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ABSTRACT

Summary: Non-coding RNAs (ncRNAs) play a vital role in many cel-

lular processes such as RNA splicing, translation, gene regulation.

However the vast majority of ncRNAs still have no functional annota-

tion. One prominent approach for putative function assignment is clus-

tering of transcripts according to sequence and secondary structure.

However sequence information is changed by post-transcriptional

modifications, and secondary structure is only a proxy for the true

3D conformation of the RNA polymer. A different type of information

that does not suffer from these issues and that can be used for the

detection of RNA classes, is the pattern of processing and its traces in

small RNA-seq reads data. Here we introduce BlockClust, an effi-

cient approach to detect transcripts with similar processing patterns.

We propose a novel way to encode expression profiles in compact

discrete structures, which can then be processed using fast graph-

kernel techniques. We perform both unsupervised clustering and

develop family specific discriminative models; finally we show how

the proposed approach is scalable, accurate and robust across

different organisms, tissues and cell lines.

Availability: The whole BlockClust galaxy workflow including all

tool dependencies is available at http://toolshed.g2.bx.psu.edu/view/

rnateam/blockclust_workflow.

Contact: backofen@informatik.uni-freiburg.de; costa@informatik.

uni-freiburg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Genome-wide sequencing revealed that DNA is pervasively tran-

scribed, with the majority of the DNA encoding for non-coding

RNAs (ncRNAs) (Jacquier, 2009). ncRNAs are important parts

of cellular regulation that were long ignored but have received an

increasing level of attention over the past decade. There have

been reports of up to 450 000 predicted ncRNAs in the human

genome alone (Rederstorff et al., 2010), the vast majority of them

having no functional annotation. While the exact numbers, and

even the magnitude, of regulators and interactions are of course

a matter of discussion, they reflect the current challenge for the

analysis of whole-transcriptome data.

Comparatively assigning a putative function to ncRNAs re-

quires the detection of RNA families or classes with a common

function. RNA families contain sequences that are related via

evolution, whereas the members of RNA classes are defined

only by a common function without evolutionary relationship,

with miRNAs and snoRNAs being well-known examples.

RFAM (Burge et al., 2013) is the largest known collection of

known RNA families. However, only a minor part of the tran-

scriptome is covered by those examples. For that reason, Will

et al. (2007) and Torarinsson et al. (2007) introduced clustering

of transcripts according to sequence and structure as a mean to

assign functions. This is now used as a standard tool for the

detection and analysis of ncRNA in genomic and metagenomic

data [see e.g. Parker et al. (2011), Saito et al. (2011), Weinberg

et al. (2009) or Shi et al. (2009)].
There are, however, several caveats if one relies only on the

genomic sequence and its predicted secondary structure. First,

the genomic sequence is often changed by post-transcriptional

modifications. The database of RNA modification pathways

[MODOMICS, see Machnicka et al. (2013)] lists 144 types of

modifications, from methylation of RNA bases to editing

events like C-to-U or A-to-I editing [see e.g. Su and Randau

(2011) or Nishikura (2010)]. Second, the reliability of the classi-

fication depends on the quality of secondary-structure predic-

tion, which is often low [see e.g. Mathews et al. (2004)]. The

reason is not only that the energy model for secondary structure

is incomplete, but RNA modifications and the influence of

RNA-binding proteins also add layers of complexity. In the

case of transcriptome data, an additional problem is that often

the full transcript is not seen in the deep sequencing. This implies

that one has to perform local secondary-structure prediction,

which is an even harder task (Lange et al., 2012). Third, relying

on structure is optimal for structured ncRNA, but would miss

many long ncRNAs that often do not have a conserved structure

[for a review, see e.g. Rinn and Chang (2012)].

There is, however, a similarity other than the genomic se-

quence and its predicted secondary structure that can be used

for the detection of RNA classes, namely the pattern of process-

ing and its traces in small RNA-seq reads data (Findeiss et al.,

2011). The reason is simply that these processing patterns depend

on the functional molecule and its 3D-structure, and thus should

carry information not only about the structure of the polymer

but also about all modifications and processing of the RNA

molecule. This is well understood for prominent examples like

miRNA, where most pre-miRNA have a hairpin structure with a

2-nt 30 overhang that are processed into a double-stranded RNA

consisting of the miRNA and its complement miRNA* [see e.g.

Gan et al. (2008), for alternative processing modes see e.g. Ando

et al. (2011)]. Computational approaches for finding new

miRNAs in deep sequencing data such as miRDeep rely on

the detection of traces of this process (Friedlander et al., 2008).
It has now become clear that this is not limited to miRNA.

Instead, class specific slicing of widely expressed ncRNAs (but*To whom correspondence should be addressed.
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no mRNAs) into smaller RNAs is a widespread regulatory

mechanism (Li et al., 2012). Examples are tRNA, where there

are several species of tRNA-derived fragments such as tRNA
halves, 50 tRF, 30 U tRF or 30 CCA tRF are known

(Gebetsberger and Polacek, 2013). Similarly, snoRNA-derived

(sdRNAs) fragments are specific for the snoRNA class and the

size and position distribution of the sdRNAs are conserved

across species (Taft et al., 2009).

In this article, we introduce BlockClust, an efficient ap-

proach to detect transcripts with similar processing patterns.

We propose a novel way to encode expression profiles in com-

pact discrete structures, which can then be processed using fast

graph-kernel techniques.
Note that in this work we do not deal with long RNA se-

quences such as messenger RNAs which require to deal with

exon boundaries or with extreme variability in length and expres-

sion levels, rather we consider the transcripts that are retrieved

from small RNA-seq protocols and we therefore optimize

BlockClust to process transcripts characteristic of small

ncRNAs of length 50–200nt.
We perform both unsupervised clustering and develop ncRNA

family specific discriminative models; finally we show how the

proposed approach is scalable, accurate and robust across differ-

ent organisms or experimental protocols.

2 MATERIALS AND METHODS

The core idea of the BlockClust method is to characterize transcribed

loci using the expression profiles obtained from deep sequencing experi-

mental protocols. To do so, we extract characteristic attributes from the

expression profiles, such as the entropy of the read length or the normal-

ized read expression. We then encode the sequence of several of these

attributes in compact discrete structures, which we then process using fast

graph-kernel techniques.

More specifically, in order to achieve high computational efficiency,

we do not use alignment-based techniques as done e.g. in

deepBlockAlign (Langenberger et al., 2012), and we do not resort

to a set of handcrafted measurements or features to describe the entire

profile as done e.g. in DARIO (Fasold et al., 2011). Instead in

BlockClust we partition the reads of an expression profile in a se-

quence of blocks. We then discretize the statistics of the reads distribution

in each block and we encode the result in a discrete data structure. Such

representations can be processed by high-performance machine-learning

techniques such as kernelized Support Vector Machines (Joachims, 1999)

to build classification models or by Locality Sensitive Hashing techniques

(Heyne et al., 2012) to obtain fast clustering approaches.

In summary, the two key components in BlockClust are: (i) the

expression profile encoding with discretized attributes, and (ii) the com-

binatorial feature generation from the sequence of attributes.

2.1 Expression profiles encoding

With the term expression profile we denote the set of assembled read

sequences relative to a given transcript. In order to extract these profiles,

read sequences from the deep sequencing experiments are aligned (or

mapped) against their corresponding reference genome in order to get

the chromosomal coordinates (note that BlockClust can in principle

work on reads that are mapped to assembled transcripts, when there is no

reference genome). The information about mapped reads is generally

stored using the Sequence Alignment/Map (SAM) format or a com-

pressed binary version of the SAM format (BAM). BAM files can be

converted to a six-column Browser Extensible Data (BED) file of tags

(a tag is a unique read sequence in a deep-sequencing library). The BED

format provides information on the normalized expression of each tag, i.e.

the ratio of the read count per tag to the number of mappings on the

reference genome. Considering tags instead of reads allows a high loss-

less compression of the original data. In BlockClust we further repre-

sent this information by (i) grouping tags into ‘blocks’ and sequences of

blocks into ‘block groups’, (ii) extracting several statistics from the read

signal within each block and globally over the whole block group and (iii)

discretizing these statistics. In this way we can represent hundreds of

thousands of reads over regions spanning hundreds of nucleotides with

few bytes. More in details, the expression-profile-encoding phase is com-

posed of the following steps: (i) conversion of BAM file to BED file of

normalized tag expressions, (ii) block and block groups extraction, (iii)

statistics extraction for each block and block group, (iv) discretization of

the statistics, (v) graph encoding of the block group and of the associated

discretized statistics. The novel contribution of this work lies in the details

of phases 3 and 5.

2.1.1 Blocks and block groups In order to enhance computational

performance, we compress expression profiles by grouping reads into

blocks. Because of biological noise and sequencing errors, the read pos-

itions do not respect any exact boundary notion, and one cannot there-

fore assume that blocks should be non-overlapping. For this reason we

use the blockbuster tool (Langenberger et al., 2009) to identify blocks.

The idea is to perform peak detection on the signal obtained by counting

the number of reads per nucleotide. This signal, spanning adjacent loci, is

then modeled with a mixture of Gaussians. An iterative greedy procedure

is then used to collect reads that belong to the same block, starting from

the largest Gaussian component, and removing them in successive iter-

ations. The tool further assembles a sequence of adjacent blocks into a

block group if the blocks are either overlapping or are at a distance

smaller than a user-defined threshold. Finally, in BlockClust we

assume that a gene can span at most a single block group.

2.1.2 Blocks and block groups attributes To identify patterns in

expression profiles we partition the reads into blocks and block groups

and then describe each block and the entire group of blocks with a set of

statistics and measures. Note that it is not possible to characterize differ-

ent ncRNA families using only simple statistics on the overall distribution

of reads. To increase the discriminative power we therefore consider the

exact sequence of blocks, making use of attributes relative to each indi-

vidual block and relative to the relations between adjacent blocks. More

precisely we define three types of descriptive attributes: (i) block group

attributes, (ii) individual block attributes and (iii) block edge attributes,

i.e. measures about the relation between two adjacent blocks in a block

group. The block group attributes are: entropy of read starts, entropy of

read ends, entropy of read lengths, median of normalized read expressions

and normalized read expression levels in first quantile. The block attributes

are: number of multi-mapped reads, entropy of read lengths, entropy of read

expressions, minimum read length and block length. The block edge attri-

butes are: contiguity and difference in median read expressions. The en-

tropy of read starts is defined as �
P

i qilog 2qi, where qi is the fraction of

reads in a given block group starting at position i. The other entropies are

defined correspondingly. The overall expression is defined as the sum over

all tag expressions per block. The block contiguity is defined as the over-

lap fraction or the fractional distance between two consecutive blocks.

For more details see Supplementary Material Section S.4.

2.1.3 Attribute discretization To identify patterns in large collections

of sequences of blocks we propose to discretize the attributes, treating the

resulting intervals as nominal values. This achieves the combined result of

reducing data storage requirements and it allows us to use powerful ma-

chine-learning techniques that work on discrete data structures.

Discretization methods can be divided into those that choose the intervals

taking the class information into account and those that are class-blind.
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As we seek an approach that is ultimately capable of novel discoveries, we

opt for the latter. Between the two main class-blind approaches, the

equal-width and the equal-frequency discretization, we observe that the

first method can yield empty intervals and lose a large amount of infor-

mation. We chose therefore the equal-frequency algorithm, which sorts

all values and then divides the range into a user-defined number of inter-

vals so that every interval contains the same number of values (note that

special care must be taken to treat identical values, which can potentially

spread over several intervals. We adjust the procedure so that duplicate

values belong to a single interval).

2.1.4 Graph encoding Since the number of blocks is variable we

cannot use a simple vector or matrix encoding of the attributes. Instead

we encode the sequence of blocks with attributes as a graph with discrete

labels. We adopt an encoding similar in spirit to the one used in Kundu

et al. (2013). In BlockClust we encode a single non-protein-coding

gene with a graph made of two disconnected components: in the first

one we represent the overall block group information, while the second

one is used to represent the sequence of individual blocks and their rela-

tionships. The first component is modeled as a position specific sequence

of discretized attributes, that is, each block group attribute type appears

consistently at the same position in the modeling sequence (see Figure 1 at

the top of the Graph Encoding box). The second component is modeled

as a sequence of vertices, each representing a single block, called the

backbone sequence. The discretized block attributes are represented as a

position-specific sequence and this sequence is connected to the

correspondent block vertex. Two blocks that appear subsequently in

the assembled transcript are encoded as adjacent vertices. The block

edge attributes between two adjacent blocks with starting coordinates i

and j respectively, with i5j, are appended at the end of the attributes for

the block with starting coordinates i. Note that in practice we collapse the

vertex representing the block together with the vertex representing the

first attribute. The final structure for the second component is therefore a

sort of ‘comb’-shaped graph as shown in Figure 1. Note that the order of

the attributes affects the discriminative capacity of the encoding and it

therefore needs to be optimized (see Section S.4 in Supplementary

Material).

The reason for this type of more complex modeling, as compared to a

simple sequential encoding, becomes clearer in the next section, where we

introduce how the actual features are extracted in a combinatorial way

from the graph encoding.

2.2 Combinatorial feature generation

In BlockClust we do not employ alignment-based techniques to com-

pare block groups, as we would incur in high computational costs.

Instead given the graph encoding of a block group we extract an explicit

feature representation that can be processed more efficiently. The type of

features considered are those developed for a recently proposed graph

kernel called Neighborhood Subgraph Pairwise Distance Kernel (NSPDK)

(Costa and Grave, 2010) and used for the efficient clustering of ncRNA

molecular graphs in Heyne et al. (2012).

NSPDK is a fast graph kernel based on exact matching between pairs of

small subgraphs. One can view the similarity notion expressed by NSPDK

as a generalization of the k-mer substring kernel for strings (with gaps) to

the case of graphs. The idea is to decompose a graph into a set of smaller

fragments and express the similarity between two graphs as the fraction

of common fragments. In NSPDK the fragments are pairs of neighbor-

hood subgraphs for a small radius (parametrized by the maximum

allowed radius R) at increasing distances (parametrized by the maximum

allowed distance D). Intuitively the radius parameter controls the com-

plexity of the features, while the distance parameter controls the range of

locality for the non-linear interactions. A neighborhood graph is a sub-

graph specified by a root vertex v and a radius R, consisting of all vertices

that are at a distance (the distance between two vertices v and u on a

graph is defined as the number of edges in the shortest path between v

and u) not greater than D from v. All pairs of neighborhood subgraphs

can be efficiently enumerated in near linear time and hashing techniques

can be used to extract quasi-canonical identifiers from these pairs (see

Supplementary Material Section S.1 for a formal introduction and add-

itional details). As shown in Heyne et al. (2012) we can use these identi-

fiers to build feature indices and represent graphs as vectors in a very

high-dimensional vector space. Differently from what is done in Costa

and Grave (2010) and Heyne et al. (2012) here we make use of the notion

of viewpoint [first introduced in Frasconi et al. (2012)]. A viewpoint is an

additional information that is placed on specific vertices in the graph

encoding. The intended effect is to constrain the feature-generation mech-

anism in such a way that at least one of the two subgraph root is a

viewpoint. In this way we can choose which specific vertices are more

relevant in a given domain. In our case we place viewpoints on the back-

bone, i.e. the chain of vertices representing the blocks. In this way we

generate features that at the same time (i) take into account an incremen-

tal amount of attributes, but (ii) that work on a much smaller subset of

the exponentially large set of possible combinations. Since the sequential

order in which we encode the attributes determines the combinations

generated, we need to determine the optimal order (see Section 3.1.3

for further details on the parameters optimization step). The features

obtained following the NSPDK approach contain pairs, triplets and

higher order combinations of the original attributes. Having these com-

plex features allow linear models to express complex classification deci-

sions that are non-linear with respect to the original sequential

Fig. 1. Read profile encoding. (Top) Read profile, and successive parti-

tion of reads in blocks (blockbuster). (Bottom) The block partitioned

reads are encoded as a graph with two disconnected components: (i)

BLOCK GROUP: which contains statistics and attributes of the global

distribution of reads; (ii) SEQUENCE OF BLOCKS: which encodes a

list of attributes for each individual block. The backbone is the sequence

of the most discriminate type of block attribute. The discretized value of

each attribute is depicted by a color-coded circle in the corresponding box
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information. Figure 2 depicts how the features are generated with a given

radius and distance. The technique that we present here allows therefore

to combine the benefits of large-scale efficiency provided by linear meth-

ods and locality sensitive hashing with accurate non-linear modeling.

2.3 ncRNA expression profile clustering

The similarity notion of NSPDK can be used directly by clustering algo-

rithms that make use of pairwise similarity or distance information. More

specifically the similarity between two expression profiles is equivalently

defined as the dot product of the corresponding high-dimensional vector

representations. Note that in large-scale settings, when a quadratic com-

plexity in space or time is unfeasible, we can avoid to materialize the

pairwise similarity matrix and resort instead to more efficient locality

sensitive hashing techniques (see Supplementary Material Section S.2

for details) as introduced in Heyne et al. (2012). This technique allows

us to extract the approximate nearest neighbors in linear time complexity.

As a clustering algorithm BlockClust uses the Markov Cluster

Process (MCL) algorithm (Enright et al., 2002). Given a weighted nearest

neighbor graph G between the instances to be clustered, the MCL algo-

rithm applies a parametrized algebraic process to the matrix of random

walks on G. The underlying idea is to characterize clusters as subgraphs

such that a random walk on the graph will infrequently go from one

subgraph to another. The MCL was chosen as it produces balanced

non-hierarchical clusters and it does neither need seeding information

nor a user-defined number of clusters. Moreover it can be employed in

large-scale settings as it can work with sparse graph/matrix implementa-

tions. In our application setting, the inflation parameter, which affects the

cluster granularity, was selected to retain relatively small clusters.

2.4 ncRNA expression profile classification

In addition to unsupervised clustering, BlockClust provides a super-

vised classification mode. Given a set of expression profiles for a known

ncRNA family or class and a set of negative examples, i.e. expression

profiles of ncRNAs with a different or unknown function, BlockClust

can efficiently build a discriminative linear binary classifier. As in the

unsupervised clustering mode, we first extract explicit high-dimensional

vector representations from the expression profile encodings.

Subsequently BlockClust uses fast and scalable linear techniques

such as Stochastic Gradient Descent Support Vector Machines

(Bottou, 2010) to induce a discriminative model. Note that even if we

use linear models to allow scaling to genome wide data settings, the re-

sulting classifier is in fact non-linear in the original attribute space.

The resulting models are precise and surprisingly robust: a model for

the identification of tRNA genes can be trained on human data with

reads extracted under a specific experimental protocol (say Illumina

GAII) and it can be used to reliably annotate expression profiles across

diverse organisms (e.g. fly or plants), from data produced by different

experimental protocols (see Section 3.2).

3 RESULTS AND DISCUSSION

In order to evaluate the BlockClust approach we formulate

and analyze the following questions.

Q1: Is the BlockClust encoding of expression profiles

informative enough to be used in clustering procedures

to detect specific ncRNA classes?

Q2: Is the BlockClust encoding of expression profiles

robust across different sequencing platforms, organ-

isms, tissues, cell lines?

Q3: Can BlockClust be used for the annotation of

known ncRNAs classes?

Q4: How does BlockClust compare to other tools for

clustering or classification of expression profiles?

3.1 Q1: clustering ncRNAs with encoded expression

profiles

3.1.1 Performance measures Given the graph encoding of two

expression profiles, BlockClust can compute a similarity score

between the corresponding high-dimensional feature representa-

tions. Formally, given two expression profiles a and b, if xa and

xb are the corresponding vector representations, then their

(cosine) similarity is defined as Sða; bÞ= hxa;xbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxa;xaihxb;xbi
p : To assess

the quality of this similarity notion, we measure the grouping

tendency for profiles of functionally identical RNAs. As a meas-

ure we chose the Area Under the Curve for the Receiver

Operating Characteristic (AUC ROC), which is defined as the

integral of the fraction of true positives out of the total actual

positives with respect to the fraction of false positives out of the

total actual negatives at various threshold settings. More pre-

cisely, given a profile a we sort all other profiles by decreasing

similarities with respect to a. Ideally, we expect the neighboring

instances to share the same ncRNA class, i.e. we expect the same

class to appear preferentially at the beginning of the sorted list.

We consider the class of profile a as the positive class and all

other classes as the negative class. Given this assignment we can

compute the AUC ROC as if a was a classifier. The overall

performance is then computed as the average AUC ROC over

all instances. As a general rule of thumb, AUC ROC values40.9

are excellent, �0.8–0.9 are indicative of good performance,

0.7–0.8 indicate a somewhat sufficient quality, while 0.5 is the

baseline for pure random performance.
Since the similarity score can be used for clustering purposes

we also need a performance measure for the final cluster quality.

We do not resort to measures such as the adjusted Rand index or

the F1 score since we expect the same ncRNA class to be

Fig. 2. Combinatorial features. Given a directed graph, the NSPDK ap-

proach constructs a large number of features taking only specific sub-

graphs into account. The procedure is parametrized by the maximum

radius R and the maximum distance D. Each vertex is considered in

turn as a root. A neighborhood graph of radius r=1, . . . , R is extracted

around each root. All possible pairs of neighborhood graphs of the same

size r are considered, provided that their respective roots are exactly at

distance d=1 . . .D. Viewpoints are used to constrain at least one of the

roots to be on the backbone. The graph shows a specific case of com-

binatorial feature construction with r=1, 2 and d=5 with the viewpoint

in v=B1
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partitioned in several highly similar sub-groups, a situation that

would be penalized by such measures. We therefore score the

cluster purity via the average precision per cluster, defined as

the fraction of instances belonging to the majority class present

in each cluster.

3.1.2 Datasets We used NGS data generated by Illumina

sequencing of human embryoid body (EB) and embryonic stem

cells (hESC) (Morin et al., 2008), H1 cell line (H1) and IMR90

cell line (Bernstein et al., 2010), referred to as Development
Data in the following. In order to evaluate robustness of

BlockClust we used a comprehensive collection of datasets

(see Supplementary Table S1), which we refer to as

Benchmark Data, that comprises 32 samples, out of which

13 from human, seven from mouse, five from fly (Drosophila

melanogaster), two from chimp, two from worm

(Caenorhabditis elegans) and three samples from plant

(Arabidopsis Thaliana). The sequencing machines were:

Illumina GAII, Illumina GAIIx, Illumina GA, Illumina HiSeq

2K. Cell types, tissues and organisms include human and chimp

brain tissues, human skin, embryos of worm, head and body of

fly, testis and uterus of mouse and leaves and seeds of plant. Cell

lines range from the H1 cell line to breast cancer cell line MCF-7

from human, from S2 to KC cells for the fly.

3.1.3 Parameters optimization The BlockClust system con-
figuration comprises several parametric choices for each phase:

(i) block identification, (ii) graph encoding and (iii) clustering or

classification (see Table 1). For the blockbuster module used

in phase (i) we need to specify the desired grain resolution in

terms of cluster distance and standard deviation; in (ii) for the

attribute construction phase we need to specify the discretization

resolution and for the feature construction phase the complexity

of the features via the maximal radius and distance needs to be

set; finally in the clustering phase (iii) we need to specify the

desired grain resolution for the clusters via the inflation and

pre-inflation parameters and the regularization trade-off in the

classification phase.
We optimized all parameters using a 35/35/30%-dataset split

of Development Data into train/validation/test set, respect-

ively. In the remainder of the article all performance measures

are reported on the test set, while the quality of the parametric

choices are evaluated on the validation set. Note that the par-

ameters are not optimized on each ncRNA class separately.

One initial difficulty to overcame is represented by the circular

notion that (i) we would like to partition the dataset without

splitting the profiles that belong to a unique ncRNA, but at

the same time and (ii) we need to have a parametric method to

identify the extent of the underlying ncRNAs and the parameters

have to be determined on a valid dataset partition. We therefore

break the circularity by employing the conservative and non-in-

formed notion of read stretches, defined as a series of sorted

reads separated by a maximum distance d. With the exception

of a few ribosomal RNAs, most of the classic short ncRNAs are

not longer than 500nt. Finally, we set d to 500 and partition the

set of the resulting read stretches in train, validation and test sets.
In order to evaluate the quality of the pre-processing step, i.e.

the extraction of blocks and block groups, we measured the frac-

tion of retrieved annotations. An annotation is considered

retrieved if there is a reciprocal overlap of at least 70% between

the annotation and the block group. All the transcripts failing

this criteria and which are also not in the length range of

50–200nt were discarded. For further details on the parameter

optimization phase refer to Supplementary Section S.3.

3.1.4 Performance results In Table 2 we report for each ncRNA
class the average AUC and the overall weighted mean on all

classes averaged over 10 random test splits of Development
Data. In our sample we observed seven ncRNA classes,

namely: miRNAs, tRNAs and C/D-box snoRNAs (which con-

tribute to the majority of the profiles) and rRNAs, snRNAs,

Y_RNAs and HACA-box snoRNAs. Overall, we observed

good average performance results (AUC ROC� 0.8). Best re-

sults were with miRNA (AUC ROC� 0.9), H/ACA-box

snoRNA (AUC ROC� 0.9) and rRNA (AUC ROC� 0.85),

good results were obtained with tRNA (AUC ROC� 0.75)

and C/D-box snoRNAs, while snRNA and YRNA performed

poorly (AUC ROC� 0.6). These last ones are also the least rep-

resented having only �10 instances each.
In Table 2 we report also details on the precision clustering

performance for the four ncRNA classes with the largest number

of instances: tRNA, miRNA, rRNA and C/D-box snoRNA. We

used the MCL-clustering algorithm with inflation parameter set to

20 to capture also small clusters. The clusters obtained for

Table 2. Clustering performance of BlockClust averaged over 10

random test splits of Development Data

ncRNA class Number

of transcripts

AUC Number

of clusters

Precision

miRNA 168 0.896 10 0.855

tRNA 173 0.741 17 0.837

C/D-box snoRNA 78 0.731 7 0.683

H/ACA-box snoRNA 4 0.838 0 0

rRNA 20 0.872 2 0.956

snRNA 7 0.637 0 0

Y_RNA 8 0.685 0 0

Weighted average 458 0.805 36 0.813

AUC ROC was measured from the expression profile similarities and precision

from the clusters generated by the MCL algorithm. Note that due to the very low

number of transcripts for the classes H/ACA-box snoRNAs, snRNAs and

Y_RNAs we could not retrieve any significant clusters.

Table 1. Parameter optimization

Component Parameter Interval Step Optimum

blockbuster Cluster distance 20–100 10 40

blockbuster Scale of standard deviation 0.2–0.8 0.1 0.5

Encoding Discretization bins 3, 5, 7 2 3

NSPDK Radius R 1, 3, 5, 7 2 5

MCL Inflation 1–30 0.3 20

MCL Pre-inflation 1–30 0.3 20

Overview of the parameters value ranges, search step size and the selected optimal

values. Note that D is set as a function of R: D=2�R+1.
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tRNA, miRNA and rRNA are quite consistent, containing

520% extraneous material on average, while for C/D-box

snoRNAs the precision is �68%. For the remaining three classes

with low number of instances, MCL could not identify any cluster.

3.2 Q2: robustness and range of applicability

A desirable property for a parametric computational approach is

to require little to no parameter re-configuration when the data

changes in ways that are marginal with respect to task at hand.

In our case we would like the parametrization of BlockClust
to be insensitive to the sequencing machine type and to factors

like the cell line, tissue and organism. In order to evaluate the

extent of BlockClust robustness we applied BlockClust on

Benchmark Data.
Supplementary Table S4 shows that the clustering perform-

ance measured via the AUC ROC is good and consistent with

the performance measured on the Benchmark Data. This result
tells us that the parameters for blockbuster and the encoding

parameters (such as the type of attributes and their discretization

levels, and the values for the maximum radius and the maximum

distance in NSPDK) are indeed insensitive to the variation of

sequencing machine or organism.

3.3 Q3: annotation of known ncRNAs with encoded

expression profiles

BlockClust can be used to extract expression-profile models

for each ncRNA class and thus provides a way to automatically

classify and annotate unknown deep sequencing data into known

ncRNA functions. Our models have linear complexity, are ex-

tremely efficient and can be used to scan genomes and meta-

genomes, achieving a speed of 2–4 million reads per minute on

standard hardware (Intel Core i3-2100 at 3.10GHz) if we start

from BED files as input and exclude the genome mapping phase.

We tested the robustness and accuracy of these models on the

major ncRNA classes: miRNAs, tRNAs and C/D-box

snoRNAs. Table 3 shows results for supervised classification

task averaged over 10 random test splits of Development
Data. In Supplementary Table S5 we report very good results

across a variety of conditions present in Benchmark Data. The
classifiers that we build exhibit the same robustness that was

found for the clustering task in Section 3.2. That is, models

trained on the processing traces of ncRNAs in human, can be

used without any re-calibration to identify the same type of

ncRNA class in distant organisms such as worm, fly and plant,

irrespective of changes in the sequencing machine type or the cell

line or tissue. These models maintain generally a high precision

(�0.9) for tRNAs and miRNAs while they suffer from a more

severe drop in recall (�0.8 for miRNA and 0.65 for tRNA). In

the case of C/D-box snoRNAs results are more variable and

exhibit in general quite poor recall rates.

3.4 Q4: Performance comparison

Other approaches known in literature that can process expres-

sion profiles derived from deep sequencing data are

deepBlockAlign (Langenberger et al., 2012) and DARIO
(Fasold et al., 2011).

3.4.1 Clustering performance comparison Since currently there

are no available tools that can cluster expression profiles, we

compare against deepBlockAlign even though this tool

aims at solving a different problem. deepBlockAlign is a

tool to align expression profiles which also uses blockbuster

to generate block groups. deepBlockAlign uses a variant of

the Sankoff algorithm to obtain an optimal alignment and com-

putes a corresponding pairwise similarity score between expres-

sion profiles. Finally these similarities can be used to cluster

expression profiles.
We applied both tools to the Benchmark Data. We evalu-

ated both the quality of the similarity notion generated by the

tools as well as the quality of the clusters that can be obtained

under the respective similarities. In Table 4 we report the average

AUC ROC for each individual ncRNA class. The class specific

and weighted-averaged ROC scores indicates that BlockClust

is highly competitive.
An additional advantage of BlockClust is its computational

complexity and wall clock runtime. Since deepBlockAlign is

designed with the purpose of actually generating the alignments

of the read profiles, it has a quadratic complexity in the number

of profiles. BlockClust on the other hand, is designed to

solve the clustering problem and, by exploiting the hashed

approximate nearest neighbors query technique, it can achieve

a quasi-linear runtime. Moreover, deepBlockAlign uses com-

putationally expensive algorithms like Needleman–Wunsch

(O(m2)) for block alignment with m 2 15 . . . 30 nucleotides, and

a variant of the Sankoff algorithm for block group alignment

(O(n6)), where n 2 1 . . . 5 is the number of blocks. In contrast

Table 4. Metric performance: BlockClust versus deepBlockAlign

ncRNA class Number

of instances

BlockClust deepBlockAlign

AUC ROC AUC ROC

miRNA 3869 0.925 0.714

tRNA 4988 0.795 0.701

C/D-box snoRNA 731 0.762 0.615

H/ACA-box snoRNA 142 0.859 0.720

rRNA 770 0.873 0.759

snRNA 240 0.698 0.610

YRNA 244 0.694 0.656

Weighted average 11061 0.839 0.700

Comparison on Benchmark Data. The AUC ROC results across different species,

tissues and cell lines are averaged with weight proportional to the number of in-

stances per class.

Table 3. Classification performance of BlockClust averaged over 10

random test splits of Development Data

ncRNA class Number of transcripts PPV Recall

miRNA 168 0.901 0.886

tRNA 173 0.899 0.796

C/D-box snoRNA 78 0.870 0.474
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BlockClust uses explicit graph kernels with a linear complex-

ity (O(n)) since it performs a simple dot product and a prepro-

cessing attribute extraction phase that runs in O(m). Not

surprisingly, given the different problems that are solved,

BlockClust achieves a speedup of 60-fold, with a wall clock

runtime of 50 s as compared to 58min for deepBlockAlign

on a dataset of �600 profiles.
In addition, we evaluated the quality of the clusters that can be

obtained using the deepBlockAlign similarity score. As we

have done with BlockClust, we applied the MCL algorithm to

the neighborhood graph obtained with the deepBlockAlign

similarity score. We then compared the resulting clusters

obtained varying the inflation and the pre-inflation parameters

of MCL. In Figure 3 we report the median cluster precision versus

the resulting number of clusters for different MCL parameter

settings. We observe that BlockClust tends to produce

larger clusters with a higher precision on average than

deepBlockAlign.
As a final remark, note that deepBlockAlign was de-

veloped and optimized to identify similar processing patterns,

even for different RNAs (e.g. between miRNA and some

tRNAs) and it therefore might give suboptimal results when

used to cluster the ncRNAs into the families of their primary

function.

3.4.2 Classification performance comparison The DARIO tool is

used in a supervised setting to classify expression profiles into

known ncRNA classes. The tool also uses blockbuster in a

pre-processing phase to identify block groups. Given a block

group DARIO extracts a set of attributes without any need for dis-

cretization. Random forests are then employed as the underlying

predictive system. Note that, differently from BlockClust,

DARIO does not explicitly take the sequential arrangement of

the blocks into account.
In Table 5 we report the classification performance for

both tools: clearly, for all three classes BlockClust has

better precision than DARIO. BlockClust shows higher recall

for miRNAs where as DARIOs recall is higher for remaining two

classes.

Since DARIO cannot be run as a standalone tool, and it is

accessible only via a web interface, we could not reliably compare

the respective run times.

3.5 Analysis of known ncRNA clusters

To validate our approach, we clustered all block groups from the

data set GSM768988. The MCL clustering produced several

small clusters. We analyzed the clusters from each ncRNA

class that achieved the highest precision. In Figure 4, we show

the dendrogram together with representative read profiles for the

selected clusters.
For tRNAs, we see very different profiles composed of a mix-

ture of tRNA halves and 50- or 30-derived fragments. This can

already be seen in the two examples shown in Figure 4. The left

profile corresponds to a tRNA having mainly 30-derived frag-

ments, whereas 50-derived fragments dominate the right profile.

MicroRNAs exhibit the typical block-like structure, either with

only one solid block for the miRNA, or with two blocks for

miRNA and miRNA* [see Fasold et al. (2011) for more details

and illustrations].
When examining snoRNAs, we found an even more interest-

ing processing pattern with a step-wise extension. For that

reason, we investigate the snoRNA cluster in more detail. The

cluster with the highest precision contains only C/D-box

snoRNAs. According to the literature (Taft et al., 2009),

snoRNA-derived fragments from C/D-box snoRNAs are pre-

dominantly stemming from the 50-end. Thus, according to the

literature, the profiles for the snoRNAs shown in Figure 5

should be prototypical examples. However, to our surprise, our

C/D-box snoRNA cluster contained mostly 30-derived fragments

with quite some variation in length.
Finally, we examined the tRNA that was clustered together

with the miRNAs (marked with a star in Figure 4). When ana-

lyzing the read profile of this tRNA we could only find very

precisely cut 50-derived fragments (see Figure 6). It is very con-

ceivable that this tRNA might actually be processed by Dicer

and/or is associated with the Argonaute complex. First, the

50-derived fragment has a length of �26nt, which is compatible

with the possible lengths for miRNAs. Second, it is known that

50-tRFs are likely to be processed by Dicer (Gebetsberger and

Polacek, 2013). A miRNA-like function has been investigated in

detail by Maute et al. (2013). Finally, it has been shown that only

the 50-derived fragments but not the 30-derived ones are inhibit-

ing translation and are associated with the Argonaute complex

(Ivanov et al., 2011).

Fig. 3. Clusteringperformance:BlockClust versusdeepBlockAlign.

Comparison of median precision with respect to number of clusters

on the GSM450239 dataset when the MCL clustering algorithm uses

the expression profile similarity scores produced by BlockClust

(red) or by deepBlockAlign (blue)

Table 5. Classification performance: BlockClust versus DARIO

miRNA tRNA snoRNA C/D-box

PPV Recall PPV Recall PPV Recall

BlockClust 0.88 0.89 0.95 0.80 0.74 0.39

DARIO 0.85 0.81 0.92 0.88 0.46 0.52

Comparison on the GSM769510 dataset.
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4 CONCLUSION

We have introduced BlockClust, an efficient approach to

detect transcript with similar processing patterns. The procedure

that we have proposed is stable with respect to changes in

sequencing machines, cell lines and organisms and can be used

to reliably cluster and annotate sequencing output at increasing

depths. Differently from other methods, in BlockClust we

encode expression profiles with discrete structures that can be

processed efficiently and, at the same time, can retain most of

the information content of the profiles.
In future work we will present the application of

BlockClust to large deep sequencing datasets to discover

novel classes of functional ncRNAs.
BlockClust, including all tool dependencies, is available at

the Galaxy tool shed (Goecks et al., 2010), and can easily be

installed and used via a web interface.
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