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ABSTRACT

Accurate comparative analysis tools for low-homology proteins remains a difficult challenge
in computational biology, especially sequence alignment and consensus folding problems.
We present partiFold-Align, the first algorithm for simultaneous alignment and consensus
folding of unaligned protein sequences; the algorithm’s complexity is polynomial in time and
space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary
structure pairings and alignment candidates to achieve an effectively cubic running time for
simultaneous pairwise alignment and folding. We demonstrate the efficacy of these tech-
niques on transmembrane b-barrel proteins, an important yet difficult class of proteins with
few known three-dimensional structures. Testing against structurally derived sequence
alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple
sequence alignment tools in the most difficult low-sequence homology case. It also improves
secondary structure prediction where current approaches fail. Importantly, partiFold-Align
requires no prior training. These general techniques are widely applicable to many more
protein families ( partiFold-Align is available at http://partifold.csail.mit.edu/).

1. INTRODUCTION

The consensus fold of two proteins is their common minimum energy structure, given a sequence

alignment, and is an important consideration in structural bioinformatics analyses. In structure–function

relationship studies, proteins that have the same consensus fold are likely to have the same function and be

evolutionarily related (Shakhnovich et al., 2005); in protein structure prediction studies, consensus-fold

predictions can guide tertiary structure predictors; and in sequence alignment algorithms (Edgar and Bat-

zoglou, 2006), consensus-fold predictions can improve alignments. The primary limitations in achieving

accurate consensus folding, however, is the difficulty of obtaining reliable sequence alignments for divergent

protein families and the inaccuracy of folding algorithms.
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The specific problem we address is predicting consensus folds of proteins from their unaligned se-

quences. This definition of consensus fold should not to be confused with the agreed structure between

unrelated predictors (Selbig et al., 1999). Our approach succeeds by simultaneously aligning and folding

protein sequences. By concurrently optimizing unaligned protein sequences for both sequence homology

and structural conservation, both higher fidelity sequence alignment and higher fidelity structure prediction

can be obtained. For sequence alignment, this sidesteps the requirement of correct initial profiles (because

the best sequence aligners require profile/profile alignment) (Forrest et al., 2006). For structure prediction,

this harnesses powerful evolutionary corollaries between structure.

While this class of problems has received much attention in the RNA community (Sankoff, 1985; Do

et al., 2008; Hofacker et al., 2004; Mathews and Turner, 2002; Havgaard et al., 2007; Backofen and Will,

2004), it has not yet been applied to proteins. Applying these techniques to proteins is more difficult and

less defined. For proteins, the variety of structures is much more complicated and diverse than the standard

RNA structure model, requiring our initial step of constructing an abstract template for the structure.

Moreover, for proteins, there is no clear chemical basis for compensatory mutations (Fariselli et al., 2001),

the energy models that define b-strand pairings are more complex, and the larger residue alphabet vastly

increases the complexity of the problem.

This class of problems is also different than any that have been attempted for structure analysis. The

closest related structure-prediction methods rely on sequence profiles, as opposed to consensus folds.

Current protein-threading methods such as Raptor (Xu et al., 2003) often construct sequence profiles of the

query sequence before threading it onto solved structures in the PDB; however, given two query sequences,

even if they are functionally related, it will output two structure matches but does not try to form a

consensus from these. There are b-structure specific methods that ‘‘thread’’ a profile onto an abstract

template representing a class of structures (Bradley et al., 2001; Waldispuhl et al., 2006), but do not

generate consensus folds. Further, a new class of ‘‘ensemble’’ methods, for example partiFold TMB

(Waldispuhl et al., 2008; O’Donnell et al., 2011), ‘‘threads’’ a profile onto an abstract template, yet does not

incorporate sequence alignment information nor does it generate consensus folds.

In this article, we describe partiFold-Align, the first algorithm for simultaneous alignment and folding of

pairs of unaligned protein sequences. Pairwise alignment is an important component in achieving reliable

multiple alignments. Our strategy uses dynamic programming schemes to simultaneously enumerate the

complete space of structures and sequence alignments and compute the optimal solution (as identified by a

convex combination of ensemble-derived contact probabilities and sequence alignment matrices) (Sutormin

et al., 2003; Henikoff and Henikoff, 1992; Rice et al., 2000). To overcome the intractability of this problem,

we exploit sparsity in the set of likely amino acid pairings and aligned residues (inspired from the

LocARNA algorithm) (Will et al., 2007). partiFold-Align is thus able to achieve effectively cubic time and

quadratic space in the length of its input sequences.

Then, we expand our techniques and show how our novel pairwise sequence alignment algorithm can be

used to efficiently calculate reliable multiple sequence alignments. More specifically, we compute all

pairwise alignments with partiFold-Align and apply a progressive alignment strategy to merge them. This

approach enables us to integrate the information stemming from long-range structural correlations between

residues into classical multiple sequence alignment methodologies.

We demonstrate the efficacy of this approach by applying it to transmembrane b-barrel (TMB) proteins,

one of the most difficult classes of proteins in terms of both sequence alignment and structure prediction

(Waldispuhl et al., 2006, 2008). In tests on sequence alignments derived from structure alignments, we

obtain significantly better pairwise and multiple sequence alignments, especially in the case of low ho-

mology. In tests comparing single-sequence versus consensus structure predictions, partiFold-Align obtains

improved accuracy, considerably for cases where single-sequence results are poor. The methods we de-

velop in this article specifically target the difficult case of alignment of low homology sequences and aim to

improve the accuracy of such alignments. To complete our benchmark, we apply the multiple sequence

alignment version of partiFold-Align to the outer membrane protein A transmembrane domain protein

family. Our results show that partiFold-Align outperforms classical approaches on this difficult class of

proteins.

Contributions: The main contribution of this work is that we introduce the new concept of consensus

folding of unaligned protein sequences. Our algorithm partiFold-Align is the first to perform simultaneous

folding and alignment for protein sequences. We use this to provide better sequence alignments and

structure predictions for the important and difficult TMB proteins, particularly in the case of low homology.

2 WALDISPÜHL ET AL.



Given the broad generality of this approach and its proven impact in the RNA community, we hope that this

will become a standard in protein structure prediction.

2. APPROACH

To design an algorithm for simultaneous alignment and folding we must overcome one fundamental

problem: predicting a consensus fold (structure) of two unaligned protein sequences requires a correct

sequence alignment on hand; however, the quality of any sequence alignment depends upon the underlying

unknown structure of the proteins. We adopt our solution to this issue from the approach introduced by

Sankoff (1985) to solve this problem in the context of RNAs—by predicting partial structural information

that is then aligned through a dynamic programming procedure.

For our consensus-folding algorithm, we define this partial information using probabilistic contact maps

(i.e., a matrix of amino acid pairs with a high likelihood of forming hydrogen-bonding partners in a protein

conformation), based on Boltzmann ensemble methods, which predict the likelihood of possible residue–

residue interactions given all possible in vivo protein conformations (Waldispuhl et al., 2006). This is

inspired by the recent LocARNA (Will et al., 2007) algorithm, which improves upon Sankoff’s through the

use of such probabilistic contact maps. This technique is also somewhat related to the problem of maximum

contact map overlap (Caprara et al., 2004), although in such problems, contact maps implicitly signify the

biochemical strength of a contact in a solved structure and not a well-distributed likelihood of interaction

taken from a complete ensemble of possible structures.

Using such ensemble-based contact maps for simultaneous alignment and folding can be applied to

other classes of proteins; however, in this work, we describe our application to the class of transmembrane

b-barrels. Unlike the RNA model used by Sankoff, TMB protein structure takes a complex form, with

inclined, anti-parallel, hydrogen-bonding b-strand forming a circular barrel structure as depicted in Figure

1. Partitioning such diversity of structure presents an intractable problem, so we apply a fixed parameter

approach to restrict structural elements such as b-strand length, coil size, and the amount of strand

inclination to biologically meaningful sizes.

Broadly speaking, our simultaneous alignment and folding procedure begins by predicting the ensemble-

based probabilistic contact map of two unaligned sequences through an algorithm extended from partiFold

TMB (Waldispuhl et al., 2006). Importantly, b-strand contacts below a parameterizable threshold are

excluded to allow for an efficient alignment of the most likely interactions. Alignment is then broken into

two structurally different parts: the alignment of b-sheets and the alignment of coils (seen in Fig. 2). Coil

alignments can be performed independently at each position; however, b-sheet alignments must respect

residue pairs. Finally, to decompose the problem (Fig. 3), we first consider the optimal alignment of a

single b-sheet with a given inclination, including the enclosed coil alignment. For energetic considerations,

we must note the orientation of the b-strand residues (core-facing or membrane-facing), as well as whether

FIG. 1. Different structural ele-

ments of transmembrane b-barrels.
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the coil extends into the extracellular or periplasmic side of the membrane. Once all single alignments have

been found, we ‘‘chain’’ these subproblems to arrive at a single consensus alignment and structure.

2.1. The TMB alignment problem

Formally, we define an alignment A of two sequences a, b as a set of pairs f(p1‚ p2)jp1 2
[1::jaj] [ f - g ^ p2 2 [1::jbj] [ f - gg such that (i) for all (i, j), (i0, j0) 2 (A \ [1::jaj] · [1::jbj), we have

i < i00j < j0 (noncrossing), and (ii) there is no i 2 [1::jaj] (resp. j 2 [1::jbj]) where there are two dif-

ferent p, p0 with (i, p), (i, p0) 2 [1::jaj] · [1::jbj] [ f - g (resp. ( p, j), ( p0, j) 2 [1::jaj] [ f - g · [1::jbj]).
Furthermore, for any position in both sequences, we must have an entry in A. We say that A is a partial

alignment if there are some sequence positions for which there is no entry in A. In this case, we denote with

def(a‚A) (resp. def(b‚A)) the set of positions in a (resp. b) for which an entry in A exists.

With this, the result of structure prediction is not a single structure but a set of putative structural

elements, namely, the set of possible contacts for the b-strand. As indicated in Figure 1, we have two

different side-chain orientations, namely facing the channel (C) and facing the membrane (M). Since

contacts can form only if both amino acids share the same orientation, a TMB probabilistic contact

map P of any TMB a is a matrix P = (P(i‚ i0‚ x))1pi< = i0pjaj‚ x2fC‚ Mg where P(i, i0, x) = P(i0, i, x) and

8x 2 fC‚ Mg :
P

i P(i‚ i0‚ x)p1. To overcome the intractability of this problem, we exploit sparsity in the

set of likely amino acid pairings. Thus, we use only those entries in matrix P that have a likelihood above a

parameterizable threshold.

We weight the alignments with a scoring function that sums a folding energy term E() with an alignment

score W(), where the energy term E() corresponds to the sum of the folding energies of the consensus

structure mapped onto the two sequences. To allow a convex optimization of this function, we introduce a

parameter a distributing the weights of the two terms. Thus, given two sequences a, b, an alignment A and

a consensus TMB structure S of length jAj, the score of the alignment is:

score(A‚S‚ a‚ b) = (1 - a) � E(A‚S‚ a‚ b) + a � W(A‚ a‚ b)

Let Ect(x, y) be the energy value of a pairwise residue contact. Since by definition of a consensus

structure these contacts are aligned, we define the energy component of the score() as:

E(A‚S‚ a‚ b) =
X

i
jð Þ2A‚

i0
j0

� �
2A

(i‚ i0 )2Sarcs
a ‚ (j‚ j0)2Sarcs

b

s(i‚ i0‚ j‚ j0)‚ where s(i‚ i0‚ j‚ j0) = Ect(i‚ i0) + Ect(j‚ j0)

FIG. 2. Elements of TMB align-

ment. Differently colored amino

acids in the sheet denote exposure

to the membrane and to the chan-

nel, respectively. In a valid sheet

alignment, only amino acids of the

same type can be matched, whereas

no further constraint (except length

restriction) are applied to the loop

alignment.

FIG. 3. Problem decomposition:

(a) alignment of a single sheet in-

cluding the enclosed loop with

positive shear and (b) chaining of

a single sheet alignment to form a

b-barrel. Green arcs indicate the

closing sheet connecting the be-

ginning and end.
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In practice, partiFold-Align implements a slightly more complex stacking pair energy model as de-

scribed in Waldispuhl et al. (2008). However, for pedagogical clarity, we use here only pairwise residue

contact potentials.

Now, let r(x, y) be the substitution score of the amino acids x by y, and g(x) an insertion/deletion cost.

Then, the sequence alignment component of the score() is given by:

W(A‚ a‚ b) =
X
i
jð Þ2A

r(ai‚ aj) +
X
i
-ð Þ2A

g(ai) +
X
-
jð Þ2A

g(aj)

Again, in practice, a penalty for opening gaps is added but not described here for clarity. Finally, the

optimization problem our algorithm solves is, given two sequences a and b:

arg max
A TMB alignment of a and b‚
S TMB structure of length jAj

score(A‚S‚ a‚ b)f g:

To account for the side-chain orientation of residues in TM b-strands toward the channel or the mem-

brane, the E() and W() recursion equations require a slightly more detailed version of the scoring. An

additional condition is that contacts only happen between amino acids with the same orientation, and that

this orientation alternates between consecutive contacts. Hence, we introduce in s an additional parameter

env standing for this side-chain orientation environment feature. The same holds for the edit scores r and g,

where the orientation can also be the loop environment. For the strands, we use rs (i, j, env), while for loops

we distinguish inner from outer loops (indicated by the loop type lt) with the amino acids in the loops

scored using rl (i, j, lt). The gap function is treated analogously.

2.2. Decomposition

We now define the dynamic programming tables used for the decomposition of our problem. The

alignment of a single antiparallel strand pair as shown in Figure 3a has nested arcs and an outdegree of at

most one. We introduce for this configuration a table ShA() (where ShA stands for sheet alignment)

aligning pairs of subsequences ai..i0 and bj..j0. Another parameter to account for is the shear number that

represents the inclination of the strands in the TM b-barrel. Since the strand pair alignments also include a

loop alignment, and the scoring function of this loop depends on the loop type (inner/outer loop), we need

to set the loop type as an additional parameter. Similarly, we need to know the orientation of the final

contact to ensure the succession of channel and membrane orientations. Given an orientation environment

of a contact env, the term nextc(env) returns the orientation of the following contact. Thus, we have a table

ShA(i, i0; j, j0; env; lt; s) with the following recursion:

ShA(i‚ i0; j‚ j0; env; lt; s) = max

ShAgap(i‚ i0; j‚ j0; env; lt; s)

ShAshear(i‚ i0; j‚ j0; env; lt; s) if s 6= 0

ShAcontact(i‚ i0; j‚ j0; env; lt) if s = 0

LA(i‚ i0; j‚ j0; lt) if s = 0

8>>><
>>>:

where

ShAcontact(i‚ i0; j‚ j0; env; lt) = ShA(i + 1‚ i0 - 1; j + 1‚ j0 - 1; nextc(env); lt; 0)

+ s(i‚ i0; j‚ j0; env) + rs(ai‚ bj‚ env) + rs(ai0‚ bj0 ‚ env)

ShAgap(i‚ i0; j‚ j0; env; lt; s) =

max

ShA(i + 1‚ i0; j‚ j0; env; lt; s) + gs(ai‚ env)

ShA(i‚ i0 - 1; j‚ j0; env; lt; s) + gs(ai0 ‚ env)

ShA(i‚ i0; j + 1‚ j0; env; lt; s) + gs(bj‚ env)

ShA(i‚ i0; j‚ j0 - 1; env; lt; s) + gs(bj0 ‚ env)

8>>>>><
>>>>>:

ShAshear(i‚ i0; j‚ j0; env; lt; s) =

max

ShA(i + 1‚ i0; j + 1‚ j0; env; lt; s + 1)

+ rs(ai‚ bj‚ env) if s <0

ShA(i‚ i0 - 1; j‚ j0 - 1; env; lt; s - 1)

+ rs(ai0‚ bj0‚ env) if s >0

8>>>>><
>>>>>:
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ShAgap, ShAcontact, and ShAshear are introduced for better readability and will not be tabulated. The

matrix LA(i, i0; j, j0; lt) represents an alignment of two loops ai..i0 and bj..j0, with a loop type lt. This table can

be calculated using the usual sequence alignment recursion. Thus, we have

LA(i‚ i0; j‚ j0; lt) =
LA(i‚ i0 - 1; j‚ j0; lt) + gl(ai0‚ lt)

LA(i‚ i0; j‚ j0 - 1; lt) + gl(bj0‚ lt)

LA(i‚ i0 - 1; j‚ j0 - 1; lt) + rl(ai0‚ bj0‚ lt)

8><
>:

As we have already mentioned in the definition of a contact map, we use a probability threshold to reduce

both space and time complexity of the alignment problem, in a similar way as is done in the LocARNA-

approach (Will et al., 2007). Thus, we will tabulate only values in the ShA-matrix for those positions i, i0

and j, j0 where the contact probability is above a threshold in both sequences. This is handled at the

granularity of strand pairs in practice to reduce complexity.

2.3. Chaining

The next problem is to chain the different single sheet alignments, as indicated by Figure 3b. To build a

valid overall alignment, we have to guarantee that the subalignments agree on overlapping regions. A

strand alignment As is just a partial alignment. The solution is to extend the matrices for sheet alignments

by an additional entry for the alignment of strand regions. Albeit there are exponentially many align-

ments in general, there are several restrictions on the set of allowed alignments since they are alignments

of strand regions. In the case of TMB-barrels, we assume no strand bulges since they are a rare event.

Hence, one can insert or delete only a complete contact instead of a single amino acid. When chaining

sheet alignments, the gap in one strand is then transferred to the chained sheet (by the agreement of

subalignments).

The first step is to extend the matrices of sheet alignments by an alignment descriptor, which is used to

ensure the compatability of subsolutions used in the recursion. Note that although the alignment is fixed for

the strands of a sheet, the scoring is not since we could still differentiate between a match of two bases or a

match of a contact. Thus, the new matrix is ShA(i, i0; j, j0; env; lt; s; As), where we enforce As to satisfy

def(a‚As) = [i::l1] [ [r1::i
0] and def(b‚As) = [j::l2] [ [r2::j

0] for some i < l1 < r1 < i0 and j < l2 < r1 < j0.
The new version of ShA() is

ShA(i‚ i0; j‚ j0; env; lt; s;As) = max

ShAgap(i‚ i0; j‚ j0; env; lt; s;As)

ShAshear(i‚ i0; j‚ j0; env; lt; s;As) if s 6= 0

ShAcontact(i‚ i0; j‚ j0; env; lt;As) if s = 0

LA(i‚ i0; j‚ j0; lt) if s = 0

8>>><
>>>:

LA(i, i0; j, j0; lt) does receive an additional parameter since subalignment agreement in chaining is restricted

to strands. For definitions ShAgap(), ShAcontact(), and ShAshear(), we now must check whether the

associated alignment operations are compatible with As. Thus, the new definition of ShAcontact() is

ShAcontact(i‚ i0; j‚ j0; env; lt;As) =

max

ShA(i + 1‚ i0 - 1; j + 1‚ j0 - 1; env; lt; 0;As) if (i‚ j) 2 As

+ s(i‚ i0; j‚ j0; env) + rs(ai0‚ bj0‚ env) and (i0‚ j0) 2 As

-1 else

8<
:

If all entries are incompatible with As, then -N is returned. Note that we add an amino acid match score

only for a single specified end of the contact. Thus, rs(ai, bj) is skipped. The reason is simply that otherwise

this score would be added twice in the course of chaining. The new definition of ShAshear is then

ShAshear(i‚ i0; j‚ j0; env; lt; s‚As) =

max

ShA(i + 1‚ i0; j + 1‚ j0; env; lt; s + 1;As) if s < 0 ^ (i‚ j) 2 As

ShA(i‚ i0 - 1; j‚ j0 - 1; env; lt; s - 1;As) if s > 0 ^ (i0‚ j0) 2 As

+ rs(ai0‚ bj0‚ env)

8><
>:

6 WALDISPÜHL ET AL.



The new variant of ShAgap() is defined analogously. Now we can define the matrix Dchain() for chaining

the strand pair alignments. At the end of its construction, the sheet is closed by pairing its first and last

strands to create the barrel. To construct this, we need to keep track of the leftmost and rightmost strand

alignments Achain
s and Acyc

s of the sheet. We add two parameters; first, a variable ct is used to determine if

the closing strand pair has been added or not. Here, ct = c means that the sheet is not closed while ct = lf
indicates that the barrel has been built. Second, to control the number of strand in the barrel, we add the

variable nos storing the number of strands in the sheet.

We initialize the array Dchain for every i, j and any strand alignment Acyc
s such that def(a‚Acyc

s ) = [i::i0]
and def(b‚Acyc

s ) = [j::j0]. This initializes the array to a nonbarrel solution. Then

Dchain(i‚ j;Acyc
s ;Acyc

s ; c; lt; 1) = LA(i‚ jaj; j‚ jbj; lt; 1)‚

where lt represents the orientation environment. Note that the strand alignment has not yet been scored. We

now describe the chain rules used to build a sheet (an unclosed barrel). To account for the alignment of the

first strand of this sheet (so far unscored in ShA), we introduce a function ShAstart(A‚ nos) returning the

cost of this alignment when nos = 2 and returning 0 otherwise. A function prev() returning the previous

loop type is also used to alternate loop environments between both sides of the membrane. In addition,

given two alignments As, A0s, we say that As, A0s agree on the strands i..i0 in the first sequence and j..j0 in

the second sequence, written agr(A0s;As; i‚ i0; j‚ j0)). With this notation, the recursion used to build the

unclosed sheets is:

Dchain(i‚ j;As;Acyc
s ; c; lt; nos) =

max
i0‚ j0‚A0s‚ s‚ lt0‚ env

with

ShA(i‚ i0 ;j‚ j0 ; lt0 ;s;A0s )> -1‚

def(a‚As ) = [i::l1 ][[r1 ::i
0]‚

def(b‚As ) = [j::l2 ][[r2 ::j
0]‚

and agr(A0s ; As ;i‚ l;j‚ l0)

ShA(i0‚ i; j‚ j0; env; lt0; s;A0s)

+ Dchain(r1‚ r2;A0s;A
cyc
s ; c; prev(lt); nos - 1)

+ ShAstart(A0s‚ nos)

0
BB@

1
CCA:

We conclude this section by defining the recursions used to close the barrel and perform a sequence

alignment of the N-terminal sequences. Since the antiparallel or parallel nature of the closing strand pair

depends on the number of strands in the barrel, we introduce here a function ShAclose() that returns the

folding energy of the parallel strand pairings of the leftmost and rightmost strands of the sheet if the number

of strands nos is odd, and folding energy of the antiparallel strand pairings if nos is even.

Dchain(i‚ j;As;Acyc
s ; lf ; lt) =

max

max

Dchain(i + 1‚ j;As;Acyc
s ; lf ; lt) + gl(ai‚ lt)

Dchain(i‚ j + 1;As;Acyc
s ; lf ; lt) + gl(bj‚ lt)

Dchain(i + 1‚ j + 1;As;Acyc
s ; lf ; lt) + rl(ai‚ bj‚ lt)

8>><
>>:

max

i0 ‚ j0‚ env‚ nos

Dchain(i‚ i0;As;Acyc
s ; c; lt)

+ ShAclose(i‚ i0; j‚ j0; env; s;As;Acyc
s ; dir(nos))

(

8>>>>>>>><
>>>>>>>>:

The final value of the consensus folding problem is then found in the dynamic programming table

Dchain(1‚ 1;As;Acyc
s ; lf ; lt)) for some lt and As, Acyc

s with agr(As;Acyc
s ; 1‚ i; 1‚ j), where def(a‚As) =

[1::i] [ [r::i0] and def(b‚As) = [1::j] [ [r::j0]. Solutions are built using classical backtracking procedures.

These final Dchain() equations assume that the strand inclinations, modeled using the shear number s, are

independent. However, in practice this parameter must be used to determine when a strand pair can be

concatenated at the end of an existing sheet to ensure the coherency of the barrel structure and conserve a

constant inclination of the strands (Fig. 1).

2.4. Progressive alignment of multiple sequences

We extend our pairwise alignment algorithm to align multiple proteins. To this end, we combine our

pairwise alignment tool with T-Coffee (Notredame et al., 2000). Similar combinations of structure-based

SIMULTANEOUS ALIGNMENT AND FOLDING OF PROTEIN SEQUENCES 7



alignment with T-Coffee have been successful in the context of RNA (Siebert and Backofen, 2005; Otto

et al., 2008).

The procedure starts with generating all-against-all pairwise alignment of the input sequences using

partiFold-Align. Naturally, such computations are independent, which allows us to parallelize this ex-

pensive step. Then, we compile a primary library that lists all aligned residue pairs for each of these

pairwise alignments together with primary weights. For simplicity, we assign the same weight to every

residue pair and add a bonus if (according to partiFold-Align) both residues belong to a corresponding

structure. Finally, we invoke T-Coffee given the generated library as input; this tool merges the structure-

based alignments of partiFold-Align into a single multiple alignment.

T-Coffee follows the strategy of consistency-based progressive multiple alignment. Briefly, T-Coffee
computes extended weights from the given primary weights, which reflect the consistency of each residue

pair with the alignment of all input sequences. In subsequent partial multiple alignments (i.e., alignments of

subsets of the input sequences), T-Coffee aligns based on these extended weights. After generating a guide

tree, sequences and partial multiple alignments are progressively aligned with each other in the order given

by the guide tree.

2.5. Complexity analysis of the pairwise sequence alignment algorithm

We conclude this section with a complexity analysis of the pairwise sequence alignment approach

described by the recursion equations in subsections 2.2 and 2.3. Then, we further discuss refinements that

were made to improve the complexity.

Let n and m denote the lengths of the two sequences. For the analysis, loop type, orientation, and shear

number are negligible as they are constantly bounded. First, there are O(n2m2) entries LA(i, i0, j, j0) for loop

alignments; each is computed in constant time. For a fixed strand alignment As, there are O(n2 $ m2) many

entries ShA(i, i0, j, j0; or; lt; s; As). By our recursion equations, each entry is computed in constant time.

Now, for TMBs the maximal length of a strand alignment lmax and the maximal number of gaps gmax in a

strand alignment can be bounded by small constants. We denote the number of such bounded alignments by

m, which is in O(lgmax
max )1 and constant for fixed parameters lmax and gmax. As a result, there are O(n2m2m)

entries ShA(i, i0, j, j0; or; lt; s, As) in total.

For the chaining, there are O(nmm2) entries Dchain(i‚ j;As‚Acyc
s ; ct‚ lt), each of these entries is computed

by maximizing over left boundaries i0 and j0, orientation, loop type, shear number, and strand alignment of

an entry ShA. There are O(nmm) such combinations. The final cyclic closing of the chaining is computed

by searching over all O(nmm) alignments Acyc
s and pairs of positions i and j, where the last strand align-

ment ends.

The resulting complexity of O(n2m2 + n2m2m + n2m2m3) time and O(n2m2 + n2m2m + nmm2) space is now

reduced drastically, yielding a practicable approach. The main reduction is due to the use of a threshold

pcutoff for the probabilities in our probabilistic contact map. As a result, the contact degree is bounded by

1/pcutoff and the quadratically many contacts considered for the above analysis are thus reduced to only

linearly many significant ones. Now, as mentioned before, we only compute entries of ShA(i, i0, j, j0; or; lt;

s,As) where all positions i, i0 j and j0 are within a narrow range r from a significant contact ( p, p0); r is

bounded by the shear number s and gmax. Thus there remain only O(4r2nmm) entries. For the chaining, this

means each entry can be computed in only O(4r2m) time because of the constant contact degree. Time and

space complexity are thus reduced by a factor of O (nm).

For TMB alignment, we further reduce the complexity due to the following observation. Because TMB

alignment structures contain no bulges, all strand alignments have equal length and have their gaps at the

same positions. This eliminates further degrees of freedom in choosing the overlapping strand alignments

As during the chaining. The final complexities of our approach are thus O(n2m2 + 4r2nmm + 4r2nmm) =
(n2m2 + 4r2nmm + 4r2nmm) = O(n2m2 + 4r2nmm) time and O(n2m2 + 4r2nmm + 4r2nmm) = O(n2m2 + 4

(n2m2 + 4r2nmm + 4r2nmm) = O(n2m2 + 4r2nmm) space.

Note that affine gap cost, as well as stacking, can be added without increasing the complexity. An

example for such an extension can be again found in the area of RNA sequence-structure alignment

(Will et al., 2007; Bompfunewerer et al., 2008).

1More precisely, the number of alignments of two sequences of length n with k gaps is 2 n + k
k

� �
.
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3. RESULTS

Here we demonstrate the benefits of the partiFold-Align algorithm when applied to the problems of

pairwise sequence alignment and structure prediction of transmembrane b-barrel proteins. Our sequence

alignment performance greatly improves upon comparable alignment techniques and surpasses state-of-the-

art alignment tools (which use additional algorithmic filters) in the case of low homology sequences. It is

also shown that a partiFold-Align consensus fold can better predict secondary structure when aligning

proteins within the same superfamily. To complete this section, we illustrate the impact of our technique on

the multiple sequence alignment problem and show promising results on the outer membrane protein A

transmembrane domain. We begin with a description of our test dataset and scoring metrics as well as the

partiFold-Align parameters chosen for the analysis, followed by our specific sequence alignment and

structure prediction results.

3.1. Dataset and evaluation technique

3.1.1. Pairwise alignment. By implementing our algorithmic framework to align and fold trans-

membrane b-barrels, we highlight how this approach can significantly improve the alignment accuracy of

protein classes with which current alignment tools have difficulty. Specifically, few TMB structures have

been solved through X-ray crystallography or NMR (less than 20 nonhomologous to date), and often known

TMB sequences exhibit very low sequence homology (e.g., less than 20%), despite sharing structure and

function.

To judge how well partiFold-Align aligns proteins in this difficult class, we select 13 proteins from five

superfamilies of TMBs found in the Orientation of Proteins in Membranes (OPM) database (Lomize et al.,

2006) (using the OPM database definition of class, superfamily, and family). This constitutes all solved

TMB proteins with a single, transmembrane, b-barrel domain, and excludes proteins with significant

extracellular or periplasmic structure and limits the sequence length to a computationally tractable maxi-

mum of approximately 300 residues. With the assumption that structural alignment best mimics the

intended goal of identifying evolutionary and functional similarities, we perform structural alignments

between all pairs of proteins within large superfamilies and across smaller superfamilies (28 alignments,

see Supplementary Material available online at www.liebertpub.com/cmb for an illustration of the

breakdown), and for testing purposes, consider this the ‘‘correct’’ pairwise alignment. For structural

alignments, the Matt (Menke et al., 2008) algorithm is used, which has demonstrated state-of-the-art

structural alignment accuracy. During analysis, the resulting alignments are then sorted by relative se-

quence identity2 (assuming the Matt alignment) (Doolittle, 1981; Raghava and Barton, 2006).

Our partiFold-Align alignments are then compared against structural alignments using the QCline (Cline

et al., 2002; Dunbrack, 2006) scoring metric, restricted to transmembrane regions as defined by the OPM

(since structural predictions in the algorithm only contribute to transmembrane b-strand alignments; coils

are effectively aligned on sequence alone). QCline can be considered a percentage accuracy and resembles

the simplistic Qcombined score,3 measuring combined under- and over-prediction of aligned pairs, but more

fairly accounts for off-by-n alignments. Such shifts often occur from energetically favorable off-by-n b-

strand pairings that remain useful alignments. The QCline parameter e is chosen to be 0.2, which allows

alignments displaced by up to five residues to contribute (proportionally) toward the total accuracy. The

higher the QCline score, the more closely the alignments match (ranging [ - e, 1]).

To judge the accuracy of a partiFold-Align consensus structure against a structure predicted from single-

sequence alone, we test against the same OPM database proteins described above. For all 13 proteins, a

structure prediction is computed using the exact same ensemble structure prediction methodology as in

partiFold-Align, only applied to a single sequence. The transmembrane region Q2 secondary structure

prediction score between the predicted structures and the solved PDB structure (annotated by STRIDE)

(Frishman and Argos, 1995) can then be computed; where Q2 = (TP + TN)/(sequence length).

2Sequence Identity% = Identical positions
aligned positions + internal gap positions

3Qcombined = # correct pairs
# unique pairs in sequence structure alignments
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3.1.2. Multiple sequence alignment. We tested the multiple sequence alignment algorithm on the

seed alignment of the outer membrane protein A transmembrane domain from the Pfam database (Finn

et al., 2013) (Pfam ID: PF01389). This alignment contains 13 sequences with lengths ranging from 156 to

240 amino acids and has an average sequence identity of 39%. Here, we use two metrics to measure the

accuracy of the multiple sequence alignment prediction. First, we calculate the percentage of identical

columns between the Pfam alignment (i.e., the reference) and the prediction. In addition, we also compute

the percentage of pairs of residues found in the same columns (i.e., conserved pairs). The latter aims to give

us a better estimation of the quality of the alignment even when all amino acids are not perfectly aligned in

the same columns.

3.2. Model parameter selection

For our analyses, parameters must be chosen for the abstract structural template defined in section 2. In

transmembrane b-barrels, the choice of allowable (minimum and maximum) b-strand and coil region

lengths, as well as shear numbers, can be assigned based on biological quantities such as membrane

thickness. (Even in the absence of all other information, the sequence length alone of a putative trans-

membrane b-barrel can suggest acceptable ranges.) Other algorithmic parameters, such as the pairwise

contact threshold (which filters which b-strand pairs are used in the alignment), the Boltzmann Z constant

(found within Ect() in e(), effecting the structural energy score) (Waldispuhl et al., 2008), the gap penalty,

the choice of substitution matrix, and the a balance parameter require selection without as clear a biological

interpretation.

For results presented in this article, one of three sets of structural parameters were chosen according to

the protein superfamily, with a fairly wide range of values permitted. To determine the algorithmic

parameters listed above in a principled manner, we chose a single set of algorithmic parameters for all

alignments, with the exception of varying the b-strand pair probability threshold used in the initial step of

the algorithm and the a score-balancing parameter. In all cases, our choices are made obliviously to the

known structures in our testing sets. The substitution matrix we use is a combination of the BATMAS

FIG. 4. Stochastic contact maps

from a partiFold-Align run on the

proteins 1BXW and 2F1V. For each

of the four plots, the sequence of

1BXW and 2F1V is given on the axes

(with gaps), and high probability res-

idue–residue interactions indicated

for 1BXW on the lower left half of the

graph and 2F1V on the upper right

half (i.e., the single-sequence proba-

bilistic contact maps). Structural con-

tact map alignment can be judged by

how well the plot is mirrored across

the diagonal. Parel (a) (a = 1.0)

shows an alignment that ignores the

contribution of the structural contact

map, while (d) (a = 0.0) shows an

alignment wholly dependent on the

structural contact map and ignorant of

sequence alignment information.
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(Sutormin et al., 2003) matrix for transmembrane regions and BLOSUM (Henikoff and Henikoff, 1992) for

coils. For alignments with a sequence homology below 10%, we chose a higher probability threshold value

(1 · 10 - 5 versus 1 · 10 - 10) to restrict alignments to highly likely b-strand pairs, reducing signal degra-

dation from low-likelihood b-strand pairs with very distant sequence similarities. For these same align-

ments (below 10%), we chose a lower a parameter (0.6 versus 0.7) to boost the contribution of the

structural prediction to the overall solution when less sequence homology could be exploited. As seen in

Figure 4, consensus predictions from lower a parameters more closely resemble predictions based solely on

structural scores, and thus, an optimal alignment should correlate a with sequence homology.

Admittedly, this naive, single (or few)-parameter solution does not enable the full potential of our

algorithm. A protein-specific machine-learning approach would allow for a better parameter fit and is the

focus of ongoing research.

3.3. Alignment accuracy of low sequence identity TMBs

To compare the accuracy of alignments generated by partiFold-Align against current sequence alignment

algorithms, we perform the same TMB pairwise sequence alignments using partiFold-Align, EMBOSS
(Needleman-Wunsch) (Rice et al., 2000), and MUSCLE (Edgar, 2004a, b). EMBOSS implements the

seminal Needleman-Wunsch style global sequence alignment algorithm, while MUSCLE is widely thought

as one of the most accurate of the ‘‘fast’’ alignment programs. Though it incorporates several position-

specific gap penalty heuristics similar to those found in MAFFT and LAGAN (Brudno et al., 2003),4 since

the partiFold-Align algorithm utilizes Needleman-Wunsch-style dynamic programming, comparisons be-

tween EMBOSS and partiFold-Align represent a fair analysis of what simultaneous folding and alignment

algorithms specifically contribute to the problem. Comparisons with MUSCLE alignment scores neces-

sitate inclusion to portray the practical benefits partiFold-Align provides. However, no technical reason

prevents MUSCLE’s gap penalty heuristics to be incorporated with partiFold-Align; this stands as future

work.

Figure 5 presents transmembrane QCline accuracy scores for EMBOSS, MUSCLE, and partiFold-Align

across 27 TMB pairwise alignments. (The absent 28th alignment, between 1BXW and 2JMM (50%

sequence-homologous), is aligned with a nearly perfect QCline score of 0.98 by all three algorithms). Results

are separated into the three categories according to the number of circling strands within a protein’s b-

barrel: seven 8-stranded OMPA-like proteins account for 21 alignments, two 10-stranded OMPT-like

proteins account for 1 alignment, and finally, four 12-stranded autotransporters, OM phospholipases, and

nucleoside-specific porins make up the final six alignments (a full summary can be found in supplementary

material). Equal-sized clusters of pairwise alignments are then formed and ordered according to sequence

identity, with cluster mean QCline and standard deviation reported. All individual alignment-pair statistics,

as well as alternative accuracy metrics (e.g. Qcombined) can be found in supplementary material.

Across all TMBs, partiFold-Align alignments are more accurate than EMBOSS alignments by an

average QCline of 16.9% (4.5 · ). Most importantly, partiFold-Align significantly improves upon the

EMBOSS QCline score for all alignments with a sequence identity lower than 9% (by a QCline average of

28%), and roughly matches or improves 24/28 alignments overall. Excluding the 12-strand alignments,

which align proteins across different superfamilies, our intra-superfamily alignments exhibit even higher

improvements in average QCline, besting EMBOSS by 20.3% (27.4% versus 7.1%). Even compared with

MUSCLE alignments, partiFold-Align is able to achieve a 4% increased QCline on average, despite its lack

of gap penalty or other heuristics employed by MUSCLE. Our results suggest that, especially at very low

percentages of sequence identity, the conservation of the structure is an important criterion to use in order

to obtain accurate sequence alignments.

3.4. Secondary structure prediction accuracy of consensus folds

Here we investigate how the consensus structure resulting from our simultaneous alignment and folding al-

gorithm can improve structure prediction accuracy over a prediction computed from a single sequence alone. We

4We note that while EMBOSS uses only the BLOSUM substitution matrix, and partiFold-Align a combination of
BATMAS and BLOSUM, Forrest et al. (2006) show that BATMAS-style matrices do not show improvement for
EMBOSS-style algorithms.
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report in Table 1 Q2 accuracies computed from alignments of all pairs of TMB sequences within the same n-

stranded category. For each protein, the Q2 score from the single sequence minimum folding energy (m.f.e.)

structure is given (as in Waldispuhl et al., 2006), and compared against the Q2 score from the best alignment partner,

and the average Q2 score obtained when aligning that protein with all others in its category.

The results for 8- and 10-stranded categories show a clear improvement (more than 8%) by the best

consensus fold in 6/9 instances (1P4T, 2F1V, 1THQ, 2ERV, 1K24, 1I78) and roughly equivalent results for

Table 1. Secondary Structure Assignment Accuracy

Consensus

Category PDB id Single seq. Best Average

8-stranded 1BXW 72 70( - 2) 63( - 9)

1P4T 60 68( + 8) 58( - 2)

1QJ8 65 68( + 3) 66( + 1)

2F1V 47 63( + 22) 62( + 15)

1THQ 50 69( + 13) 52( + 2)

2ERV 57 67( + 10) 59( + 2)

2JMM 62 65( + 3) 62( + 0)

10-stranded 1K24 60 69( + 9) 69( + 9)

1I78 76 83( + 7) 83( + 7)

12-stranded 1QD6 54 61( + 7) 56( + 2)

1TLY 59 59( + 0) 58( - 1)

1UYN 56 56( + 0) 53( - 3)

2QOM 51 55( + 4) 53( + 2)

Percentage Q2 of secondary structure prediction correctly assigned residues (trans-

membrane and non-transmembrane regions). The third column reports the performance of

a single strand folding (no alignments). Fourth and fifth columns report respectively the

best and the average Q2 scores of a consensus structure over all possible alignment pairs

for this PDB ID.

FIG. 5. Mean and standard deviation QCline scores for 8-, 10-, and 12-stranded TMBs. Each of the three categories of

proteins are clustered and ordered according to sequence identity, with the number of alignments in each cluster in

parentheses. Note: By definition, QCline scores range between - e and 1.0, where e = 0.2; negative values indicate very

poor alignments.
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the remaining three (2F1V, 1K24, I178). Further, on average, nearly all proteins show equivalent or

improved scores when aligned with any other protein, with the exception of 1BXW. However, the single

sequence structure prediction Q2 for 1BXW is not only high, but significantly higher than all other 8-

stranded proteins; the contact maps of any other aligning partner may simply add noise, diluting accuracy.

Conversely, the proteins that have poor single sequence structure predictions benefit the greatest from

alignment (e.g., 2F1V). This relationship is certainly not unidirectional, though, as we see that the con-

sensus fold of 1K24 and 1I78 improves upon both proteins’ single-sequence structure prediction.

In contrast, the results compiled on the 12-strand category do not show any clear change in the secondary

structure accuracy. However, recalling that this category covers 3 distinct superfamilies in the OPM database,

such results may make sense. The autotransporter, OM phospholipase, and nucleoside-specific porin families

all exhibit reasonably different structures and perform quite unrelated tasks. Further, unlike the original

partiFold TMB algorithm (Waldispuhl et al., 2008), the abstract structural template used in this work does not

take into account b-strands that extend far beyond the cell membrane (since our alignments focus on

membrane regions). This may also effect the structure prediction accuracy of more complex TMBs.

We conclude from this benchmark that the consensus-folding approach can be used to improve the

structure prediction of low homology sequences, provided both belong to the same superfamily. However,

we emphasize the importance parameter selection may play in these results; a different parameter selection

method may enable accuracy improvement for higher-level classes of proteins.

3.5. Multiple sequence alignment accuracy

To complete this benchmark, we evaluated the performance of the multiple sequence version of partiFold-

Align. As for the pairwise sequence alignment version, we benchmarked partiFold-Align against a classical

methodology using the Needlemann-Wunsch combined with the progressive alignment strategy implemented

in T-Coffee and MUSCLE. Importantly, the multiple sequence alignment version based on the Needlemann-

Wunsch algorithm uses the same progressive alignment methodology as partiFold-Align. The results of this

computation experiment are reported in Table 2.

Our results show that partiFold-Align outperforms other approaches in terms of percentage of identical

columns and of percentage conserved pairs of residues. As expected, partiFold-Align outperforms a pro-

gressive alignment algorithm using the Needlemann-Wusch pairwise sequence algorithm, which does not

incorporate the structural signal captured by our model. More interestingly, partiFold-Align also outper-

forms MUSCLE, which uses a more complex sequence alignment scoring system. It is worth noting that

partiFold-Align produces more compact alignments that are closer to the size of the reference alignment

(i.e., 240 columns). All these findings show that the structural information modeled in partiFold-Align has

the potential to improve the alignment of remote homologs.

4. CONCLUSIONS

We have presented partiFold-Align, a new approach to the analysis of proteins, which simultaneously

aligns and folds pairs of unaligned protein sequences into a consensus to achieve both improved sequence

alignment and structure prediction accuracy. To demonstrate the efficacy of this approach, we designed and

Table 2. Accuracy of the Multiple Sequence Alignment

Prediction of Outer Membrane Protein A Transmembrane

Domain (Pfam ID: PF01389)

Method Identity Similarity Alignment length

partiFold-Align 54.1 92.7 247

Needlemann-Wunsch 41.7 84.8 255

MUSCLE 53.7 87.0 248

We benchmarked partiFold-Align against a progressive alignment strategy based on

pairwise sequence alignments calculated with the Needlemann-Wunsch algorithm and

MUSCLE. For each software, we report the percentage of identical column (identity), the

percentage of conserved pairs of residues (similarity), and the number of columns of the

alignments.
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tested the algorithm for the difficult class of transmembrane b-barrel, low sequence homology proteins.

However, we believe this technique to be generally applicable to many classes of proteins where the

structure can be defined through a chaining procedure as described in Section 2 (e.g., most b-sheet

structures) (Shenker et al., 2011). This could open new areas of analysis that were previously unattainable

given current tools’ poor ability to construct functional alignments on low sequence homology proteins.

We also show that this approach results in significant improvements in multiple sequence alignments. In

this study, we illustrated the potential of our techniques on the difficult case of the transmembrane domain

A of gram-negative outer membrane proteins. Further, we believe that this methodology could enable us to

perform reliable genome-wide annotations of transmembrane proteins.

Finally, we believe that the effectiveness of partiFold-Align can be enhanced significantly by a well-

formulated machine-learning approach to parameter optimization as has been applied to the case of RNA

(Do et al., 2006, 2008). Supporting this notion, we experimented with parameters selected based on a

known test set and saw pairwise sequence alignment accuracies with an average Q2 accuracy *20%

greater than MUSCLE (versus the reported *4% improvement for test-set blind parameter selections).

However, for the case of TMBs, one notable problem that would need to be overcome is the relatively small

set of known structure or alignments with which to use for training. Supplementary Material, including

more detailed results, a web server, and the source code, can be found Online at www.liebertpub.com/cmb
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