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Abstract

One of the central challenges in computational biology is to develop accurate tools for protein
structure analysis. Particularly difficult cases of this are sequence alignment and consensus folding of
low-homology proteins. In this work, we present partiFold-Align, the first algorithm for simultaneous
alignment and consensus folding of unaligned protein sequences; the algorithm’s complexity is poly-
nomial in time and space. Algorithmically, partiFold-Align additionally exploits sparsity in the set of
likely super-secondary structure pairings and alignment candidates for each amino acid to achieve an
effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the
efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of
proteins with very few available three-dimensional structures. In tests on sequence alignments derived
from structure alignments, partiFold-Align is significantly more accurate than current best approaches
for pairwise sequence alignment in the difficult case of low sequence homology and improves secondary
structure prediction when current approaches fail. Importantly, partiFold-Align does not require training
on transmembrane β-barrel proteins. The generality of these techniques should allow them to be applied
to a wide variety of protein structures.
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1. INTRODUCTION

The consensus fold of proteins is an important consideration in structural bioinformatics analyses. In
structure-function relationship studies, proteins that have the same consensus fold are likely to have the
same function and be evolutionarily related [1]; in protein structure prediction studies, consensus fold
predictions can guide tertiary structure predictors; and in sequence alignment algorithms [2], consensus
fold predictions can improve alignments. The primary limitations in achieving accurate consensus folding,
however, is the difficulty of obtaining reliable sequence alignments for divergent protein families and the
inaccuracy of folding algorithms.

The specific problem we address is predicting consensus fold of proteins from their unaligned se-
quences. The consensus fold is the common minimum energy structure, given a sequence alignment, which
is not to be confused with the agreed structure between unrelated predictors[cite]. We take an approach in
which we simultaneously align and fold protein sequences. By optimizing unaligned protein sequences for
both sequence homology and structural conservation concurrently, both higher fidelity sequence alignment
and structure prediction can be obtained. For sequence alignment, this sidesteps the requirement of correct
initial profiles (because the best sequence aligners require profile/profile alignment [3]). For structure
prediction, this harnesses powerful evolutionary corollaries between structure.

While this class of problems has received a lot of attention in the RNA world [4], [5], [6], [7], [8],
[9], [10], [11], [12], it has not yet been applied to proteins. Applying these techniques to proteins is
more difficult and less defined. For proteins, the variety of structures is much more complicated and
diverse than the RNA Turner model, requiring an initial step of constructing an abstract template for the
structure. Moreover, for proteins, there is not a clear chemical basis for compensatory mutations [13],
the energy models that define even β-strand pairings are more complex, and the larger residue alphabet
vastly increases the complexity of the problem.

This class of problems is also different than any that have been attempted for structure analysis. The
closest related structure-prediction methods rely on sequence profiles, as opposed to consensus folds.
Current protein threading methods such as Raptor [14] often construct sequence profiles of the query
sequence before threading it onto solved structures in the PDB; however, given two query sequences,
even if they are functionally related, it will output two structure matches but does not try to form a
consensus from these. There are β-structure specific methods that ’thread’ a profile onto an abstract
template representing a class of structures [15], [16], but do not generate consensus folds. Further, a new
class of “ensemble” methods, e.g., partiFold TMB [17], “threads” a profile onto an abstract template, yet
does not incorporate sequence alignment information nor generate consensus folds.

In this paper, we describe partiFold-Align, the first algorithm for simultaneous alignment and folding of
pairs of unaligned protein sequences. Pairwise alignment is an important component in achieving reliable
multiple alignments. Our strategy uses dynamic programming schemes to simultaneously enumerate the
complete space of structures and sequence alignments and compute the optimal solution (as identified by
a convex combination of ensemble-derived contact probabilities and sequence alignment matrices [18],
[19], [20]). To overcome the intractability of this problem, we exploit sparsity in the set of likely amino
acid pairings and aligned residues (inspired from the LocRNA algorithm [21]). partiFold-Align is thus
able to achieve effectively cubic time and space in the length of the input sequences.

We demonstrate the efficacy of this approach by applying it to transmembrane β-barrel (TMB) proteins,
one of the most difficult classes of proteins in terms of both sequence alignment and structure prediction
[17], [16]. In tests on sequence alignments derived from structure alignments, we obtain significantly
better pairwise sequence alignments, especially in the case of low homology. In tests comparing single-
sequence versus consensus structure predictions, partifold-align obtains improved accuracy, considerably
for cases where single-sequence results are poor. The methods we develop in this paper specifically
target the difficult case of alignment of low homology sequences and aim to improve the accuracy of
such alignments.
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Contributions: The main contribution of this work is that we introduce the new concept of consensus
folding of unaligned protein sequences. Our algorithm partiFold-Align is the first to perform simultaneous
folding and alignment for protein sequences. We use this to provide better sequence alignments and
structure predictions for the important and difficult TMB proteins, particularly in the case of low-
homology. Given the broad generality of this approach and its proven impact on the RNA world, we
hope that this will become a standard in protein structure prediction.

2. APPROACH

To design an algorithm for simultaneous alignment and folding we must overcome one fundamental
problem: predicting a consensus fold (structure) of two unaligned protein sequences requires a correct
sequence alignment on hand, however, the quality of any sequence alignment depends upon the underlying
unknown structure of the proteins. We adopt our solution to this issue from the approach introduced by
Sankoff [4] to solve this problem in the context of RNAs — by predicting partial structural information
that is then aligned through a dynamic programming procedure.

For our consensus folding algorithm, we define this partial information using probabilistic contact maps
(i.e., a matrix of amino acid pairs with a high likelihood of forming hydrogen bonding partners in a protein
conformation), based on Boltzmann “ensemble” methods, which predict the likelihood of possible residue-
residue interactions given all possible in-vivo protein conformations [16]. This is inspired by the recent
LocARNA [21] algorithm, which improves upon Sankoff’s through the use of such probabilistic contact
maps. This technique is also somewhat related to the problem of maximum contact map overlap [22],
although in such problems, contact maps implicitly signify the biochemical strength of a contact in a
solved structured and not a well-distributed likelihood of interaction taken from a complete ensemble of
possible structures.

Using such ensemble-based contact maps for simultaneous alignment and folding can be applied to
other classes of proteins, however, in this work we describe our application to the class of transmembrane
β-barrels. Unlike the RNA model used by Sankoff, TMB protein structure takes a complex form,
with inclined, anti-parallel hydrogen-bonding β-strand forming a circular barrel structure, as depicted
in Figure 1. Partitioning such diversity of structure presents an intractable problem, so we apply a fixed
parameter approach to restrict structural elements such as β-strand length, coil size, and the amount of
strand inclination to biologically meaningful sizes.

Broadly speaking, our simultaneous alignment and folding procedure begins by predicting the ensemble-
based probabilistic contact map of two unaligned sequences through an algorithm extended from partiFold
TMB [16]. Importantly, β-strand contacts below a parameterizable threshold are excluded to allow for

βa) Channel

d) linear representation 

b) Anti−parallel    −strands βc)    −strand tilt

Fig. 1. Different structural elements of transmembrane β-barrels.
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Fig. 2. Elements of TMB-alignment. The different coloring of amino acids in the sheet denotes the exposure to the membrane
and to the channel, respectively. In a valid sheet alignment, only amino acids of the same type can be matched, whereas no
further constraint (except length restriction) are applied to the loop alignment.

an efficient alignment of the most likely interactions. Alignment is then broken into two structurally
different parts: the alignment of β-sheets, and the alignment of coils (seen in Figure 2). Coil alignments
can be performed independently at each position, however β-sheet alignments must respect residue pairs.
Finally, to decompose the problem (Figure 3), we first consider the optimal alignment of a single β-sheet
with a given inclination, including the enclosed coil alignment. For energetic considerations, we must
note the orientation of the β-strand residues (core-facing or membrane-facing), as well as whether the
coil extends into the extra-cellular or periplasmic side of the membrane. Once all single alignments have
been found, we “chain” these subproblems to arrive at a single consensus alignment and structure.

a) b)

Fig. 3. Problem decomposition; a) alignment of a single sheet including the enclosed loop with positive shear; b) chaining of
single sheet alignment to form a β-barrel. The sheet indicated with green lines connects the beginning and the end.

2.1. The TMB Alignment Problem

To formally describe this problem, we define an alignment A of two sequences a, b as a set of pairs
{(p1, p2) | p1 ∈ [1..|a|] ∪ {–} ∧ p2 ∈ [1..|b|] ∪ {–}} s.t. for all (i, j), (i′, j′) ∈ (A ∩ [1..|a|] × [1..|b|) we
have i < j =⇒ i′ < j′ (non-crossing) and there is no i ∈ [1..|a|] (resp. j ∈ [1..|b|]) such that there
are two different p, p′ with (i, p), (i, p′) ∈ A (resp. (p, j), (p′, j) ∈ A). Furthermore, for any position in
both sequences, we must have an entry in A. We say that A is a partial alignment if there are some
positions for which there is no entry in A. In this case, we denote with def(a,A) (resp. def(b,A)) the
set of positions in a (resp. b) for which an entry in A exists.

Now the result of the structure prediction is not a single structure, but a set of putative structural
elements, namely the set of possible contacts for the β-strand. As indicated in Fig. 1, we have two
different side chain orientations, namely to the channel (C) and to the membrane (M). Since contacts can
form only if both amino acids share the same orientation, a TMB probabilistic contact map P of a TMB
a is a matrix P = (P (i, i′, x))1≤i<=i′≤|a|,x∈{C,M} where P (i, i′, x) = P (i′, i, x) and ∀x ∈ {C,M} :∑

i P (i, i′, x) ≤ 1. To overcome the intractability of this problem, we exploit sparsity in the set of likely
amino acid pairings. Thus, we use only those entries in the matrix P which have a likelihood above a
certain threshold.

We weight the alignments with a scoring function summing a folding energy term E with an alignment
score W , where the energy term E corresponds to the sum of the folding energies of the consensus
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structure mapped on the two sequences. To allow a convex optimization of this function, we introduce a
parameter α distributing the weights of the two terms. Then, given two sequences a, b, an alignment A
and a consensus TMB structure S of length |A|, the score of the alignment is:

score(A,S, a, b) = (1− α) · E(A,S, a, b) + α · W(A, a, b) (1)

Let Ect(x, y) be the energy value of a pairwise residue contact. Since by definition of the consensus
structure these contacts are aligned, we define energy component as:

E(A,S, a, b) =
∑

(i

j)∈A,(i′

j′)∈A
(i,i′)∈Sarcs

a,(j,j′)∈Sarcs
b

τ(i, i′, j, j′), where τ(i, i′, j, j′) = Ect(i, i′) + Ect(j, j′) (2)

In practice, we have implemented in partiFold-Align a stacking pair energy model as described in [17].
However, for the simplicity of the description, we use here only pairwise residue contact potentials.

Now, let σ(x, y) be the substitution score of the amino acids x by y, and g(x) an insertion/deletion
cost. Then, the score of the sequence alignment component is given by:

W(A, a, b) =
∑

(i

j)∈A
σ(ai, aj) +

∑
(i

–)∈A
g(ai) +

∑
(–

j)∈A
g(aj) (3)

Again, in practice, a penalty for opening gaps is added but not described here for the clarity of the
discussion. Finally, the problem we solve in this paper is, given two sequences a and b:

arg max
A TMB alignment of a and b,
S TMB structure of length |A|

score(A,S, a, b).

To account for the side-chain orientation of residues in TM β-strands toward the channel or the
membrane, the recursion equations require a slightly more detailed version of the scoring introduced in
Eq. 2 and 3. An additional condition is that contacts only happen between amino acids with the same
orientation, and that this orientation alternate between consecutive contacts. Hence, we introduce in τ an
additional parameter or standing for this side-chain orientation feature. The same holds for the edit scores
σ and g, where the orientation can also be the loop environment. For the strands, we use σs(i, j, or),
while for loops, we distinguish inner from outer loops (indicated by the loop type lt) and the amino acids
in the loops are scored using σl(i, j, lt). The gaps function is treated analogously.

2.2. Decomposition

We now define the dynamic programming tables used for the decomposition of our problem. The
alignment of a single anti-parallel strand pair as shown in Fig. 3a) has nested arcs and an outdegree
of at most one. We introduce for this configuration a table ShA(·) aligning pairs of subsequences ai..i′

and bj..j′ . Another parameter to account for is the shear number which represents the inclination of the
strands in the TM β-barrel. Since the strand pair alignments also include a loop alignment, and the
scoring function of this loop depends on the loop type (inner/outer loop), we need to set the loop type
as an additional parameter. Similarly, we need to know the orientation of the final contact to ensure the
succession of channel and membrane orientation. Given an orientation of a contact or, the term nextc(or)
return the orientation of the following contact. Thus, we have a table ShA(i, i′; j, j′; or; lt; s) (where ShA
stands for sheet alignment) with the following recursion:

ShA(i, i′; j, j; or; lt; s) = max


ShAgap(i, i′; j, j; or; lt; s)
ShAshear(i, i′; j, j; or; lt; s) if s 6= 0
ShAcontact(i, i′; j, j; or; lt) if s = 0
LA(i, i′; j, j; lt) if s = 0

(4)
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where

ShAcontact(i, i′; j, j; or; lt) = ShA(i + 1, i′ − 1; j + 1, j′ − 1; nextc(or); lt; 0)
+τ(i, i′; j, j′; or) + σs(ai, bj , or) + σs(ai′ , bj′ , or)

ShAgap(i, i′; j, j; or; lt; s) = ShAshear(i, i′; j, j; or; lt; s) =

max


ShA(i + 1, i′; j, j; or; lt; s) + gs(ai, or)
ShA(i, i′ − 1; j, j; or; lt; s) + gs(ai′ , or)
ShA(i, i′; j + 1, j; or; lt; s) + gs(bj , or)
ShA(i, i′; j, j − 1; or; lt; s) + gs(bj′ , or)

max


ShA(i + 1, i′; j + 1, j′; or; lt; s + 1)

+ σs(ai, bj , or) if s < 0
ShA(i, i′ − 1; j, j′ − 1; or; lt; s− 1)

+ σs(ai′ , bj′ , or) if s > 0

ShAgap, ShAcontact and ShAshear are just introduced for better readability and will not be tabulated. The
matrix LA(i, i′; j, j′; lt) is the alignment of ai..i′ with bj..j′ as inner or outer loop of a sheet (as indicated
by the loop type lt). This table can be calculated using the usual sequence alignment recursion on the
right ends i′, j′, starting with each left end position pair i, j in the sequence. Thus, we have

LA(i, i′; j, j′; lt) =


LA(i, i′ − 1; j, j′; lt) + gl(ai′ , lt)
LA(i, i′; j, j′ − 1; lt) + gl(bj′ , lt)
LA(i, i′ − 1; j, j′ − 1; lt) + σl(ai′ , bj′ , lt)

(5)

As we have already mentioned in the definition of a contact map, we use a threshold on the probability
to reduce both space and time complexity of the alignment problem, in a similar way as is done in the
LocARNA-approach [21]. Hence, we will calculate and tabulate only values for the ShA-matrix for
those positions i, i′ and j, j′ where there are contacts above the threshold in both sequences connecting
between positions in a narrow range r of i, i′ and j, j′. I.e., we consider only those i, i′ where there is a
contact (p, p′) ∈ P above the threshold s.t. |i − p| ≤ r and |i′ − p′| ≤ r, and analogously for j, j′. We
write ShA(i, i′; j, j′; lt; s) ↓ if i, i′; j, j′ for which an entry is calculated. Similarly, only related values for
LA(i, i′; j, j′; lt) will be tabulated with the exception of values LA(i, |a|; j, |b|; lt), which will be needed
for the chaining. Again LA(i, i′; j, j′; lt) ↓ indicates an defined value.

2.3. Chaining

The next problem is to chain the different single sheet alignments, as indicated by the Fig. 3b). To
build a valid overall alignment, we have to guarantee that the sub-alignments agree on the overlapping
part. A strand alignment As is just a partial alignment. The solution is to extend the matrices for sheet
alignments by an additional entry for the alignment of the strand regions. Albeit there are exponentially
many alignments in general, there are several restrictions on the set of allowed alignments since they
are alignments of strand regions. In the case of TMB-barrels, we assume no strand bulges since they
are a rare event. Hence, one can insert or delete only a complete contact instead of a single amino acid.
When chaining the sheet alignments, the gap in one strand is then (by the agreement of sub-alignment)
transferred to the chained sheet.

The first step is to extend the matrices for the sheet alignment by a parameter for the strand alignments.
Since every entry in the recursion scheme corresponds to an alignment operation, we only have to check
for the compatibility of the operation with the alignment edge. Note that although the alignment is fixed
for the strands of a sheet, the scoring is not since we could still differentiate between a match of two
bases or a match of a contact. Thus, the new matrix is ShA(i, i′; j, j′; or; lt; s;As), where we enforce As

to satisfy def(a,As) = [i..l1] ∪ [r1..i
′] and def(b,As) = [j..l2] ∪ [r2..j

′] for some i < l1 < r1 < i′ and
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j < l2 < r1 < j′. The new version of Eq. 4 is simply

ShA(i, i′; j, j′; or; lt; s;As) =max


ShAgap(i, i′; j, j′; or; lt; s;As)
ShAshear(i, i′; j, j′; or; lt; s;As) if s 6= 0
ShAcontact(i, i′; j, j′; or; lt;As) if s = 0
LA(i, i′; j, j′; lt) if s = 0

(5)

LA(i, i′; j, j′; lt) does not get the additional parameter since the agreement for sub-alignment in chaining
is restricted to the strand. For ShAgap, ShAcontact and ShAshear, we have now to check whether the
associated alignment operations are compatible with As. Thus, the new definition of ShAcontact is

ShAcontact(i, i′; j, j′; or; lt;As) =

max


ShA(i + 1, i′ − 1; j + 1, j′ − 1; or; lt; 0;As) if (i, j) ∈ As

+ τ(i, i′; j, j′; or) + σs(ai′ , bj′ , or) and (i′, j′) ∈ As

−∞ else

If all entries are incompatible with As, then −∞ is returned. Note that we add an amino acid match
score only for a single specified end of the contact. Thus, σs(ai, bj) is skipped. The reason is simply that
otherwise, we would add this score twice in course of chaining. The new definition of ShAshear is then

ShAshear(i, i′; j, j; or; lt; s,As) =

max


ShA(i + 1, i′; j + 1, j′; or; lt; s + 1;As) if s < 0 ∧ (i, j) ∈ As

ShA(i, i′ − 1; j, j′ − 1; or; lt; s− 1;As) if s > 0 ∧ (i′, j′) ∈ As

+ σs(ai′ , bj′ , or)

The new variant of ShAgap() is defined analogously. Now we can define the matrix Dchain() for chaining
the strand pair alignments. At the end of its construction, the sheet is closed by pairing its first and last
strands to create the barrel. To process this construction, we need to keep track of the leftmost and
rightmost strand alignments Achain

s and Acyc
s of the sheet. We add to these two parameters, a variable ct

used to determine in the closing strand pair has been added or not. Here, ct = c means that the sheet is
not closed while ct = lf indicates that the barrel has been built. Finally, to control the number of strand
in the barrel, we add another variable nos storing the number of strands in the sheet.

We first initialize the array Dchain for every i, j and any strand alignment Acyc
s of the initial strand

where def(a,Acyc
s ) = [i..i′] and def(b,Acyc

s ) = [j..j′]. This stands for the alignment of the C-terminal
sequences. Then

Dchain(i, j;Acyc
s ;Acyc

s ; c; lt; 1) = LA(i′, |a|; j′, |b|; lt; 1),

where lt is an allowed loop-type for this sheet. Note that the strand alignment is not yet scored. This
will be done at the next step when chaining the first sheet. We introduce for this purpose a function
ShA(A, nos) returning the cost of the alignment if the rightmost strands if nos = 2 (which indicates to
the first strand pair of the sheet) and 0 otherwise. A function prev() returning the previous loop type
is also used to alternates the loop environment on both sides of the membrane. In addition, given two
strand alignments As,A′

s, we say that As,A′
s agree on the strands i..i′ in the first and j..j′ in the second

sequence (written agr(A′
s;As; i, i′; j, j′) if As ∪ A′

s is an partial alignment. With these notations, the
recursion used to build the unclosed sheets is:
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Dchain(i, j;As;Acyc
s ; c; lt;nos) = (6)

max
i′, j′,A′

s, s, lt′, or
with ShA(i, i′; j, j′; lt′; s;A′

s) ↓,
def(a,As) = [i..l1] ∪ [r1..i′],
def(b,As) = [j..l2] ∪ [r2..j′],

and agr(A′
s;As; i, l; j, l′)

 ShA(i′, i; j′, j; or; lt′; s;A′
s)

+ Dchain(r1, r2;A′
s;A

cyc
s ; c; prev(lt);nos− 1)

+ strandal(A′
s, nos)



We conclude this section by giving the recursions used to close the barrel and perform the sequence
alignment of the N-terminal sequences. Since the anti-parallel or parallel nature of the closing strand pair
depends of the number of strands in the barrel, we introduce here a function ShAclose which returns the
folding energy of the parallel strand pairings of the leftmost and rightmost strands of the sheet if the
number of strands nos is odd, and folding energy of the anti-parallel strand pairings if nos is even.

Dchain(i, j;As;Acyc
s ; lf ; lt) = (7)

max


max


Dchain(i + 1, j;As;Acyc

s ; lf ; lt) + gl(ai, lt)
Dchain(i, j + 1;As;Acyc

s ; lf ; lt) + gl(bj , lt)
Dchain(i + 1, j + 1;As;Acyc

s ; lf ; lt) + σl(ai, bj , lt)

max
i′, j′, or, nos

{
Dchain(i, i′;As;Acyc

s ; c; lt)
+ ShAclose(i, i′; j, j′; or; s;As;Acyc

s ; dir(nos))

The final value of the consensus folding problem is then found in Dchain(1, 1;As;Acyc
s ; lf ; lt) for

some lt and As,Acyc
s with agr(As;Acyc

s ; 1, i; 1, j), where def(a,As) = [1..i] ∪ [r..i′] and def(b,As) =
[1..j] ∪ [r..j′]. The solutions are built using the classical backtracking procedures.

Here, Equations 6 and 7 assumes that the strand inclination modeled using the shear number s for
successive strand pairs are independent. However, in practice this parameter must be used to determine
when a strand pair can be concatenated at the end of an existing sheet to ensure the coherency of the
barrel structure and conserve a constant inclination of the strands (see Fig. 1).

3. RESULTS

Here we demonstrate the benefits of the partiFold-Align algorithm when applied to the problems of
pairwise sequence alignment and structure prediction of transmembrane β-barrel proteins. Our sequence
alignment performance greatly improves upon comparable alignment techniques, and surpasses state-of-
the-art alignment tools (which use additional algorithmic filters) in the case of low homology sequences.
It is also shown that a partiFold-Align consensus fold can better predict secondary structure when aligning
proteins within the same superfamily. We begin with a description of our test dataset and scoring metrics
applied as well as the partiFold-Align parameters chosen for the analysis, followed by our specific
sequence alignment and structure prediction results.

3.1. Dataset and evaluation technique

By implementing our algorithmic framework to align and fold transmembrane β-barrels, we highlight
how this approach can significantly improve the alignment accuracy of protein classes with which
current alignment tools have difficulty. Specifically, few TMB structures have been solved through X-ray
crystallography or NMR (less-than 20 non-homologous to-date), and often known TMB sequences exhibit
very low sequence homology (e.g. less-than 20%), despite sharing structure and function.

To judge how well partiFold-Align aligns proteins in this difficult class, we select 13 proteins from
five superfamilies of TMBs found in the Orientation of Proteins in Membranes (OPM) database [23]
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(using the OPM database definition of “class,” “superfamily,” and “family”). This constitutes all solved
TMB proteins with a single, transmembrane, β-barrel domain, and excludes proteins with significant
extracellular or periplasmic structure and limits the sequence length to a computationally-tractable maxi-
mum of ∼ 300 residues. With the assumption that structural alignment best mimics the intended goal of
identifying evolutionary and functional similarities, we perform structural alignments between all pairs
of proteins within large superfamilies, and across smaller superfamilies (28 alignments, see Appendix for
illustration of breakdown), and consider this the “correct” pairwise alignment. For structural alignments,
the Matt [24] algorithm is used, which has demonstrated state-of-the-art structural alignment accuracy.
Resulting alignments can then be sorted by relative sequence identity 1 (assuming the Matt alignment)
[25], [26].

Our partiFold-Align alignments are then compared against structural alignments using the QCline [27],
[28] scoring metric, restricted to transmembrane regions as defined by the OPM (since structural pre-
dictions in the algorithm only contribute to transmembrane β-strand alignments; coils are effectively
aligned on sequence-alone). QCline can be considered a percentage accuracy, and resembles the simplistic
Qcombined score 2, measuring combined under- and over-prediction of aligned pairs, but more fairly
accounts for off-by-n alignments. Such shifts often occur from energetically-favorable off-by-n β-strand
pairings that remain good alignments. The QCline parameter ε is chosen to be 0.2, which allows alignments
displaced by up to five residues to contribute (proportionally) toward the total accuracy. The higher the
QCline score, the more closely the alignments match (ranging [−ε, 1]).

To judge the accuracy of a partiFold-Align consensus structure against a structure predicted from single-
sequence alone, we test against the same OPM database proteins described above. For all 13 proteins,
a structure prediction is computed using the exact same ensemble structure prediction methodology
as in partiFold-Align, only applied to a single sequence. The transmembrane-region Q2 secondary
structure prediction score between the predicted structures and the solved PDB structure (annotated by
STRIDE [29]) can then be computed; where Q2= (TP + TN)/(sequence length).

3.2. Model parameter selection

For our analyses, parameters must be chosen for the abstract structural template defined in Section 2.
For transmembrane β-barrels, the choice of allowable (minimum and maximum) β-strand and coil region
lengths, as well as shear numbers can be assigned based on biological quantities such as membrane
thickness, etc. (Even in the absence of all other information, the sequence length alone of a putative
transmembrane β-barrel can suggest acceptable ranges.) Other algorithmic parameters, such as the pair-
wise contact threshold (which filters which β-strand pairs are used in the alignment), the Boltzmann Z
constant (found within Ect(·) in Equation 2, effecting the structural energy score [17]), the gap penalty,
the choice of substitution matrix, and the “α” balance parameter require selection without as clear a
biological interpretation.

For results presented in this paper, one of three sets of structural parameters were chosen according to
protein superfamily, with a fairly wide range of values permitted. To determine the algorithmic parameters
listed above in a principled manner, we chose a single set of algorithmic parameters for all alignments,
with the exception of varying the β-strand pair probability “threshold” used in the initial step of the
algorithm, and the α score-balancing parameter. In all cases, our choices are made obliviously to the
known structures in our testing sets. Interestingly, the substitution matrix we use is a combination of the
BATMAS [18] matrix for transmembrane regions, and BLOSUM [19] for coils. For alignments with a
sequence homology below 10%, we chose a higher probability threshold value (1x10−5 versus 1x10−10)
to restrict alignments to highly-likely β-strand pairs, to reduce signal degradation from low-likelihood
β-strand pairs with very distant sequence similarities. For alignments with sequence homology below

1Sequence Identity % = Identical positions
aligned positions+internal gap positions

2Qcombined = # correct pairs
# unique pairs in sequence & structure alignments
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(a) α=1.0 (b) α=0.66 (c) α=0.33 (d) α=0.0

Fig. 4. Stochastic contact maps from a partiFold-Align run on the proteins 1BXW and 2F1V. For each of the four plots,
the sequence of 1BXW and 2F1V is given on the axes (with gaps), and high probability residue-residue interactions indicated
for 1BXW on the lower left half of the graph and 2F1V on the upper right half (i.e., the single-sequence probabilistic contact
maps). Structural contact map alignment can be judged by how well the the plot is mirrored across the diagonal. Subfigure
(a) (α = 1.0) shows an alignment which ignores the contribution of the structural contact map, while (d) (α = 0.0) shows an
alignment wholly-dependent on the structural contact map, and ignorant of sequence alignment information.

10%, we chose a lower α parameter (0.6 versus 0.7) to boost the contribution of the structural prediction
to the overall solution when less sequence homology could be exploited. As seen in Figure 4, consensus
predictions from lower α parameters more closely resemble predictions based solely on structural scores,
and thus, an optimal alignment should correlate α with sequence homology.

Admittedly, this naive, single (or few) parameter solution does not enable the full potential of our
algorithm. A protein-specific machine learning approach would allow for a better parameter fit, and is
the focus of ongoing research.

3.3. Alignment accuracy of low sequence identity TMBs

To compare the accuracy of alignments generated by partiFold-Align against current sequence alignment
algorithms, we perform the same TMB pairwise sequence alignments using partiFold-Align, EMBOSS
(Needleman-Wunsch) [20], and MUSCLE [30], [31]. EMBOSS may be considered the best Needleman-
Wunsch style global sequence alignment algorithm (a straight-forward, widely applicable method of
alignment), while MUSCLE is widely thought the state-of-the-art alignment tool, though it also incor-
porates a more sophisticated “k-tuple” selection method during pairwise alignments which can improve
alignment accuracy under some circumstances. 3 Since the partiFold-Align algorithm utilizes Needleman-
Wunsch style dynamic programming, comparisons between EMBOSS and partiFold-Align represent
a fair analysis of what simultaneous folding and alignment algorithms specifically contribute to the
problem. Comparisons with MUSCLE alignment scores necessitate inclusion to portray the practical
benefits partiFold-Align provides. However, no technical reason prevents MUSCLE’s k-tuple methods to
be incorporated with partiFold-Align; this stands as future work.

Figure 5 presents transmembrane QCline accuracy scores for EMBOSS, MUSCLE, and partiFold-
Align across 27 TMB pairwise alignments. (The absent 28th alignment, between 1BXW and 2JMM
(50% sequence-homologous), is aligned with a nearly-perfect QCline score of 0.98 by all three algo-
rithms). Results are separated into the 3 categories according to the number of circling strands within a
protein’s β-barrel: seven 8-stranded “OMPA-like” proteins account for 21 alignments, two 10-stranded
“OMPT-like” proteins account for one alignment, and finally, four 12-stranded “Autotransporters,” “OM
phospholipases,” and “Nucleoside-specific porins” make up the final six alignments (a full summary can
be found in Table II of the Appendix). Equal-sized clusters of pairwise alignments are then formed and
ordered according to sequence identity, with cluster mean QCline and standard deviation reported. All

3We note, that while EMBOSS uses only the BLOSUM substitution matrix, and partiFold-Align a combination of BATMAS
and BLOSUM, Forrest et al. [3] show that BATMAS-style matrices do not show improvement for EMBOSS-style algorithms.
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Fig. 5. Mean and standard deviation QCline scores for 8-, 10-, and 12- stranded TMBs. Each of the 3 categories of proteins
are clustered and ordered according to sequence identity, with the number of alignments in each cluster in parentheses. Note:
By definition, QCline scores range between −ε and 1.0, where ε = 0.2; negative values indicate very poor alignments.

individual alignment-pair statistics, as well as alternative accuracy metrics (e.g. Qcombined) can be found
in the Appendix.

Across all TMBs, partiFold-Align alignments are more accurate than EMBOSS alignments by an
average QCline of 16.9% (4.5x). Most importantly, partiFold-Align significantly improves upon the
EMBOSS QCline score for all alignments with a sequence identity lower than 9% (by a QCline average of
28%), and roughly matches or improves 24/28 alignments overall. Excluding the 12-strand alignments,
which align proteins across different superfamilies, our intra-superfamily alignments exhibit even higher
improvements in average QCline, besting EMBOSS by 20.3% (27.4% versus 7.1%). Even compared with
MUSCLE alignments, partiFold-Align is able to achieve a 4% increased QCline on average, despite its
lack of the k-tuple method employed by MUSCLE.

3.4. Secondary structure prediction accuracy of consensus folds

Here we investigate how the consensus structure resulting from our simultaneous alignment and folding
algorithm can improve structure prediction accuracy over a prediction computed from a single sequence
alone. We report in Table I Q2 accuracies computed from alignments of all pairs of TMB sequences
within the same n-stranded category. For each protein, the Q2 score from the single sequence minimum
folding energy (m.f.e.) structure is given (as done in [16]), and compared against: the Q2 score from the
best alignment partner, and the average Q2 score obtained when aligning that protein with all others in
its category.

The results for 8- and 10-stranded categories show a clear improvement (more than 8%) by the best
consensus fold in 6/9 instances (1P4T, 2F1V, 1THQ, 2ERV, 1K24, 1I78), and roughly equivalent results
for the remaining 3 (2F1V, 1K24, I178). Further, on average, nearly all proteins show equivalent or
improved scores when aligned with any other protein, with the exception of 1BXW. However, the single
sequence structure prediction Q2 for 1BXW is not only high, but significantly higher than all other
8-stranded proteins; the contact maps of any other aligning partner may simply add noise, diluting
accuracy. Conversely, the proteins which have poor single sequence structure prediction benefit the greatest
from alignment (e.g. 2F1V). This relationship is certainly not unidirectional, though, as we see that the
consensus fold of 1K24 and 1I78 improves upon both proteins’ single sequence structure prediction.

In contrast, the results compiled on the 12-strands category do not show any clear change in the
secondary structure accuracy. However, recalling that this category covers 3 distinct superfamilies in
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Category PDB id single seq. consensus
best average

8-stranded

1BXW 72 70(-2) 63(-9)
1P4T 60 68(+8) 58(-2)
1QJ8 65 68(+3) 66(+1)
2F1V 47 63(+22) 62(+15)
1THQ 50 69(+13) 52(+2)
2ERV 57 67(+10) 59(+2)
2JMM 62 65(+3) 62(+0)

10-stranded 1K24 60 69(+9) 69(+9)
1I78 76 83(+7) 83(+7)

12-stranded

1QD6 54 61(+7) 56(+2)
1TLY 59 59(+0) 58(-1)
1UYN 56 56(+0) 53(-3)
2QOM 51 55(+4) 53(+2)

TABLE I
Secondary structure assignment accuracy. Percentage Q2 of secondary structure prediction correctly assigned residues
(transmembrane and non-transmembrane regions). Third column reports the performance of a single strand folding (no
alignments). Fourth and fifth columns report respectively the best and the average Q2 scores of a consensus structure.

the OPM database, such results may make sense. The “Autotransporter,” “OM phospholipase,” and
“Nucleoside-specific porin” families all exhibit reasonably different structures, and perform quite unrelated
tasks. Further, unlike the original partiFold TMB algorithm [17], the abstract structural template used
in this work does not take into account β-strands that extend far beyond the cell membrane (since our
alignments focus on membrane regions). This may also effect the structure prediction accuracy of more
complex TMBs.

we can conclude from this benchmark that the consensus folding approach can be used to improve
the structure prediction of low homology sequences, provided they both belong to the same superfam-
ily. However, we emphasize the importance parameter selection may play in these results; a different
parameter selection method may enable accuracy improvement for higher-level classes of proteins.

4. CONCLUSIONS

We have presented partiFold-Align, a new approach to the analysis of proteins, which simultaneously
aligns and folds pairs of unaligned protein sequences into a consensus to achieve both improved sequence
alignment and structure prediction accuracy. To demonstrate the efficacy of this approach, we designed and
tested the algorithm for the difficult class of transmembrane β-barrel, low sequence homology proteins.
However, we believe this technique to be generally applicable to many classes of proteins where the
structure can be defined through a “chaining” procedure as described in Section 2 (e.g., most β-sheet
structures). This could open new areas of analysis that were previously unattainable given current tools’
poor ability to construct functional alignments on low sequence homology proteins.

While we have shown that consensus folds can significantly improve upon pairwise sequence alignment,
we believe this approach can also translate into considerable improvements in multiple sequence align-
ments. This is because many multiple alignment procedures use pairwise alignment information at their
core [27]. Such an extension would be an obvious next step for our approach to be added in combination
with other, more elaborate techniques found in sequence alignment algorithms (e.g., MUSCLE).

Similarly, we believe that the effectiveness of partiFold-Align can be enhanced significantly by a well-
formulated machine learning approach to parameter optimization as has been applied to the case of
RNA [5], [32]. Supporting this notion, we experimented with parameters selected based on a known test
set, and saw pairwise sequence alignment accuracies with an average Q2 accuracy ∼ 20% greater than
MUSCLE (versus the reported ∼ 4% improvement for test-set blind parameter selections). However, for
the case of TMBs, one notable problem that would need to be overcome is the relatively small set of
know structure or alignments with which to use for training.
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APPENDIX

To elaborate upon our analysis of the partiFold-Align algorithm, we have included this Appendix which
gives results for every individual pairwise alignment. Figure 6 presents all 28 TMB pairwise alignments
across all 3 classes of proteins, and their corresponding Transmembrane QCline and Qcombined score. For
this, we see that the general trends discussed in Section 3 apply to Qcombinedjust as much as QCline.
Figure presents all 28 TMB pairwise alignments and their corresponding whole-protein QCline and
Qcombined scores (not restricted to transmembrane regions as discussed in Section 3.1) Again, the same
trends apply. Table II gives a list of all 28 OPM database TMB pairwise alignments, their corresponding
sequence identities, and their subfamily classifications. Finally, for completeness, we include here a
complexity analysis of the simultaneous alignment and folding algorithm described in Section 2.
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Fig. 6. Transmembrane region QCline and Qcombined scores in order of increasing sequence identity.
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Fig. 7. Whole-protein QCline and Qcombined scores in order of increasing sequence identity.

Complexity Analysis
We begin with a complexity analysis of the approach described by the recursion equations in Section 2,

and then further discuss refinements that were made to improve the complexity. Let n and m denote the
lengths of the two sequences. For the analysis, loop type, orientation, and shear number are negligible
as they are constantly bounded. First, there are O(n2m2) entries LA(i, i′, j, j′) for loop alignments;
each is computed in constant time. For a fixed strand alignment As, there are O(n2 ·m2) many entries
ShA(i, i′, j, j′; or; lt; s;As). By our recursion equations, each entry is computed in constant time. Now,
for TMBs the maximal length of a strand alignment lmax and the maximal number of gaps gmax in a
strand alignment can be bounded by small constants. We denote the number of such bounded alignments
by ν, which is in O(lgmax

max )4 and constant for fixed parameters lmax and gmax. As a result, there are
O(n2m2ν) entries ShA(i, i′, j, j′; or; lt; s,As) in total.

For the chaining, there are O(nmν2) entries Dchain(i, j;As,Acyc
s ; ct, lt), each of these entries is

4More precisely, the number of alignments of two sequences of length n with k gaps is 2
n+kk
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computed by maximizing over left boundaries i′ and j′, orientation, loop type, shear number and strand
alignment of an entry ShA. There are O(nmν) such combinations. The final cyclic closing of the chaining
is computed by searching over all O(nmν) alignments Acyc

s and pairs of positions i and j, where the
last strand alignment ends.

The resulting complexity of O(n2m2 +n2m2ν +n2m2ν3) time and O(n2m2 +n2m2ν +nmν2) space
is now reduced drastically, yielding a practicable approach. The main reduction is due to the use of a
threshold pcutoff for the probabilities in our probabilistic contact map. As a result, the contact degree
is bounded by 1/pcutoff and the quadratically many contacts considered for the above analysis are thus
reduced to only linearly many significant ones. Now, as mentioned before, we only compute entries of
ShA(i, i′, j, j′; or; lt; s,As) where all positions i, i′ j and j′ are within a narrow range r from a significant
contact (p, p′); r is bounded by the shear number s and gmax. Thus there remain only O(4r2nmν) entries.
For the chaining, this means each entry can be computed in only O(4r2ν) time due to the constant contact
degree. Time and space complexity are thus reduced by a factor of O(nm).

For TMB alignment, we further reduce the complexity due to the following observation. Because TMB
alignments structures contain no bulges, all strand alignments have equal length and have their gaps at the
same positions. This eliminates further degrees of freedom in choosing the overlapping strand alignments
As during the chaining. The final complexities of our approach are thus O(n2m2+4r2nmν+4r2nmν) =
O(n2m2 + 4r2nmν) time and O(n2m2 + 4r2nmν + 4r2nmν) = O(n2m2 + 4r2nmν) space.

Note that affine gap cost as well as stacking can be added without increasing the complexity. An
example for such an extension of a in this way similar DP algorithm is again found in the area of RNA
sequence-structure alignment. [21], [33].
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Number Sequence Pair sequence Protein
of strands identity range identity pair Classification

8-stranded

0-4%

4% 1BXW-1THQ OMPA-like / OMPA-like (LAA)4% 1QJ8-1THQ
4% 1THQ-2F1V OMPA-like (LAA) / OMPA-like4% 2ERV-2F1V

5-9%

6% 1P4T-1THQ OMPA-like / OMPA-like (LAA)
6% 1THQ-2ERV OMPA-like (LAA) / OMPA-like (LAA)
6% 1THQ-2JMM OMPA-like (LAA) / OMPA-like
6% 1BXW-2ERV OMPA-like / OMPA-like (LAA)6% 1QJ8-2ERV
7% 2ERV-2JMM OMPA-like (LAA) / OMPA-like
7% 1P4T-2ERV OMPA-like / OMPA-like (LAA)
8% 2F1V-2JMM

OMPA-like / OMPA-like

9% 1BXW-2F1V
9% 1P4T-2JMM

10-20%

10% 1P4T-2F1V
10% 1QJ8-2F1V
14% 1P4T-1QJ8
15% 1BXW-1P4T
15% 1QJ8-2JMM
17% 1BXW-1QJ8

50% 50% 1BXW-2JMM
10-stranded 6% 6% 1I78-1K24 OMPT-like / OMPT-like

12-stranded

0-5%
3% 1TLY-2QOM Nucleoside-specific porin / Autotransporter
3% 1QD6-1TLY OM phospholipase / Nucleoside-specific porin
5% 1QD6-2QOM OM phospholipase / Autotransporter

6-10%
6% 1QD6-1UYN OM phospholipase / Autotransporter
6% 1TLY-1UYN Nucleoside-specific porin / Autotransporter
9% 1UYN-2QOM Autotransporter / Autotransporter

TABLE II
BREAKDOWN OF OPM DATABASE TMB PROTEINS USED IN ANALYSIS. LAA DISTINGUISHES A FAMILY WITHIN THE

OMPA-LIKE SUPERFAMILY OF PROTEINS INVOLVED WITH LIPID A ACYLATION


