1 þWA
ij þWB

kl ð4Þ

Note that the entries M0j;0l will not be needed to compute
any entry Di9j9;k9l9. By adding a 0-entry in the calculation of
M0j;0l, we ensure that entries in M0�;0� are nonnegative. Since
negative scores are considered dissimilar, we thereby remove
prefix-alignments that do not belong to the local alignment.
The optimal local alignment score is then maxjl(M0j;0l).
The corresponding optimal alignment and consensus

secondary structure can now be obtained by backtracing,
i.e., for local alignment we start from the maximal entry in
M0j;0l and stop when similarity drops to its minimal value of
zero. In addition, for every pair (i j;k l) in the consensus
structure we have to recompute the Mi�;k� at a cost of
O(n2þm2). Since there are at most O(n) pairs in the consensus
structure, the cost of backtracing stays negligible.
LocARNA is implemented in Cþþ, which results in a

further performance gain relative to the Perl implementation
of PMcomp. While it fully exploits speed and memory
reductions that can be obtained by limiting possible
consensus structures, additional performance gains are
possible by restricting the possible sequence alignments. This
is done, e.g., in stemloc [30] by using ‘‘alignment envelops’’. A
similar but more easily implemented technique is used by
CONSAN [31], where high confidence matches (‘‘pins’’) are
derived from local sequence alignments. The algorithm then
considers only alignments that contain all pins.

Local Multiple Sequence–Structure Alignments
Based on the pairwise LocARNA algorithm, we construct a

progressive multiple alignment method, mLocARNA, which is
similar in spirit to PMmulti, the PMcomp-derived multiple
alignment tool [21]. mLocARNA differs from PMmulti in the
algorithm for computing the consensus base pairing proba-
bility matrix PA8B for the combined alignment of A and B
from the base pairing probability matrices of the subalign-
ments (or sequences) A and B. For a pair of columns p, q in the
alignment of A and B, PMcomp defines the combined base
pair weight by
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PA8B
pq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PA
ipiq 3PB

kpkq

q
for a match p; q

0 otherwise

(
ð5Þ

where ip and iq are the positions corresponding to p and q in
the subalignment A, respectively. kp and kq are defined
analogously for subalignment B. This has the effect that
whenever one subalignment contains a gap at p or q or has a
very low base pair probability, then the structural informa-
tion between p and q from the other subalignment is
effectively lost. In consequence, PMmulti tends to remove
most base pairs when aligning many sequences.

To avoid this undesired effect, we introduce the new
definition

PA8B
pq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PA
pq 3 �PB

pq

q
; ð6Þ

where

�PA
pq ¼

maxðp0;PA
ipiqÞ for a match p; q

p0 otherwise

�

and �PB
pq is defined analogously.

As usual, the order of pairwise alignments is directed by a
guide tree. We use for that purpose the sub-trees produced by
the hierarchical clustering.

Results

Evaluation of the Clustering Procedure
To evaluate the quality of our clustering approach, we have

applied our procedure to the sequences in the RFAM seed
alignments. Our test set consists of all seed sequences that
have no more than 80% sequence identity and do not exceed
400 nt in length, resulting in 3,901 sequences from 503
families. Normally, quality measures such as sensitivity and

specificity are defined for binary classification problems,
while here we face the problem of comparing our hierarch-
ical clustering with the family assignment in RFAM. In
principle, there are two ways of looking at the problem,
namely globally (considering the complete set of clusters),
and locally (considering the quality for each family sepa-
rately).
Concerning the global view, the complete RFAM defines a

partition of the set of all sequences into families (or clusters),
and we can compare the degree of agreement between the
partition defined by our clustering with the partition defined
by RFAM. Since we have a hierarchical clustering, different
sets of clusters can be defined by cutting the tree at different
thresholds #, and we have to compare all these thresholds to
find the set of clusters with the best agreement. The problem
of comparing the partition defined by a given set of clusters
(generated by cutting the tree at some specific level) with the
partition defined by RFAM is now transformed into a
classification problem as follows. We consider all possible
pairs of sequences, and define the number of true positives
(ss) as the number of sequence pairs from the same family
that lie in the same cluster. Analogously, the number of false
positives, false negatives, and true negatives are given by the
number of pairs from different families but same cluster (ds),
same family but different clusters (sd), and different families
and different clusters (dd), respectively. Sensitivity and
specificity are then defined as usual, namely spec ¼ dd/(dd þ
ds) and sens¼ ss/(ssþ sd). The receiver operating characteristic
(ROC), obtained by plotting the sensitivity against the false
positive rate (1-specificity) for different values of the cutoff #,
is shown in Figure 1.
A problem in the comparison with RFAM families is that

different families exhibit very different diversity: some
families consist only of closely related sequences while others
accommodate significant variation in sequence and structure.
Therefore, one should not expect that the RFAM family
division can be modeled by using one fixed threshold # for all
families. We therefore consider a local, family-wise, criterion
for the clustering quality. For a given RFAM family R and a
cluster C, we define the recall r(R,C) as the fraction of
members from R contained in C, i.e., r(R,C) ¼ jR\Cj/jRj. For
each family and a given minimum recall 0.5 , r � 1, we can
always determine the minimal threshold # such that there is a

Figure 1. ROC Curve of the Global Comparison of Clustering and RFAM

Families

At a false positive rate of 12%, we achieve a sensitivity of 52% (correctly
grouping together sequences of the same family), which is more than
sufficient to detect families.
doi:10.1371/journal.pcbi.0030065.g001

Table 1. Average Precision and F-Measure for Different
Minimum Recall Levels

Minimum

Recall Level

Average

Recall

Average

Precision

Average

F-Measure

0.50 0.5818 0.8280 0.6079

0.55 0.6996 0.7819 0.6475

0.60 0.7277 0.7530 0.6391

0.65 0.7596 0.7117 0.6191

0.70 0.8092 0.6831 0.6158

0.75 0.8519 0.5949 0.5650

0.80 0.8763 0.5701 0.5526

0.85 0.9381 0.4794 0.4964

0.90 0.9599 0.4419 0.4647

0.95 0.9766 0.3907 0.4173

doi:10.1371/journal.pcbi.0030065.t001

PLoS Computational Biology | www.ploscompbiol.org April 2007 | Volume 3 | Issue 4 | e650684

Structure-Based Clustering of RNAs



unique cluster C with r(R,C) � r. A measure of how well the
clustering reconstructs the family R is then the associated
precision p(R,C)¼ jR\Cj/jCj. An equal assessment of precision
and recall is given with the F-measure:

f0:5ðR;CÞ ¼
2rðR;CÞpðR;CÞ
rðR;CÞ þ pðR;CÞ

Averages are weighted by family size. Families that are only
represented by one sequence do not contribute to the
average as their precision is always 1.
Table 1 shows the average precision and F-measure

weighted by family size for different minimum recall levels
between 0.5 and 0.95. If we require that least 70% of a family (¼
minimal recall level) are grouped within the same cluster level,
we get in fact on average a recall of 80%. In this case, we
observe on average 32% false positive sequences within this
cluster. Of course, we have much better values for some
families such as 5S rRNA, where we have a precision of 100% at
a recall level of 95%. The results also show that we are able to
correctly cluster larger RNAs as well. For the members of the
SSU_rRNA_5 family (accession code RF00177) included in
our test set (recall that we have restricted the length to at most
400), 72.46% of them were clustered together in one single,
pure cluster containing no other sequences. The sequences in
this cluster have an average identity of 56.31%, and an average
sequence length of 257. The complete RFAM tree constructed
with our method is given in File Collection S1.
Concerning the formation of classes comprising several

families, this mainly makes sense for classes such as tRNAs
and miRNAs which have a similar structure, but, for example,
not for ribosomal RNAs where there are four structurally
different families. The best classification is observed for the
class of all tRNAs. They still have a precision of 96% at a
recall level of 95%. Concerning the class of all miRNAs, they
are (not surprisingly) grouped in several separate clusters.
However, we have a large cluster comprising 85% of all 213
miRNAs and only 18% false positive sequences.

Clustering of ncRNA Candidates in Gammaproteobacteria
An RNAz screen of six related gammaproteobacteria

resulted in an ncRNA candidate set of 123 unique loci of
the reference organism Escherichia coli. The screen follows the
same pipeline as in [14,15] but includes a new approach to
build multiple alignments. Only alignments with homolog
sequences of at least three genomes, with maximal pairwise
blast e-values of 1e-10 and a minimal length of 40 nt were
retained for input to the RNAz pipeline.
That the majority of ncRNA candidates could be annotated

with known E. coli ncRNAs (labeled with EC[...] in Figure 2) is
not surprising, as the screen was set up with a restrictive e-
value for the initial blast search. Further, only candidates with
homologs in at least three gammaproteobacteria genomes are
reported. This provides us with a second ncRNA candidate
set to validate the clustering approach, which in contrast to

Figure 2. Complete WPGMA Clustering Tree for ncRNA Candidates in

Gammaproteobacteria E. coli

Candidates are annotated with known E. coli ncRNAs (EC[...]), or if such
do not exist, then with ncRNAs from the RFAM database (RF[...]). The
colored boxes correspond to different substructures of 16S as found by
the RNAz screen. See Figure 3 for the location of these substructures. The
situation is the same for 23S (see File Collection S1).
doi:10.1371/journal.pcbi.0030065.g002
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the RFAM seed sequences in the earlier section, Evaluation of
the Clustering Procedure, was detected by RNAz. A candidate
was annotated to be a known E. coli ncRNA if their genomic
regions overlap to at least 70%. If such an annotation was not
available, a blast search against the RFAM database (E , 1e-6)
identified further homolog ncRNAs.

In Figure 2, the complete WPGMA tree is depicted. It is
nicely seen that again tRNAs get grouped in one separate

cluster. Even tRNAs coding for the same amino acid are
mostly found within the same subclusters.
At first glance, the distribution of rRNAs in Figure 2 is

disappointing. Different families of rRNAs appear in several
separate clusters; however, RNAz predictions for 16S and 23S
do not fall into a single cluster. This distribution results from
a shortcoming of the RNAz input screen rather than from a
weakness of the clustering method. Since RNAz scores

Figure 3. Locations of RNAz Predictions for 16S rRNA

The dark blue box is the annotated 16S rRNA. The other boxes denote the RNAz predictions. Boxes with the same color are clustered together by our
clustering procedure (see Figure 2). This shows that we correctly cluster the corresponding substructures.
doi:10.1371/journal.pcbi.0030065.g003

Figure 4. Summary of the Clustering Procedure

The WPGMA tree contains 3,332 putative ncRNAs. A few large, prominent clusters are indicated. Among them are tRNAs and U3 snRNA, and an miRNA
cluster, Figure 5, which contains the known miRNAs mir-124-a/b and let-7 as well as candidates for mir-126 and mir-7. Clusters 1384 in Figure 6 and 249
in Figure 7 are good candidates for novel ncRNA classes. sc01 and sc03 are both example clusters based on high sequence similarity.
doi:10.1371/journal.pcbi.0030065.g004
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alignments in relatively short slices, large structured RNAs
are in general not detected as a single contiguous locus.
Rather, several substructures are recognized for both 16S and
23S RNAs, which to a certain extent depend on the exact
location of sequence windows that are used for the RNAz
scoring. As demonstrated in Figure 3 and in detail in File
Collection S1, corresponding substructures (including fea-
tures up to 800 nt in length) from the different rRNA loci in
the E. coli genome are correctly clustered together.

Clustering of ncRNA Candidates in C. intestinalis
The dataset resulting from the RNAz-based survey for

conserved ncRNAs in the genomes of the ascidians C.

intestinalis and C. savignyi [14] consists of 3,332 predicted
structured RNAs, of which only about 500 could be annotated
as members of well-known RNA families. The overwhelming
majority of the known RNAs are the 301 tRNAs recognized by
RNAz. Figure 4 summarizes the results of the clustering
procedure.
At first glance, the result might look disappointing as we

find a large number of predictions that do not belong to any
tight cluster. This is not surprising, however, given that we
expect a very high noise level in this dataset. (1) The RNAz
screen has an estimated false discovery rate of about 18%. (2)
No attempts have been made to correct the fairly unreliable

Figure 5. Cluster Containing Known and Predicted C. intestinalis microRNAs

The two known mir-124 paralogs are members of subcluster 127, whereas the known let-7 is found in subcluster 139. Sequence ci_555813 in subcluster
152 contains a mir-126 candidate (UCGUACCGUGAGUAAUAAAGC) and ci_555312 in subcluster 127 a mir-7 candidate (UGGAAGACUAGUGAUUUU-
GUUGU). Forty of the 58 cluster members (marked with ***) are classified as putative microRNAs by RNAmicro [37]. The fourth known microRNA in
urochordates, mir-92, does not fall into this structural cluster. Members of the cluster are not sequence related (NeighborNet in the bottom right
corner). N, number of sequences in cluster.
doi:10.1371/journal.pcbi.0030065.g005
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strand prediction of RNAz, which has an error rate up to 30%
[32]. (3) We can expect that a significant fraction of
structured elements have been predicted only partially. (4)
Thermodynamic consensus structure predictions based on
only pairwise alignments are far from perfect [19,33]. It is
thus not surprising that only a fraction of the input data can
be assigned to meaningful clusters.

As expected, the largest and most prominent cluster
comprises tRNAs. As discussed in some detail in [34], this
tRNA cluster is composed of subclusters corresponding to
homologous tRNAs with common anticodons. Several other
well-known multigene families are easily identifiable as
structural clusters, including the U5 snRNAs, U3 snRNAs,
and 5S rRNAs. Several families of multicopy genes with
common secondary structure are present in the Ciona
genomes [34]. Most of them are also readily identifiable in
the structural cluster tree. Since these subclusters are already

easily detectable on the sequence level, they are of little
interest for the structured-based approach pursued here.
A more interesting example is a cluster, Figure 5, that

contains two paralogs of mir-124 and one copy of let-7
microRNAs that were previously described in computational
screens of C. intestinalis [35,36], as well as good candidates for
mir-126 and mir-7. The other members of the cluster have no
sequence similarity with known microRNA families compiled
in miRBase release 9.0 (blast E � 0.001). Both mir-124
candidates occur within introns of known mRNAs of C.
intestinalis (JGI2.0), while mir-126 and mir-7 do not seem to be
located in an intron. That a large cluster of known and
putative miRNAs was detected demonstrates that annotation
of ncRNA candidates is highly improved by structure-based
clustering. The majority of cluster members could not be
identified as miRNA candidates by sequence comparison
alone [14]. Further, a comprehensive comparative screen for

Figure 6. Cluster 1384 Groups Sequences with a Well-Conserved Secondary Structure Consisting of Three Stem Loops

Whereas the sequence identity is low, we observe a high structural conservation. N, number of sequences in cluster.
doi:10.1371/journal.pcbi.0030065.g006

PLoS Computational Biology | www.ploscompbiol.org April 2007 | Volume 3 | Issue 4 | e650688

Structure-Based Clustering of RNAs



miRNAs across the metazoan species identified only a few
homologs with high sequence similarity within the urochor-
dates [36], raising the question if there may exist a group of
yet unknown miRNA families within the urochordates.

Figures 6 and 7 highlight two novel clusters of structurally
similar predictions for which no functional or class assign-
ment is available. The neighbor-net graphs in the insets show
the sequence distance within the example cluster. Since the
sequence distance is on average larger than 0.5, this confirms
that the clusters are defined essentially based on structural
similarities. While our examples usually contain some subsets
of related sequences, overall there is little or no detectable
sequence conservation so that the clusters could not have
been detected by sequence similarity alone. Since many
ncRNAs, in particular snRNAs, tend to form multigene

families (often evolving under some form of concerted
evolution that keeps the family members nearly identical), a
moderate copy number in the genome can be interpreted as
supporting the hypothesis that the candidate is indeed a true
ncRNA.
In cluster 1384, Figure 6, for example, sequences with a

well-conserved secondary structure but low sequence sim-
ilarity are grouped. Nine of 11 sequences of cluster 1384
could be exactly mapped to the new C. intestinalis assembly
JGI2.0. The structural cluster contains three subclusters, 1378,
1381, and 1383, that have overall structural features in
common. All subclusters have three stem loops originating
from one single multiloop as consensus structure. But their
length and number of internal loops differ. Their grouping
into the superclusters 1382 and 1384 are justified by

Figure 7. Example of Structure-Based Clustering of Very Diverse Sequences Which Might Form a Novel ncRNA Class

The consensus structure models thus show a large number of compensatory mutations. N, number of sequences in cluster.
doi:10.1371/journal.pcbi.0030065.g007
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compensatory mutations. Two sequences of subcluster 1378
and one of subcluster 1381 appear within an intron of Ciona-
mRNA AK113484. Whereas the two sequences of subcluster
1378 appear within the same copy of mRNA AK113484 on
chr01p, the sequence in subcluster 1381 occurs in a copy on
chr04q. Six different genomic copies of AK113484 exist in
JGI2.0, but none of the intronic regions where the ncRNA
candidates are found are associated with repeats. This allows
the conclusion that those ncRNA candidates are indeed
functional ncRNAs as their sequences are highly diverged,
whereas they share common structural features and appear
within the same Ciona-mRNA. One sequence of subcluster
1383 occurs in an exon of the known protein coding Ciona-
mRNA AK114007. All other elements are intergenic or at
least the corresponding mRNAs are not yet known.

Cluster 1249 is also composed of highly divergent
sequences but similar secondary structures. Two sequences
of subcluster 1247 appear within an intron of the Ciona-
mRNA AK174830. Subclusters 1238 and 1245 contain one
sequence occurring in an intron of Ciona-mRNA AK222260
and AK116291, respectively.

Clusters 1384 and 1249 are good candidates for novel
classes of urochordate-specific ncRNAs, since none of the
sequences has detectable ncRNA homologs in vertebrates.

Discussion

Genome-wide studies, both experimental and computa-
tional, have uncovered tens of thousands of transcripts in
higher Eukaryotes that have little or no protein-coding
capacity. For a large subset of these, there is evidence for
selection acting to preserve secondary-structure motifs. Many
classes of functional RNAs, on the other hand, can be
recognized based on structural similarities. It is thus natural
to ask if the available data contain evidence for novel families
and classes of structured RNAs, for which so far no
representative has been well-characterized experimentally.
To answer this question, it is necessary to cluster the
candidate RNAs based on their structural features, a task
that is computationally much harder than clustering based on
sequence similarity.

We present here a new tool, LocARNA, which implements a
novel, more efficient variant of the Sankoff algorithm.We have
demonstrated that LocARNA is fast enough tomake structure-
based clustering of thousands of putative structured RNAs
feasible. Themain reason for its superior efficiency is due to the
prefiltering of the base pairs by their probability, and an
efficient computation scheme that is able to profit from the
reduced number of base pairs considered. The method is also
robust enough to find significant clusters in fairly noisy,
realistic data that contain a substantial fractionof false positive
predictions. We have successfully tested the tool on the
sequences of the RFAM seed alignments.

The LocARNA implements a local sequence structure
alignment method, which is required when applied to
candidate ncRNA sequences where the exact region of
interest is not exactly known (of course, the tool can also be
applied to global alignment problems). Clearly, there is a
length dependency in the scores, which has several sources,
one being the calculation of pair probabilities. This influen-

ces both pairwise alignment and the clustering, which implies
that the ncRNAs to be clustered should not diverge too much
in length. This is the case in many applications like the
clustering of predicted ncRNAs. A more precise treatment of
the different kinds of dependencies (such as GC content) is
planned for a future version.
Since perfect predictions and experimentally determined

structures are not available, it is imperative to have a method
that can identify clusters on imperfect structure prediction,
although this also implies that we cannot hope for perfect
pure clusters—some ‘‘contamination’’ and some sequences
that fall elsewhere in the clustering are thus unavoidable. The
ROC curve in Figure 1 shows that LocARNA indeed achieves
this goal.
The application of the tool to a dataset of more than 3,000

predicted structured RNAs in urochordates showed that the
clustering approach not only recovers known RNA families
and classes such as tRNAs, but also predicts several candidates
for novel ncRNA classes. In some cases we find that additional
sequences are identified as structural relatives of known RNA
families. In this way we have identified, for example, a mir-126
and a mir-7 homolog that were not detected in previous
computational studies. More importantly, however, we also
find structure-based clusters that are candidates for novel,
presumably urochordate-specific, RNA classes. We find that
these clusters often contain subclusters consisting of multi-
copy sequences. Comparing this with the characteristics of
several well-studied ncRNA families, in particular tRNAs, the
snRNAs associated with the major spliceosome, and SL RNAs,
lends further credibility to the hypothesis that these
sequences indeed form a bona fide RNA class.

Supporting Information

File Collection S1. Supplemental Material, Zip File of html Directory

http://www.bioinf.uni-freiburg.de/Supplements/locarna-06-12

Found at doi:10.1371/journal.pcbi.0030065.sd001 (643 KB ZIP).

Accession Numbers

Accession numbers starting with RF (e.g., RF00177) are taken from
the RNA families database RFAM (http://www.sanger.ac.uk/Software/
Rfam/) and denote different RNA families. Accession numbers
starting with AK (e.g., AK113484) describe Ciona intestinalis mRNAs
in the GenBank database (http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db¼Nucleotide).

Acknowledgments

We thank Dominic Rose and Jana Hertel for the data of the RNAz
screen of gammaproteobacteria. We also would like to thank the
anonymous referees for many helpful comments.

Author contributions. All authors conceived and designed the
experiments and contributed to writing the paper. SW developed and
implemented the algorithm and performed the experiments. KR
analyzed the data and contributed analysis tools.

Funding. This work has been funded, in part, by the Federal
Ministry of Education and Research in the context of the Jena Center
for Bioinformatics, the Austrian GEN-AU projects Bioinformatics
Integration Network II and Noncoding RNA, and the SPP 1174 ‘‘Deep
Metazoan Phylogeny’’’ and Bioinformatics Initiative BIZ-6/1–2 of the
DFG (German Research Foundation).

Competing interests. The authors have declared that no competing
interests exist.

PLoS Computational Biology | www.ploscompbiol.org April 2007 | Volume 3 | Issue 4 | e650690

Structure-Based Clustering of RNAs



References
1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification

of novel genes coding for small expressed RNAs. Science 294: 853–857.
2. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny

RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:
858–862.

3. Lee R, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis
elegans. Science 294: 862–864.

4. Carninci P, Kasukawa T, Katayama S, Gough J, Frith M, et al. (2005) The
transcriptional landscape of the mammalian genome. Science 309: 1559–
1563.

5. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, et al. (2005)
Transcriptional maps of 10 human chromosomes at 5-nucleotide reso-
lution. Science 308: 1149–1154.

6. Bertone P, Stoc V, Royce TE, Rozowsky JS, Urban AE, et al. (2004) Global
identification of human transcribed sequences with genome tiling arrays.
Science 306: 2242–2246.

7. Rivas E, Eddy SR (2001) Noncoding RNA gene detection using comparative
sequence analysis. BMC Bioinformatics 2: 8. epub.

8. Washietl S, Hofacker IL (2004) Consensus folding of aligned sequences as a
new measure for the detection of functional RNAs by comparative
genomics. J Mol Biol 342: 19–39.

9. Washietl S, Hofacker IL, Stadler PF (2005) Fast and reliable prediction of
noncoding RNAs. Proc Natl Acad Sci U S A 102: 2454–2459.

10. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, et al.
(2006) Classification of conserved RNA secondary structures in the human
genome. PLoS Comput Biol 2: e33.

11. Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J (2006)
Thousands of corresponding human and mouse genomic regions unalign-
able in primary sequence contain common RNA structure. Genome Res 16:
885–889.

12. Uzilov AV, Keegan JM, Mathews DH (2006) Detection of non-coding RNAs
on the basis of predicted secondary structure formation free energy
change. BMC Bioinformatics 7: 173. epub.

13. Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, Stadler PF (2005)
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