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Abstract

Background: With the advances in next-generation sequencing technologies, it is possible to determine RNA-RNA
interaction and RNA structure predictions on a genome-wide level. The reads from these experiments usually are chimeric,
with each arm generated from one of the interaction partners. Owing to short read lengths, often these sequenced arms
ambiguously map to multiple locations. Thus, inferring the origin of these can be quite complicated. Here we present ChiRA,
a generic framework for sensitive annotation of these chimeric reads, which in turn can be used to predict the sequenced
hybrids. Results: Grouping reference loci on the basis of aligned common reads and quantification improved the handling
of the multi-mapped reads in contrast to common strategies such as the selection of the longest hit or a random choice
among all hits. On benchmark data ChiRA improved the number of correct alignments to the reference up to 3-fold. It is
shown that the genes that belong to the common read loci share the same protein families or similar pathways. In
published data, ChiRA could detect 3 times more new interactions compared to existing approaches. In addition, ChiRAViz
can be used to visualize and filter large chimeric datasets intuitively. Conclusion: ChiRA tool suite provides a complete
analysis and visualization framework along with ready-to-use Galaxy workflows and tutorials for RNA-RNA interactome
and structurome datasets. Common read loci built by ChiRA can rescue multi-mapped reads on paralogous genes without
requiring any information on gene relations. We showed that ChiRA is sensitive in detecting new RNA-RNA interactions
from published RNA-RNA interactome datasets.
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Introduction

Many non-coding RNAs (ncRNAs) regulate gene expression,
post-transcriptionally, via mechanisms such as activation or
inhibition of translation, destabilization, localization, and pro-
cessing. For example, a microRNA (miRNA) can downregulate

target expression via translational inhibition or transcript desta-
bilization, initiated by the formation of base pairs between the
mature miRNA (∼22 nt long) and the target RNA transcript [1].
For successful regulation, not only the intermolecular struc-
ture (i.e., the RNA-RNA interaction) but also the structure of the
ncRNA itself (i.e., the intramolecular RNA structure) is key to
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the regulatory process [2–4] because it influences the parts of
the ncRNA that are accessible for RNA-RNA interactions. Com-
putationally, the prediction of both inter- and intramolecular
structure is non-trivial and results can be unreliable [5]. To sup-
port computational methods, several transcriptome-wide ex-
perimental protocols have been developed recently to detect
both inter- and intramolecular RNA structure [6–10]. Although
these protocols vary in their application-specific details, they
currently all involve ligating the 2 RNA interaction partners
together and subsequently sequencing the resulting chimeric
RNA molecules using high-throughput sequencing technology.
Chimeric RNAs from gene fusions by trans-splicing or chromo-
somal rearrangements can also be seen in RNA sequencing data.
Such chimeric RNAs are often associated with specific cancer
types [11, 12] and considered to be potential biomarkers [13, 14].

MicroRNAs have been a subject of avid research in the past
decade owing mostly to 2 reasons: (i) it is proposed that each
miRNA can regulate up to several hundred targets and that a
substantial proportion of protein-coding genes are targeted by
miRNAs at some stage [15] and (ii) individual miRNAs have been
implicated in several notorious human diseases, such as differ-
ent cancer types and neurodegenerative illnesses [16–18]. There-
fore, accurate identification of miRNA targets is highly sought
after. Despite numerous attempts, computational prediction ap-
proaches still deliver poor results with generally high false-
positive rates, with no significant improvement observed in the
past decade (see review [19]). Therefore, considerable effort has
also gone into developing high-throughput experimental proto-
cols, specifically designed to detect miRNA-target interactions
(reviewed in [20]). The most recent line of development has been
to ligate the miRNA to the site-specific interaction region of the
target, selecting these interactions via cross-linking to 1 of the
Argonaute proteins required for miRNA-based regulation, and to
sequence the resulting chimeric RNA molecule, e.g., CLASH [6]
and CLEAR-CLIP protocols [7]. Going beyond miRNAs, these pro-
tocols can obviously be applied to RNA interactions that involve
a regulatory protein other than Argonaute. To generalize even
further, researchers have applied the same idea to the detection
of all transcriptome-wide RNA-RNA interactions. This includes
both inter- and intramolecular base-pairing without the neces-
sity of choosing a specific regulatory protein for cross-linking, as
done, e.g., in PARIS [8], SPLASH [9], and LIGR-Seq [10]. Regardless
of the protocol, the sequenced reads are chimeric; i.e., a fusion
of 2 different RNA fragments corresponds either to intermolec-
ular interaction or to 2 distinct parts of a single RNA molecule
from its intramolecular structure.

Two main computational challenges arise from such
chimeric-read data: (i) mapping the chimeric reads to 2 dif-
ferent locations on reference transcript annotations and (ii)
dealing with the fact that these short RNA segments map to
multiple locations, i.e., specifically dealing with multi-mapped
reads. State-of-the-art mapping software, such as Bowtie2 [21],
BWA-MEM [22], and STAR [23], can both map chimeric reads and
allow for multiple mapping locations, given the appropriate
parameter settings. Subsequent to mapping, however, there are
no satisfactory or standard solutions for correctly quantifying
multi-mapped reads. Multi-mapped reads are either ignored
or incorrectly assigned and/or quantified. Three common
approaches exist for assigning multi-mapped reads: (i) they
are not assigned but simply discarded; (ii) a read is assigned
to each of the multi-mapped locations with equal distribution
(e.g., with a count of 1 divided by the number of locations);
and (iii) the true expression level is estimated by assigning the
read to a multi-mapped location proportionally to the number

of uniquely mapped reads in the vicinity of that location.
The ability of the resulting read counts to capture expression
levels or RNA interaction events increases with each approach.
Obviously, discarding multi-mapped reads is a poor solution
and definitely not an option when dealing with chimeric reads.
Distributing counts equally under- or overestimates the actual
expression in all locations in comparison to regions with
uniquely mapping reads. The third approach can deliver accu-
rate results but fails when it comes to distributing reads among
gene families with very similar sequences, e.g., for miRNA gene
families.

Existing software solutions that take the raw data input from
RNA-interactome protocols and deliver quality interaction an-
notations are currently application or protocol specific. Most of
them were released along with their corresponding published
experimental protocols, and none of them has become a read-
ily usable bioinformatic pipeline. There also exist generic stan-
dalone pipelines like Hyb [24], which was developed and demon-
strated to deal with miRNA-specific data. From the computa-
tional side, there is thus still a major hurdle to overcome be-
fore such protocols can be broadly applied in practice: the avail-
ability of easy-to-use software that can process the raw data to
produce accurate annotation and quantification of the identi-
fied RNA-RNA interactions. Here we present a method to resolve
multi-mapping to very similar reference sequences from possi-
ble gene families and paralogs without requiring any prior an-
notation. Our method determines the best alignment for each
multi-mapped read by an elegant quantification and scores
them on the basis of the abundance of reference loci. Our ChiRA
tool suite, Galaxy [25] workflows, and visualization provide a
complete analysis framework for chimeric reads from RNA-RNA
interactome and RNA structurome protocols. Thus, we aim to
strengthen a weak link in the search for transcriptome-wide
RNA interactions/structures.

Methods

We built a complete workflow that takes raw sequencing reads
as input and outputs a comprehensive list of annotated interact-
ing regions. This involves read deduplication, mapping, quan-
tification (including multiple mapped reads) of reference loci to
infer the correct locations on the basis of their expression, and
hybridization of interacting reference loci. To offer a convenient
interface on top of ChiRA output an interactive visualization,
ChiRAViz, was developed. Fig. 1 shows the complete workflow
built from the ChiRA and ChiRAViz tool suite. Each of the follow-
ing sections corresponds to the steps represented (listed on the
right side) in the figure.

Adapter clipping and read deduplication

Quality and adapter trimming, in general, are crucial for RNA-
RNA interactome data but essential for small RNA-related in-
teractome data. Mature miRNAs that interact with the targets
are only ∼18–22 nt in length. Depending on the captured tar-
get sequence, chimeric reads often have adapters in them. In
our analysis, ≥80% of sequenced reads from CLASH and CLEAR-
CLIP datasets contained adapters. For our analysis we trimmed
low-quality ends and adapters from the reads using cutadapt

[26]. Reads that were shorter than 10 nucleotides were discarded,
and the remaining reads were deduplicated to eliminate pos-
sible PCR duplicates. In general, not all identical reads are PCR
duplicates. Gene isoforms or gene paralogs also result in dupli-
cate RNA fragments. To uniquely identify the RNA fragments,
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Figure 1: ChiRA workflow. First, the reads are deduplicated and mapped to reference sequences. Then the overlapping reference regions are merged into expressed
loci. Given an annotation file, transcriptomic alignment positions are converted into genomic positions. Common read loci are built on the basis of the reads that are

consistently multi-mapped among the expressed loci. The quantification is carried out at the common read loci level, and the interactions are scored and hybridized.
With the visualization, users can search, filter, and export preferred interactions. Here transcripts A and C are 2 isoforms of a gene Gene1. Because of shared exons,
multi-mappings to A and C can be collapsed into a single genomic locus Locus1. As Locus3 and Locus5 share all their read segments, they are merged into a single
CRL. Owing to the quantification based on expectation maximization, the multi-mapped green read segment is counted more towards CRL1 than CRL2.

unique molecular identifiers (UMIs) are used. UMIs are short se-
quences of a specific length that are usually attached at the 5′

end of the RNA fragments during library preparation. We also
deduplicate reads based on UMIs if they are present in the li-
brary. We consider identical reads with the same UMI as PCR
duplicates, whereas identical reads with different UMIs are con-
sidered unique. The deduplication step may reduce the number
of reads by orders of magnitude, which in turn can speed up the
subsequent steps.

Read mapping to reference transcriptome/genome

In this step, we align the reads to the reference transcriptome or
genome. For well-annotated organisms, we recommend using
the transcriptome for the following reasons. (i) When mapped
against a transcriptome, reads can be mapped linearly across
the splice junctions. Especially, in the case of these small read
fragments, it can be extremely difficult to map across the splice
junctions when mapped to the genome. (ii) There is less chance
of getting random false-positive hits for short read fragments
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on transcriptome than on whole genome. Unfortunately, except
for some model organisms, reference annotations are either in-
complete or unreliable. In that case, using the whole genome
sequence as a reference is a good choice for the following rea-
sons. (i) An unreliable annotation leads to false conclusions on
the type of detected interactions. (ii) An incomplete annotation
results in false-negative interactions. Consider an example of
CLASH data that predominantly contain miRNA and 3′ untrans-
lated region (UTR) interactions. Mapping to a reference tran-
scriptome with an incomplete 3′ UTR annotation fails to capture
the most important category of interactions.

Currently, we support mapping with BWA-MEM [22] and CLAN

[27]. CLAN is a recent exclusive chimeric read mapper and out-
puts the chimeric alignments in tabular format. BWA-MEM is also
capable of producing chimeric reads by local alignment. With
a high dynamic range in read lengths, it is not always possi-
ble to accurately map chimeric reads of different lengths with
a single parameter setting. Hence, when BWA-MEM is used as the
aligner, we do a 2-pass alignment. The first pass targets mapping
long chimeric read segments whereas the second pass targets
short ones. In the first pass, we use high alignment score thresh-
olds and allow gaps and hence achieve long gapped chimeric
alignments. In the second pass, we use a lower alignment score
cut-off and do not allow any insertions or deletions. Therefore
the second pass rescues short chimeric read segments with per-
fect matches on the reference. The default alignment settings
were optimized on the miRNA interactome data from CLASH
and CLEAR-CLIP protocols. The complete list of alignment set-
tings can be found in the provided Galaxy histories (see Sup-
plementary Section S4 for more details). BWA-MEM can output
the alignments in Sequence Alignment/Map (SAM) format. We
convert it into Binary sequence Alignment/Map (BAM) and use
pysam [28] for further processing. It is important to consider that
BWA-MEM randomly chooses 1 of the alignments as primary and
writes all the alternative hits to the XA tag of the alignment. The
true alignment can also be hidden under the XA tag and buried
in the BAM file. BWA-MEM has an option (-h) that controls the writ-
ing of these suboptimal alignments to the output BAM file. In the
second pass, we set it to a high number (default 100) so that we
do not miss any of the equally good alternative alignments. The
idea is to get as many multi-hits as possible and let ChiRA pick
the best one in subsequent steps. In the end, we combine the
alignments from both the alignment steps, parse the BAM file
using pysam, and write them to a Browser Extensible Data (BED)
file. In this step, we only keep the alignments that are mapped
on the sense reference strand. If there is an XA tag for an align-
ment, we keep all the alternative alignments with the highest
read coverage. In the end, we remove any duplicate hits in the
second pass of the 2-pass alignment.

Because each chimeric read often contains 2 RNA fragments
originating from 2 different RNA types, we allow mapping to 2
different reference transcriptomes (”split reference”). For exam-
ple, for CLASH data, we encourage the use of a split reference,
one containing miRNAs and the other containing the rest of the
transcriptome, which restricts the output to miRNA-based in-
teractions. The parameters such as seed lengths and alignment
scores are dependent on the type of the data or expected length
of chimeric arms. In our experience, the default settings work
well with the miRNA interactome data.

Annotation-based coordinate conversion and merging

Given an annotation file in Gene Transfer Format (GTF), we
convert transcriptome locations to genomic locations because

working on the genomic locations is less ambiguous. The main
problem with transcript locations is that the reads mapped to
the exons that are shared among the isoforms appear to be
multi-mapped. But at the genomic level, these are uniquely
mapped. In the absence of a GTF file ChiRA can still work with
transcriptome locations.

Merge reference positions to define interaction sites
Because the experimental protocols may generate several reads
covering different parts of an interaction site, we have to define
an interaction site by combining overlapping alignments. This
step separates alignments stemming from the same interaction
sites from alignments that cover a completely different interac-
tion site on the same transcript. For example, 2 different miR-
NAs may target a single mRNA at 2 different locations such as
coding sequence and 3′ UTR. In more detail, we merge the signif-
icantly overlapping alignments based on the reference mapping
locations to generate so-called ”expressed loci.” A single tran-
script may have multiple such expressed loci. For an alignment
to merge into an existing expressed locus, both the alignment
and the locus must reciprocally overlap >70% (default value) in
length.

While this approach works well with interaction sites that
have a low to medium coverage, it might fail in the case of sites
with high coverage because the likelihood of finding 2 align-
ments with 70% overlap at random increases. For this purpose,
we have an alternative merging mechanism using blockbuster

[29]. blockbuster defines the blocks of alignments based on a
Gaussian approximation of the read coverage. Subsequently on
the basis of the -distance parameter, it places adjacent read
blocks into clusters. However, we ignore this cluster informa-
tion and work further on the block level. We merge any overlap-
ping blocks to define potential interaction loci. This approach is
thus similar to (but also simpler than) the one introduced and
successfully applied for cross-linking immunoprecipitation se-
quencing (CLIP-seq) peak calling in Holmqvist et al. [30].

Merge read positions to define chimeric arms
In this step, we identify all chimeric and non-chimeric (sin-
gleton) aligned reads. A chimeric read has ≥2 non-overlapping
portions on the read mapped to distinct reference loci. If a se-
quenced read is chimeric and it is uniquely mapped to the refer-
ence, then we have ≤2 alignments each belonging to 1 chimeric
arm. If a sequenced read is a singleton and mapped uniquely,
then we have maximally 1 alignment. We call each aligned por-
tion of the read a ”read segment.” In later steps, during quan-
tification, a singleton read will be treated as 1 read whereas a
chimeric read will be treated as 2 (1 for each segment) separate
reads. Hence it is crucial to define the chimeric split points of
the reads. A chimeric split point can be identified by its non-
overlapping segments. Owing to local alignment and repeti-
tive parts on the reference sequences, some overlapping seg-
ments multi-map with few bases shifted. Considering each such
highly conserved read segment separately penalizes the overall
read segment contribution in quantification. Hence, we further
merge read segments that overlap ≥70% (default value) of their
length into a single segment. In theory, there are only 2 inter-
acting read segments because there are maximally 2 interact-
ing RNA fragments captured in the interactome experiments.
Owing to sensitive alignment settings, some reads also result
in >2 segments. After a subsequent quantification step, only
the 2 most probable chimeric arms will be considered for each
read.
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Building common read loci

There are cases where read segments map to the gene families
or paralogous loci sharing the common sequences. It is huge a
challenge to find a decent annotation that carries gene family
or paralog information. It was shown by Robert and Watson [31]
that grouping of genes based on multi-mapped reads resulted
in groups of gene families and analyzing the RNA-seq data at
this group level was biologically relevant. Similarly, we propose a
method to group multi-mapped loci that does not depend on any
annotation. If 2 loci share a large portion of their multi-mapped
reads, their sequences tend to be very similar or originate from
the same gene families or paralogs or have similar pathways
(see Results and Discussion). Hence, we group expressed loci
into common read loci (CRL) if they share a significant number
of multi-mapped reads. Here we use single-linkage clustering
with the Jaccard index to measure the similarity between the ex-
pressed loci. To merge an expressed locus into an existing CRL,
the Jaccard index of sets of reads between that locus and the CRL
should be greater than a user-defined threshold (default of 0.7).
We merge the loci in order by size. If a locus failed to share a sig-
nificant portion of multi-mapped reads with any other CRL, then
it gets its own CRL. If the reads were mapped to transcriptome
and the user does not provide any gene annotation file, CRLs are
well capable of grouping multi-mapped reads that map to gene
isoforms. See Algorithm 1 for CRL creation pseudo code.

Result: List of CRLs
C ← {};
for L i ∈ L do

match ← F alse;
for Ck ∈ C do

if Ck∩L i
Ck∪L i

≥ θ then
Ck ← Ck ∪ L i ;
match ← True

end

end
if not match then⋃{C, L i };
end

end
Algorithm 1: CRL creation from expressed loci. C is the list of
CRLs; L is the list of expressed loci; L i is the set of read seg-
ments of an expressed locus i and Ck is the set of read seg-
ments of a CRL k.

Quantification of the CRLs

To score the mapped chimeric reads, we first need to esti-
mate the expression of the CRLs by quantification. Quantifica-
tion helps to assess the true origin of a read segment in the
case of multi-mapping. It has been shown that proper quan-
tification of multi-mapped reads led to the discovery of novel
protein-RNA interactions from CLIP-seq data [32, 33]. A study on
RNA-seq data revealed that the expression of genes with multi-
mapped reads was underestimated by common quantification
methods [31]. There exist comprehensive studies on methods
[34, 35] and metrics [36] for quantification of RNA-seq data, but
direct application of these methods to our data is not possible
for the following reasons. First, it is hard to supply our pre-built
locus-CRL relations to the quantification tools on the fly. Sec-
ond, unlike our short reference loci, the reference RNAs in RNA-
seq have multiple exons and are much longer. In RNA-seq, of-

ten the quantification is done at the isoform level, where ex-
ons that are unique to that isoform help to resolve the multi-
mapping by estimating the total maximum likelihood for that
isoform. But in interactome data, there is only a part of the in-
teracting exons that is captured and the rest is missing. If this
interacting part of an exon is shared among the isoforms, the
read segments mapped are still called multi-mapped and each
transcript gets an equal share from the read segment. There-
fore we implemented an approach to quantify the CRLs based on
the expectation-maximization (EM) algorithm. In this quantifi-
cation, all multi-mapped reads that map to different expressed
loci of a CRL are considered as uniquely mapped to that CRL.

Let S be the set of all read segments with N = |S| and C be the
set of all CRLs with K = |C|. We follow Xing et al. [37] in the an-
notation, where we estimate the CRL abundance by determin-
ing the likelihood ρc = Pr[s ∈ c] that a read segment s actually
stemmed from CRL c. We denote with ρ the vector of all ρc. Note
that when the CRLs have a similar length as in our case, length
normalization can be omitted; i.e., ρc are then direct estimates
for CRL abundances. In the case of multiple mapping, we define
2 indicator variable matrices to model the read segment selec-
tion process. We have an N × K indicator matrix Z = (zs,c) s ∈ S

c ∈ C
with

zs,c =
{

1 if read segment s is from CRL c
0 else

However, this is not directly observable in the case that the
reads map to different CRLs. This can be overcome by introduc-
ing another matrix Y = (ys,c) s ∈ S

c ∈ C

with

ys,c =
{

1 if read segment s maps to CRL c
0 else

Note that we have in each row of Z exactly 1 entry with 1,
whereas in Y we can have several such entries. Furthermore, ys,c

= 0 implies zs,c = 0. We call Z the committed categorization and
Y the uncommitted categorization. In the case of multiple map-
pings, we have many different Z-matrices that are compatible
with Y (meaning that each row in Z has sum 1, and ys,c = 0 im-
plies zs,c = 0) and are unobservable. Then, the likelihood of the
observation (i.e., read segments) L(ρ) is defined as follows:

L(ρ) =
∏

s

∑
c

ys,cρc .

However, this maximum likelihood solution for L(ρ) cannot be
obtained in closed form. Hence, we apply the following EM algo-
rithm to determine the maximal likelihood estimates ρ̂.

E-Step
Let ρ(t) be the vector of abundance estimates ρ

(t)
c in round t of the

EM algorithm. The E-Step consists of the determination of the
expected values for the hidden variables:

E
[
zs,c | Y, ρ(t)

]
= Pr

(
zs,c = 1 | ρ(t), Y

)

= ρ
(t)
c∑

c′ ys,c′ ρ
(t)
c′

. (1)
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Note that we are interested not only in determining the abun-
dances of the CRLs but also in the likelihood that a read segment
s is from a CRL c, i.e., in Pr(zs,c = 1 | ρ̂, Y), for which we can use
the values calculated in equation (1) in the last E-Step of the EM
algorithm. From these likelihoods, we can calculate the proba-
bility Pr[(s, s′) ∈ c↔c′] that a chimeric read ..s..s′.. is an interaction
between CRLs c and c′:

Pr[(s, s′) ∈ c ↔ c′] = Pr(zs,c = 1 | ρ̂, Y)Pr(zs′,c′ = 1 | ρ̂, Y).

Note that the relative abundance of the transcript does not in-
fluence this probability because we consider only the read seg-
ment s (respectively s′) and

∑
c ys,cPr(zs,c = 1 | ρ̂, Y) = 1 [respec-

tively
∑

c ys′,cPr(zs′,c = 1 | ρ̂, Y) = 1].

M-Step
The M-Step is simply the maximum likelihood estimate, given
the hidden values z:

ρ
(t+1)
c =

∑
s z(t+1)

s,c

N
. (2)

We repeat the E and M steps until the sum of differences be-
tween the relative abundances of CRLs in 2 consecutive itera-
tions is not higher than a user-defined value ε, i.e.,

∑K
c=1 |ρ(t+1)

c −
ρt

c | ≤ ε. The default value for ε that we use is 1e−5. The expression
levels of the CRLs are reported in transcripts per million (TPM).
Calculation of TPM is explained in Supplementary Section S3.

Extraction and hybridization of chimeric loci

In this final step, we extract the 2 most probable chimeric arms
for each chimeric read along with their alignment and sequence
information. If a GTF file is provided, we annotate the interact-
ing regions with gene IDs, symbols, biotypes, and so forth. For
protein-coding genes, the biotypes are further categorized into 5′

UTR, coding sequence, and 3′ UTR. For hybridization of chimeric
arms we use IntaRNA [38]. Occasionally, the real interaction is
in the vicinity of the sequenced arms. For this reason, we hy-
bridize the reference loci sequences from the output instead
of the aligned read sequences. These reference loci are merged
from multiple overlapping alignments and already contain some
context of mapped arm locations.

Visualization framework

Motivation
ChiRAViz visualizer is developed in JavaScript (JS) to summarize,
filter, and visualize the output of ChiRA. The output of ChiRA is
a tabular file with each record containing interacting positions
of a read on the reference with their annotation information (in
case GTF was provided during the analysis) such as gene IDs, bio-
types, gene symbols, alignment information, and so fort. Each
such record contains >30 columns, and depending on the library
size and the complexity of the interactome there can be mil-
lions of records in a single output file. Working with such large
data is hard, especially extracting elements of significant inter-
actions from their native tabular form. Therefore, to summarize
the complete data, a visualizer is needed where information can
be filtered and shown in the form of various charts that are eas-
ier to understand.

Datatype
The visualizer is integrated into Galaxy as a native visualization
for chira.sqlite datatype. Using a database allows SQLite queries
to be formulated and executed to fetch a subset of data by ap-
plying filters on its columns.

User Interface
The user interface (UI) of the visualizer is created using JS and
multiple JS-related packages such as UnderscoreJS, Bootstrap,
and jQuery. UnderscoreJS methods are used for better manipu-
lation of JS arrays and dictionaries. Bootstrap is used for styling
the UI and jQuery for document object model manipulation and
asynchronous methods to fetch data from the database file.

Results and Discussion
Data

We applied ChiRA on a custom-made benchmark dataset to as-
sess the performance, and on published RNA-RNA interactome
and structurome datasets to validate the approach and show-
case the functionality.

Benchmark data
Based on the benchmark data provided by the CLAN publication,
we produced our benchmark data to test the performance of
ChiRA. The reads were unchanged, but we modified the reference
sequences. The reads imitate CLASH experimental data. Each
read is a direct fusion of (sub)sequences of human hg38 miR-
Base [39] mature miRNAs and a random TargetScan [40] target
sequence (i.e., the target sequence is not necessarily a true target
of this miRNA). The reads are in FASTA format and contain 1 mil-
lion reads per sample. There are 5 different samples of simulated
chimeric reads, each containing a specific chimeric arm length
(10, 12, 15, 18, and 20). These datasets are called ”noInsert” data.
There is a second set of data with the same arm lengths but a
random 5-nucleotide sequence inserted either between or at the
ends of the arms of each chimeric read. This dataset is called
”Insert” data. In both cases, if the reference miRNA or reference
TargetScan target is shorter than the arm length, the whole ref-
erence sequence was used.

As a reference database, we used miRBase mature miRNAs
together with TargetScan target sites. The reference sequences
used in the CLAN publication were very short in length, with
a mean length of 21 nt for miRNAs and 14 nt for target refer-
ence sequences. Using those short TargetScan targets only as
a reference is not realistic. Moreover, the TargetScan target se-
quences were predicted by a computational approach and gen-
erally not used as a reference database. With very short target
sequences it is fairly easy for the aligners to map the reads to
exact locations uniquely. Adding some context poses an addi-
tional challenge to the aligners and results in multi- or wrong
alignments. Hence, to test the potential of our workflow on more
complicated and near real-world reference sequences, we mod-
ified the target reference data as follows. First, we sorted all the
target genomic regions and then extended each region until the
next target region was within a 200-nt range. In the end, we
extracted the sequences of these positions. This procedure re-
sults in target sequences of various lengths. Similar to the real
reference database, there is also a fair chance of having mul-
tiple target sites on a single reference sequence. In the orig-
inal CLAN benchmark data, there were duplicate reference se-
quences. These were coming from the same duplicated targets
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of different miRNAs. All these duplicated reference sequences
have been removed from our benchmark data.

Published data
To show the functionality of ChiRA, we applied ChiRA also on
published datasets. We analyzed human miRNA interactome
data from CLASH and mouse interactome data from CLEAR-
CLIP protocols. For RNA-RNA interactome and structurome data,
we used polyA enriched SPLASH samples from lymphoblastoid
cells, human embryonic stem cells (ES), and human retinoic acid
differentiated cells, as well as mouse ES and human HEK293T
samples from PARIS protocol. For CLASH and CLEAR-CLIP we
built the reference databases as explained in the methods from
their respective articles. For SPLASH and PARIS datasets we used
the complementary DNA sequences of hg38 and mm10 genome
builds from Ensembl revision 100. A summary of published data
and their processing is provided in the Supplementary Section
S2.

Performance on the benchmark data

We chose the same terminology as in the CLAN article to cate-
gorize the reads on the basis of alignment types. An ”arm” is
an arm of chimeric read segments, and an ”agreed arm” is an
arm that has an alignment with ≥80% overlap on correct refer-
ence location. The categories are defined as follows: ”perfect”:
has both uniquely mapped agreed arms; ”partial multi”: has 1
uniquely mapped agreed arm and 1 multi-mapped agreed arm;
”both multi”: both arms are multi-mapped agreed arms; ”par-
tial wrong”: has 1 uniquely mapped agreed arm and 1 wrongly
mapped; ”both wrong”: both arms are wrongly mapped; ”par-
tial miss”: has 1 mapped and 1 unmapped arm; ”both miss”:
both arms are unmapped. We carried out 2 separate runs of
ChiRA using BWA-MEM and CLAN aligners. Figs. 2 and 3 show their
respective performance. Each bar in the plot represents the re-
sult of 1 of the 2 modes ”naive” or ”chira.” The naive mode
involves running the alignment tool (BWA-MEM or CLAN depend-
ing on the run) on the single reference database obtained by
concatenating both mature miRNAs and TargetScan targets to-
gether, resulting in a gapped alignment. The reads are then di-
rectly categorized into 1 of the 7 aforementioned categories.
When using BWA-MEM in naive mode, we considered only the
longest alignment for each arm. In cases of multiple longest
alignments, we considered all of them. In the chira mode, the
ChiRA workflow with the corresponding aligner was used to ob-
tain the results. In this mode, we used a split reference, i.e.,
the 2 separate reference databases for mature miRNAs and tar-
get sequences. We also enabled CRL creation while quantifying.
The bars are then grouped horizontally on the basis of the arm
lengths and then furthermore grouped by whether the reads
contain inserts.

The most challenging cases are with arm lengths of 10 and
12 nt. Being very short sequences, these cases tend to result
in a lot more multi-mappings than the others. In naive mode,
for an arm length of 10 nt there are a negligible number of per-
fect reads. The chira mode could detect some perfect reads, but
they are still <10% in any case. Considering the short length
of the arms, it is clear that these generally map to multiple or
wrong locations. For an arm length of 12 nt, there is >2.5-fold
increment in perfect reads from naive to chira mode. At this
arm length there is still not an acceptable number of perfect
reads except for the CLAN aligner on noInsert data. The percent-
ages of perfect reads are consistently ∼70% for arms of lengths
≥15 nt for both the aligners in naive mode. This observation

indicates that the sequenced RNA fragments must be ≥15 nt
long to be uniquely identified at an acceptable rate. Despite be-
ing a chimeric read aligner, CLAN produced a significant amount
of ambiguous partial multi and both multi alignments in naive
mode (Fig. 3). ChiRA sensitive mapping combined with CRL quan-
tification is good at picking the correct alignments. For this rea-
son, in chira mode there are ≥10% more perfect reads in all sam-
ples.

There is a decreasing trend in perfect reads for CLAN-based
results on reads of lengths 15–20 nt with inserts, whereas it is
more stable for BWA-MEM–based results. As this trend can also
be seen in naive mode, it is likely more of a flaw of the aligner
than ChiRA processing. For BWA-MEM–based alignments we con-
sider an arm to be unmapped if it has no alignment on the sense
strand. For this reason, there are many reads in the partial miss
and both miss categories for BWA-MEM–based results even though
there might be wrong alignments on the anti-sense strand.

For reads with shorter arms, even with very sensitive align-
ment settings, both aligners struggled to map to correct loca-
tions. Hence, we suggest tweaking the alignment settings of the
aligners to capture read segments of ≥15 nt long. Shorter align-
ments often tend to be from ambiguous or wrong locations and
eventually lead to false-positive interactions.

Inferring CRL significance from published data

For the analysis of all published datasets, we used BWA-MEM to
map the reads to reference databases and enabled CRL creation.
From the process of creating CRLs, it is noticeable that the loci
of a CRL share a common reference sequence. In this section
we show that CRLs are not just random groups but have high
sequence identity and that genes associated with the loci of a
CRL implicate common annotations and functions.

CRLs and sequence identity
To determine the extent of the similarity among the CRL mem-
ber loci, we computed the sequence identities. Each locus within
a CRL is unique and does not contain any duplicate regions from
gene isoforms. While running the workflow we used the default
value of 0.7 for the option --crl share threshold. With this op-
tion loci having ≥70% of reads in common are grouped into a
CRL. First, for each CRL we computed all pairwise global align-
ments among the loci using the Biopython module pairwise2

[41] with default alignment parameters. With no gap or mis-
match penalties in default parameters, we essentially counted
the number of matching bases. We then calculated the average
of pairwise sequence identities (APSI) per CRL and a final mean
per sample overall CRLs normalized by the CRL size. Pairwise
sequence identity is the ratio of the alignment score to the av-
erage sequence length of the sequences. As a baseline, for each
CRL size, we randomly sampled loci and computed the APSIs.

Fig. 4 shows the box plots of the APSIs over all the samples
in each sequencing protocol. Notably, with a default value of 0.7
for CRL share, we see that all the protocols have a median of
≥90% APSI s, whereas the APSIs for randomly sampled loci are
only ∼50%. This similarity among the CRL loci is compelling con-
sidering that the global alignment is used. It is also consistent
across different sequencing protocols.

Biological relevance of CRLs
Robert and Watson [31] showed for a handful of genes that
the groups of genes that are consistently multi-mapped are
from gene families. Similarly, here on a large scale, we analyzed
whether the genes that constitute the CRLs share biologically
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Figure 2: Performance of BWA-MEM–based ChiRA compared to naive approach on benchmark data. ChiRA-based results have ≥10% more perfect hits compared to naive
mode for any arm length.

Figure 3: Performance of CLAN-based ChiRA compared to naive approach on benchmark data. Being a chimeric read aligner CLAN produced fewer wrong hits and more
multi-mapped hits that contain the true alignment. CRL-based ChiRA could pick the correct reference from the multi-mapped hits for any arm length. Note that
although there are more multi-hits (green) in naive mode compared to chira mode, the origin of these reads is still uncertain.

relevant information. We created an annotation database by ex-
tracting Rfam family, Ensembl protein family, and KEGG path-
way information from Ensembl biomart [42]. We excluded all the
CRLs from the analysis that do not contain ≥2 annotated genes
in the database. For each CRL, we counted the number of genes
with the same protein family or the same KEGG pathway or en-
zyme ID. We then calculated the ratio of this number to the total
number of genes per CRL. In the end, we computed a weighted
average over all the samples for each experimental protocol. As
a control for each CRL, we randomly sampled the same number
of genes out of the databases and calculated the percentage of
those genes sharing a protein family or KEGG ID. Fig. 5 shows
the box plots for the above explained values for CRL genes and
randomly sampled genes for each experimental protocol. In all
cases, it is evident that for most of the CRLs gene constitution

is explainable compared to random gene constitution. Although
not all of the CRLs have explainable sources (e.g., CLEAR-CLIP
and SPLASH), overall the genes from a CRL more often belong to
the same gene family or KEGG pathway than randomly sampled
genes. Note that the CRLs are built from the short loci, which are
just tiny portions of the genes. But here we are evaluating them
at the level of the whole gene to which they belong. Although
the loci are highly similar, the gene-level assessment might not
necessarily explain all the CRLs.

Sensitive chimeric read detection using ChiRA

Finally, we tested the sensitivity of ChiRA in detecting interac-
tions by analyzing all CLASH and CLEAR-CLIP mouse datasets
and subsequently comparing them with the published inter-
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Figure 4: Box plots showing the average pairwise sequence identities (APSIs)
among the member loci of the CRLs and those calculated from randomly sam-

pled loci for each sequencing protocol. The loci sequences belonging to the CRLs
show higher median of APSI than random sampling.

Figure 5: Validation of the CRLs from the different experimental protocols com-
paring the percentage of genes belonging to the CRLs that belong to the same
protein family or have a similar KEGG identifier vs those when the genes were
randomly sampled. In all datasets, it is clear that the genes constituting CRLs

are found to be related in at least one of the annotation databases.

actions. To be consistent with the published interactions, for
CLASH we considered miRNA IDs with their target transcript
positions and for CLEAR-CLIP miRNA IDs with their target ge-
nomic positions. Because we used the transcriptomic database
for mapping, we ignored the intronic and intergenic target sites
from CLEAR-CLIP published interactions. From ChiRA output, we
selected chimeric reads with a final probability of ≥0.5 and the
detected interacting loci that could be hybridized by IntaRNA.

Figure 6: Number of interactions that were detected by ChiRA compared to pub-

lished interactions in CLASH datasets.

Figure 7: Number of interactions that were detected by ChiRA compared to pub-
lished interactions in CLEAR-CLIP datasets.

Figs. 6 and 7 show Venn diagrams intersecting the published in-
teractions and interactions predicted by ChiRA for the CLASH
and CLEAR-CLIP, datasets respectively. There is a large overlap
of 83% with CLASH and 73% with CLEAR-CLIP published inter-
actions despite using different aligners. Compared to the pub-
lished dataset(s), ChiRA on average detects 3 times more inter-
actions. Given our analysis of benchmark data (Figs. 2 and 3),
and supported by IntaRNA hybridization of interacting loci, we
assume that the majority of these detected interactions are true-
positive results.

Visualization of chimeric reads

The visualization has 3 views. The first page, shown in Fig. 8A,
displays numerous plots to summarize the complete data. Two
pie charts show the RNA biotype distribution of interacting tran-
scripts. Another pie chart shows the distribution of interactions.
Moreover, there is a bar plot that lists the gene symbols of top in-
teracting transcripts sorted in decreasing order of their respec-
tive loci expressions. At the top of the page, there are 2 select
boxes for choosing the interacting RNA types. When an interact-
ing pair is chosen from these select boxes, it redirects to the sec-
ond page (Fig. 8B), which shows all the interactions that involve
these selected RNA biotypes. On the left, there is a list of unique
combinations of gene symbols that represent unique RNA-RNA
interactions. At the top of this page, there are several filters such
as search and sort, which facilitate fetching data in the desired
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Figure 8: ChiRAViz Galaxy visualization. (A) The home page of the visualization. The plots on this page summarize the RNA biotypes of left and right chimeric arms,
types of interactions, and highly abundant genes within the sample. (B) The second page shows the interactions of selected biotypes. On this page, users can further

search, sort, and filter the interactions and obtain a deep summary of filtered interactions. (C) Interaction information page that shows such useful information as
gene symbol, transcript IDs, gene IDs, expression level, biotypes, a depiction of interaction reference regions at transcript level, an illustration of the aligned read
positions, and IntaRNA predicted hybrid.

way. All or some of these entries can be selected together and a
summary can be seen in the form of pie charts, histograms, and
transcript-level alignment positions. The pie charts show distri-
butions of the gene symbols and biotypes, and the histograms
show the distributions of alignment scores and their loci expres-
sions. The alignment regions on each interacting transcript are
also depicted with the start, end, and length of the alignment.
All the selected interactions can be exported as a tab-separated
value file to the local computer. The pagination shown at the
top left corner enables navigation through all the interactions
and displays a small number of interactions (50) at a time, which
simplifies the UI. All the unique reads associated with each in-
teraction can be seen by clicking on the ”+” icon adjacent to the
interactions themselves. Clicking on any of these single records
displays the interaction summary page, as shown in Fig. 8C. This
page shows all the information related to interacting partners
such as gene ID, gene symbol, biotype, alignment start and end

positions, transcript length, CIGAR string of the read alignment,
and the expression of its corresponding locus in TPM. If there is
an IntaRNA predicted hybrid, it is shown at the bottom of this
page.

Integration into Galaxy framework and tutorial

Galaxy [25] has been one of the most popular resources for re-
producible research. It allows easy execution of tools and com-
plex workflows on a web-based graphical user interface. With
public Galaxy servers, users also get access to huge comput-
ing resources. We integrated all of our tools intoGalaxy. The
whole Python suite is available through Bioconda [43] and Bio-
Containers [44] for easy installation. Galaxy Training Network
(GTN) is a Galaxy community aimed at developing analysis-
specific training material [45]. We developed training material
for RNA-RNA interactome data analysis that includes a step-by-
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Figure 9: ChiRA Galaxy workflow. The workflow takes the FASTQ files that contain raw sequencing reads, process them, and produces a tabular and an SQLite database
of interactions that are ready to be visualized by ChiRAViz.

step guide to hands-on Galaxy analysis workflows with exam-
ple datasets, ready-to-use Galaxy workflows, and an example
Galaxy history. The training material also deals with the visual-
ization framework. Being nicely coupled into the Galaxy ecosys-
tem, ChiRA is now part of RNA workbench [46], a large compre-
hensive Galaxy-based web server for RNA-based research. All
the data and ChiRA analysis discussed in this article are available
through RNA workbench. Fig. 9 shows the ChiRA Galaxy work-
flow that uses split reference.

Conclusion

In this article, we presented a comprehensive solution for
RNA-RNA interactome and RNA structurome data analysis.
Our method of creating CRLs from loci with consistent multi-
mapped reads and quantification proved to rescue more reads
from benchmark data. We also showed that the loci within a CRL
have high sequence identities and the genes that constitute the
CRLs originate from the same protein families or share common
functional pathways, revealing that it is sensible to group con-
sistently multi-mapped loci into CRLs. To our knowledge, ChiRA
along with ChiRAViz is the only tool suite that makes analysis of
RNA-interactome and structurome datasets easily accessible to
users through Bioconda and Galaxy.

Availability of Source Code and Requirements
� Project name: ChiRA
� Project home page: https://github.com/pavanvidem/chira
� Visualization: https://github.com/galaxyproject/galaxy/tree

/dev/config/plugins/visualizations/chiraviz
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: Anaconda
� Installation: conda install -c conda-forge -c bioconda

chira
� License: GNU General Public License Version 3
� Galaxy tool suite: https://github.com/galaxyproject/tools-iuc

/tree/master/tools/chira
� Galaxy training tutorial: https://galaxyproject.github.io/trai

ning-material/topics/transcriptomics/tutorials/rna-interac
tome/tutorial.html

� Galaxy workflows:
https://rna.usegalaxy.eu/u/videmp/w/rna-rna-interactome-
analysis (using BWA-MEM)
https://rna.usegalaxy.eu/u/videmp/w/rna-rna-interactome-
analysis-using-clan (using CLAN)

� BiotoolsID: chira
� RRID:SCR 019219

Data Availability

The benchmark data that were used to evaluate the perfor-
mance of ChiRA can be obtained from Zenodo [47]. Snapshots of
our code and other data are openly available in the GigaScience
repository, GigaDB [48].

Additional Files

Supplementary Section S2. Data and pre-processing.
Supplementary Section S3. Calculation of Transcripts per Mil-
lion.
Supplementary Section S4. Data availability.
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BAM: Binary sequence Alignment/Map; BED: Browser Extensible
Data; BWA: Burrows-Wheeler Aligner; CIGAR: Compact Idiosyn-
cratic Gapped Alignment Report; CLASH: Cross-linking Ligation
and Sequencing of Hybrids; CLIP-seq: cross-linking immunopre-
cipitation sequencing; CRL: common read loci; EM: expectation-
maximization; GTF: Gene Transfer Format; JS: JavaScript; KEGG:
Kyoto Encylopedia of Genes and Genomes; LIGR-Seq: ligation
of interacting RNA followed by high-throughput sequencing;
miRNA: microRNA; ncRNA: non-coding RNA; nt: nucleotides;
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pairwise sequence identities; SAM: Sequence Alignment/Map;
SPLASH: Sequencing of Psoralen crosslinked, Ligated, and Se-
lected Hybrids; UI: user interface; UTR: untranslated region.
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