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Abstract

Background: Cross-linking and immunoprecipitation followed by next-generation sequencing (CLIP-seq) is the
state-of-the-art technique used to experimentally determine transcriptome-wide binding sites of RNA-binding proteins
(RBPs). However, it relies on gene expression, which can be highly variable between conditions and thus cannot provide a
complete picture of the RBP binding landscape. This creates a demand for computational methods to predict missing
binding sites. Although there exist various methods using traditional machine learning and lately also deep learning, we
encountered several problems: many of these are not well documented or maintained, making them difficult to install and
use, or are not even available. In addition, there can be efficiency issues, as well as little flexibility regarding options or
supported features. Results: Here, we present RNAProt, an efficient and feature-rich computational RBP binding site
prediction framework based on recurrent neural networks. We compare RNAProt with 1 traditional machine learning
approach and 2 deep-learning methods, demonstrating its state-of-the-art predictive performance and better run time
efficiency. We further show that its implemented visualizations capture known binding preferences and thus can help to
understand what is learned. Since RNAProt supports various additional features (including user-defined features, which no
other tool offers), we also present their influence on benchmark set performance. Finally, we show the benefits of
incorporating additional features, specifically structure information, when learning the binding sites of an hairpin loop
binding RBP. Conclusions: RNAProt provides a complete framework for RBP binding site predictions, from data set
generation over model training to the evaluation of binding preferences and prediction. It offers state-of-the-art predictive
performance, as well as superior run time efficiency, while at the same time supporting more features and input types than
any other tool available so far. RNAProt is easy to install and use, comes with comprehensive documentation, and is
accompanied by informative statistics and visualizations. All this makes RNAProt a valuable tool to apply in future RBP
binding site research.
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Introduction

RNA-binding proteins (RBPs) regulate many vital steps in the
RNA life cycle, such as splicing, transport, stability, and trans-
lation [1]. Recent studies suggest there are more than 2,000 hu-

man RBPs, including hundreds of unconventional RBPs, such
as those lacking known RNA-binding domains [2–4]. Numerous
RBPs have been implicated in diseases like cancer, neurodegen-
eration, and genetic disorders [5–7], lending urgency characteriz-
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2 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

ing their functions and shedding light on their complex cellular
interplay.

An important step to understanding RBP functions is to
identify the precise RBP binding locations on regulated RNAs.
In this regard, CLIP-seq (cross-linking and immunoprecipi-
tation followed by next-generation sequencing) [8], together
with its popular modifications photoactivatable-ribonucleoside-
enhanced cross-linking and immunoprecipitation (PAR-CLIP) [9],
individual-nucleotide resolution UV cross-linking and immuno-
precipitation (iCLIP) [10], and enhanced CLIP (eCLIP) [11], has be-
come the state-of-the-art technique used to experimentally de-
termine transcriptome-wide binding sites of RBPs. A CLIP-seq
experiment for a specific RBP results in a library of reads bound
and protected by the RBP, making it possible to deduce its bind-
ing sites by mapping the reads back to the respective reference
genome or transcriptome. In practice, a computational analysis
of CLIP-seq data has to be adapted for each CLIP-seq protocol
[12]. Within the analysis, arguably the most critical part is the
process of peak calling: that is, inferring RBP binding sites from
the mapped read profiles. Among the many existing peak callers,
some popular tools are Piranha [13], CLIPper [14], and PureCLIP
[15].

While peak calling is essential to separate authentic binding
sites from unspecific interactions and thus reduce the false pos-
itive rate, it cannot solve the problem of expression dependency.
In order to detect RBP binding sites by CLIP-seq, the target RNA
has to be expressed at a certain level in the experiment. Since
gene expression naturally varies between conditions, CLIP-seq
data cannot be used directly to make condition-independent
binding assumptions on a transcriptome-wide scale. Doing so
would only increase the false negative rate: for example, mark-
ing all regions not covered by CLIP-seq reads as non-binding,
while in fact one cannot tell due to the lack of expression in-
formation. Moreover, expression variation is especially high for
long non-coding RNAs, an abundant class of non-coding RNAs
gaining more and more attention due to their diverse cellular
roles [16]. It is therefore of great importance to infer RBP binding
characteristics from CLIP-seq data in order to predict missing
binding sites. To give an example, Ferrarese et al. [17] investi-
gated the role of the splicing factor Polypyrimidine tract-binding
protein 1 (PTBP1) in differential splicing of the tumor suppressor
gene Annexin A1 (ANXA7) in glioblastoma. Despite strong bio-
logical evidence for PTBP1 directly binding ANXA7, no binding
site was found in a publicly available CLIP-seq data set for PTBP1.
Instead, only a computational analysis was capable to detect and
correctly localize the presence of potential binding sites, which
were then experimentally validated.

Over the years, many approaches for RBP binding site predic-
tion have been presented, from simple sequence motif searches
to more sophisticated methods incorporating classical machine
learning and, lately, also deep learning. Some popular earlier
methods include RNAcontext [18] and GraphProt [19], which
can both incorporate RNA sequence and structure information
into their predictive models. While RNAcontext utilizes a se-
quence and structure motif model, GraphProt uses a graph ker-
nel coupled with Support Vector Machine, showing improved
performance over motif-based techniques. From 2015 on, var-
ious deep learning–based methods have been proposed, start-
ing with DeepBind [20], which uses sequence information to
train a convolutional neural network (CNN). Subsequent meth-
ods largely built upon this methodology, often using CNNs in
combination with recurrent neural networks (RNNs) [21]. Some
of them also incorporate additional features, usually special-
izing in a specific feature, such as structure, evolutionary con-

servation, or region type information, to demonstrate its bene-
fits. While these methods can certainly provide state-of-the-art
predictive performance, we encountered several issues: many
lack proper documentation, are not maintained, or are not even
available, even though they are presented as prediction tools in
the original papers. Moreover, efficiency in terms of run time can
be a problem, as well as restricted options regarding data pro-
cessing and, in general, only a few supported features.

Here, we present RNAProt, a computational RBP binding site
prediction framework based on RNNs that takes care of the de-
scribed issues: RNAProt provides both state-of-the-art perfor-
mance and efficient run times. It comes with comprehensive
documentation and is easy to install via Conda. The availabil-
ity of a Conda package, which no other related deep-learning
tool offers to our knowledge, also allows for easy integration into
larger workflows, such as Snakemake pipelines [22] or inside
the Galaxy framework [23]. RNAProt offers various position-wise
features on top of the sequence information, such as secondary
structure, conservation scores, or region annotations, which can
also be user supplied. Through its use of an RNN-based archi-
tecture, RNAProt natively supports input sequences of variable
lengths. In contrast, CNNs are constrained to fixed-sized inputs
that, for example, exclude the direct usage of variable-sized in-
puts, usually defined by peak callers. Moreover, RNAProt is cur-
rently the most flexible method with regard to the support of
input data types: apart from sequences and genomic regions, it
can also handle transcript regions, providing automatic feature
annotations for all 3 types. Comprehensive statistics and visu-
alizations are provided as well in the form of HTML reports, site
profiles, and logos. In addition, the short run times allow for on-
the-fly model training to quickly test hypotheses regarding data
set, parameter, or feature choices.

Methods
The RNAProt framework

RNAProt utilizes RBP binding sites identified by CLIP-seq and
related protocols to train an RNN-based model, which is then
used to predict new binding sites on given input RNA sequences.
Fig. 1 illustrates the RNAProt framework and its general work-
flow. RNAProt accepts RBP binding sites in FASTA or Browser Ex-
tensible Data (BED) formats. The latter also requires a genomic
sequence file (.2bit format) and a genomic annotations file (Gene
Transfer Format (GTF)).Compared to FASTA, genomes in binary
2bit format occupy less disk space, allow for faster sequence ex-
traction, and also store repeat region information, which can be
used as a feature. Binding sites can be supplied either as se-
quences, genomic regions, or aranscript regions (GTF file with
corresponding transcript annotation required). Additional in-
puts are available depending on the binding site input type, as
well as the selected features (see the “Supported features” sec-
tion).

RNAProt can be run in 5 different program modes: genera-
tion of training and prediction sets, model training and evalu-
ation, and model prediction (see the “Program modes” section).
Depending on the executed mode, various output files are gen-
erated. For the data set generation modes, HTML reports can be
output, which contain detailed statistics and visualizations re-
garding the positive, negative, or test data set. This way, for ex-
ample, one can easily compare the positive input set with the
generated negative set and spot possible similarities and differ-
ences. Reports include statistics on: site lengths, sequence com-
plexity, di-nucleotide distributions, k-mer statistics, target re-
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Uhl et al. 3

Figure 1: Overview of the RNAProt framework. The yellow boxes mark necessary framework inputs, the blue boxes mark the 5 program modes of RNAProt, and the

green boxes mark the framework outputs. Arrows show the dependencies between inputs, modes, and outputs.

gion biotype, and overlap statistics, as well as additional statis-
tics and visualizations for each selected feature. In the model
evaluation mode, sequence and additional feature logos are out-
put, as well as training site profiles for a subset of training sites
to illustrate binding preferences. In the model prediction mode,
whole site or moving window predictions are supported. In case
of moving windows, position-wise scoring profiles are calcu-
lated and peak regions and top-scoring windows are extracted
from the profiles. For a complete and up-to-date description,
please refer to the online documentation on GitHub [24].

Model architecture

RNAProt features an RNN-based model for binary classifica-
tion of input sequences, which can be further customized from
the command line or optimized using state-of-the-art hyperpa-
rameter optimization by Bayesian Optimization and Hyperband
(BOHB) [25]. RNN-based models are well suited to learn from lin-
ear sequence information: in particular to learn dependencies
between near or distant parts in a given sequence. This has been
demonstrated in a number of related tasks over the years, from
natural language processing to the analysis of time-series data
and biological sequences like DNA or RNA. The type of RNN net-
work used by RNAProt can be adjusted (Long Short-Term Mem-
ory [LSTM] [26] or Gated Recurrent Unit [27]), as can the numbers
of hidden and full connected layers and dimensions, use of bidi-
rectional RNN, or an embedding layer instead of 1-hot encoding
for the sequence feature. As the optimizer, RNAProt applies an

improved version of the Adam optimizer, termed AdamW [28].
RNAProt’s default hyperparameter setting was used to generate
all the results presented in this work: a batch size of 50, learning
rate of 0.001, weight decay of 0.0005, RNN model type of Gated
Recurrent Unit, number of RNN layers set as 1, RNN layer dimen-
sions set at 32, number of fully connected layers set as 1, dropout
rate of 0.5, and no sequence embedding.

Program modes

RNAProt is logically split into 5 different program modes:
training set generation (rnaprot gt), prediction set generation
(rnaprot gp), model training (rnaprot train), model evaluation
(rnaprot eval), and model prediction (rnaprot predict). Sepa-
rating data set generation from training or prediction has the
advantage that feature values of interest have to be calculated
or extracted only once (e.g., secondary structure, conservation
scores, region annotations). Since model training is fast, one can
then quickly train several models to assess which features or
settings in general work best and move on to predictions. In the
following we briefly introduce the mode functionalities.

Training set generation
This mode (rnaprot gt) is used to generate a training data set
from a given set of RBP binding sites, which can be sequences,
genomic regions, or transcript regions. In case sequences (FASTA
format) are given as input, negative training sequences can be
supplied or generated by k-nucleotide shuffling of the positive
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4 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

Table 1: RNAProts’s 3 supported input types (sequences, genomic
regions [Genomic], transcript regions [Transcript]) and the features
available for them

Input

Feature Sequences Genomic Transcript

structure YES YES YES
conservation scores NO YES YES
exon-intron regions NO YES NO
transcript regions NO YES YES
repeat regions NO YES YES
user-defined NO YES YES

input sequences. In case genomic or transcript regions (BED for-
mat) are given as input, negatives can be supplied or selected
randomly from gene or transcript regions containing positive
sites (i.e., RBP binding sites identified by CLIP-seq). In general,
we recommend supplying BED regions, as this allows RNAProt
to automatically generate a negative set by randomly sampling
sites from the genome or transcriptome. By default, negative
sites are sampled based on 2 criteria: (i) sampling only from
gene regions covered by positive sites; and (ii) no overlap with
any positive site. The number of generated negative sites can
be further specified, as can regions from which not to extract
them. Output site lengths can be of variable or fixed size, and
various filtering options are available to filter the sites by score,
sequence complexity, region, or length. Concerning site lengths,
RNAProt can train and predict on sequences of variable length
due to its solely RNN-based architecture. For CNN-based meth-
ods this is usually not the case (unless the method internally ap-
plies padding before training and predicting). To keep data sets
compatible with other tools, RNAProt therefore offers both vari-
able and fixed-size outputs. Depending on the input type (see
Table 1), different additional features can be selected for anno-
tating the positive and negative sites (see the “Supported fea-
tures” section for more details). An HTML report can be gen-
erated, providing statistics and visualizations to compare the
positive with the negative set. The whole training data set is
stored in a folder that forms the main input to the model training
mode.

Model training
After generating a training set, a model can be trained on the
data set in model training mode (rnaprot train). By default,
all features of the training set are used to train the model,
but specific features can be selected as well. Cross-validation
is supported to estimate generalization performance, as well
as learning curve plots and hyperparameter optimization us-
ing BOHB [25]. Unless cross-validation is specified, a model is
trained using the default hyperparameters (or if BOHB is en-
abled, using the optimized hyperparameters after BOHB has
finished) and output data are stored in a new folder, which
serves as input to the model evaluation and model prediction
modes.

Model evaluation
This mode (rnaprot eval) is used to visualize binding prefer-
ences of the model trained with rnaprot train. Sequence and
additional feature logos of various lengths can be output, as well
as training site profiles for a user-defined subset of training sites
(see “Visualization” section for more details).

Prediction set generation
The prediction set generation mode (rnaprot gp) resembles
rnaprot gt but, instead of generating a training set contain-
ing positives and negatives, it generates a prediction set from a
given set of sites or sequences. Note that the types of additional
features that can be added to the prediction set are dictated by
the types used to train the model. Its output folder forms the
input of rnaprot predict.

Model prediction
Model prediction mode (rnaprot predict) is used to predict
whole binding sites or peak regions and top-scoring windows
from sliding window profiles for a given set of sequences, ge-
nomic sites, or transcript sites. The prediction data set needs
to be generated by rnaprot gp beforehand, as does the model,
which needs to be trained through rnaprot train. Profiles of
top-scoring windows can also be plotted and the input sites on
which to predict can be specified.

Supported features

RNAProt supports the following position-wise features, which
can be utilized for training and prediction in addition to the se-
quence feature: secondary structure information (structural el-
ement probabilities), conservation scores (phastCons and phy-
loP), exon-intron annotation, transcript region annotation, and
repeat region annotation. In addition, it also accepts user-
defined region features (categorical or numerical; see documen-
tation on GitHub [24] for details and examples), which no other
tool so far offers. Table 1 lists the features available for each bind-
ing site input type.

Secondary structure information
RNAProt can include position-wise structure information, en-
coded as unpaired probabilities for different loop contexts (prob-
abilities for the nucleotide being paired or inside external, hair-
pin, internal, or multi loops). ViennaRNA’s RNAplfold [29] is used
with its sliding window approach, with user-definable parame-
ters (by default these are window size = 70, maximum base pair
span length = 50, and probabilities for regions of length u = 3).
Note that genomic or transcript input sites are automatically ex-
tended on both sides (by window size) to get the most accurate
structure predictions. This important feature is also not offered
by any related tool.

Conservation scores
RNAProt supports 2 scores measuring evolutionary conserva-
tion (phastCons and phyloP). Human conservation scores were
downloaded from the University of California Santa Cruz (UCSC)
Genome Browser website, using the phastCons and phyloP
scores generated from multiple sequence alignments of 99 ver-
tebrate genomes to the human genome (as described in the
GitHub manual [24]). RNAProt accepts scores in .bigWig format.
To assign conservation scores to transcript regions, transcript
regions are first mapped to the genome using the provided GTF
file.

Exon-intron annotation
Exon-intron annotation in the form of 1-hot encoded exon or
intron labels can also be added. Labels are assigned to each
input BED site position by overlapping the site with genomic
exon regions using BEDTools [30]. To unambiguously assign la-
bels, RNAProt by default uses the most prominent isoform for
each gene. The most prominent isoform for each gene gets se-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/8/giab054/6354214 by U

niversitäts-Frauenklinik user on 04 August 2022



Uhl et al. 5

lected through hierarchical filtering of the transcript informa-
tion present in the input GTF file (for the benchmark results we
used the Ensembl Genes 99 GRCh38.p13 version): given that the
transcript is part of the GENCODE basic gene set, RNAProt se-
lects transcripts based on their transcript support level (highest
priority) and by transcript length (longer isoform preferred). The
extracted isoform exons are then used for region type assign-
ment. Alternatively, all exons can be used for labeling. Note that
this feature is only available for genomic regions, as it is not in-
formative for transcript regions, which would contain only exon
labels. A user-defined isoform list can also be supplied, substi-
tuting the list of most prominent isoforms for annotation. Re-
gions not overlapping with introns or exons can also be labeled
separately (instead of labeled as intron).

Transcript region annotation
Similarly to the exon-intron annotation, binding regions can be
labeled based on their overlap with transcript regions. Labels are
assigned based on untranslated region (UTR) or coding region
(CDS) overlap (5’UTR, CDS, 3’UTR, None), by taking the isoform
information in the input GTF file. Again, the list of most promi-
nent isoforms is used for annotation or, alternatively, a list of
user-defined isoforms can be used. Additional annotation op-
tions include start and stop codon or transcript and exon border
labeling.

Repeat region annotation
Repeat region annotation can also be added analogously to other
region type annotations. This information is derived directly
from the genomic sequence file (in .2bit format, from the UCSC
website), where repeat regions identified by RepeatMasker and
Tandem Repeats Finder are stored in lowercase letters.

Visualization

To better understand the sequence or additional feature prefer-
ences of a model, RNAProt can plot logos and whole-site profiles.
Both show position-wise features for each position, and the pro-
file plots also include a saliency map track, plus a track that visu-
alizes the effects of single-position mutations (also known as in
silico mutagenesis) on the whole site score. Saliency maps visu-
alize the gradient with respect to the input for each sequence
position, thus showing the importance the trained model at-
tributes to each sequence position and also its influence on the
network output [31]. In contrast, in silico mutagenesis treats the
network as a black box, where the input sequence is mutated at
each position (3 mutations possible at each position, since there
are 3 non-wild-type nucleotides) and the mutated sequences are
scored by the network. For example, given a sequence AC, the
mutated sequences would be CC, GC, UC, AA, AG, and AU. For a
sequence of length n, we thus need to generate 3∗n mutated se-
quences for which to calculate scores. The score difference (mu-
tated sequence score minus wild-type sequence score) is then
plotted for each mutated nucleotide at each position, with the
height of the nucleotide corresponding to the score difference.
This difference can be positive (i.e., the mutation increases the
whole-site score) or negative (i.e., the mutation decreases the
whole-site score). This way, both visualizations help in under-
standing what parts in a given sequence the model regards as
important.

To generate the logo, RNAProt extracts top saliency value po-
sitions from a specified number of top scoring sites, and extends
them to a defined logo length. The extracted subsequences

(weighted by saliency) are then converted into a weight matrix
and plotted with Logomaker [32].

Tool comparison

Benchmark sets
For the tool comparison, we constructed 2 different benchmark
sets. The first consists of 23 different PAR-CLIP, iCLIP, and High-
throughput sequencing of RNA isolated by CLIP (HITS-CLIP) data
sets (20 different RBPs) extracted from the original GraphProt
publication. The second includes 30 eCLIP data sets (30 differ-
ent RBPs) extracted from the Encyclopedia of DNA elements
(ENCODE) website, [33]. For the GraphProt data sets, we de-
fined a maximum number of positive and negative sites (each
5,000), and randomly selected these numbers for larger data
sets. This was done since run times for DeepCLIP and Deep-
RAM can become very long as the number of sites increases
(see the ”Run time comparison” section for more details). For
the eCLIP data sets, we aimed for 6,000 to 10,000 positive sites
per data set during preprocessing and filtering. All sites were
length-normalized to 81 nucleotides (nt) due to the fixed-size
input required by DeepRAM. To generate the negative sets, we
used RNAProt, which can automatically generate a set of ran-
dom negative sites for a given set of positive input sites (i.e., RBP
binding sites identified by CLIP-seq). By default, RNAProt ran-
domly selects negative sites based on 2 criteria: (i) negative sites
are sampled from gene regions containing positive sites; and (ii)
a negative site should not overlap with any positive site. This set-
ting was used to create the benchmark sets. The same number
of random negative and positive instances was used throughout
the benchmarks. More details on data preprocessing and data
set construction can be found in the Supplementary Methods.
For the run time comparison, we recorded single model training
run times. Here, we randomly selected 5,000 positive and 5,000
negatives sites from the eCLIP RBFOX2 set, all with lengths of
81 nt, and trained each method 3 times on this set.

Tool setup and performance measurement
DeepCLIP, GraphProt, and RNAProt were benchmarked using
their default parameters. For DeepRAM, we used their best-
performing network architecture k-mer embedding with single
layer CNN and bidirectional LSTM (ECBLSTM). The area under
the receiver operating curve (AUC) was used in combination with
10-fold cross-validation to estimate and compare model gener-
alization performances for the first 3 tools. Since DeepRAM does
not offer a 10-fold cross-validation setting, we compared it sep-
arately to RNAProt using a hold-out setting (1 split with 90% of
data for training and 10% for testing). For DeepCLIP, we set pa-
tience (early stopping) to 20 epochs and the maximum number
of epochs to 200, which corresponds to the setting used for most
data sets in the original publication. For RNAProt, we set the pa-
tience to 30 and the maximum number of epochs to 200 in cross-
validation, while for the hold-out comparison we increased pa-
tience to 50, since we found that smaller data sets can some-
times benefit from increased patience. For the run time compar-
ison, both DeepCLIP and RNAProt were set to a patience of 20
and a maximum number of epochs of 200. To signify differences
in 10-fold cross-validation performance between the 3 methods,
we calculated P-values using the 2-sided Wilcoxon test in R (ver-
sion 3.6.2) for each data set and method combination. For com-
paring window prediction performances, we used the F-score
(also known as F1 score or harmonic mean of precision and re-
call).
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Computing benchmark results
To compute the benchmark results, we used 2 different desk-
top PCs: an AMD Ryzen7-2700X (32 GB RAM, GeForce RTX 2070
8 GB) and a Intel i7-8700k (32 GB RAM, Geforce GTX 1060 GPU
6 GB), both with Ubuntu 18.04 LTS installed. Tool run times were
measured using solely the Intel i7, running single-model train-
ing 3 times and recording run times. In general, we found that
RNAProt runs fine on a PC with 8 GB RAM and no GPU with the
data set sizes found in the benchmark set. However, even an av-
erage consumer-grade GPU like the GTX 1060 drastically reduces
run times (see the “Run time comparison” section results) and
is thus recommended for on-the-fly model training (specifically
an Nvidia card with ≥ 4 GB GPU RAM).

Results and discussion

Below, we demonstrate RNAProt’s state-of-the-art performance
and show its run time efficiency. In particular, we compared
it to 2 recent deep-learning methods (DeepCLIP [34] and Deep-
RAM [35]), as well as GraphProt. We chose the first 2 because
both provide usage instructions and are easy to install. More-
over, both compare favorably with many other methods in the
field in their respective papers. As a reference, we also included
the popular classical machine learning method GraphProt. Fur-
thermore, we illustrate that RNAProt’s built-in visualizations can
uncover known RBP binding preferences, and show that addi-
tional built-in features can boost performance. Finally, we exem-
plify the benefits of including structure information by improv-
ing the binding site prediction quality of the stem loop binding
RBP Roquin.

Cross-validation comparison

We first compared RNAProt in a standard 10-fold cross-
validation setting with GraphProt and DeepCLIP, on 2 different
sets of RBP data sets. The first set consists of 30 eCLIP data sets
from 30 different RBPs, while the second set consists of 23 data
sets from 20 RBPs, generated by various CLIP-seq protocols (see
the “Benchmark sets” section for data set details). GraphProt is
a popular classical machine learning method that uses a graph
kernel with a Support Vector Machine classifier, while DeepCLIP
is a recent deep-learning method featuring a combination of
CNN and bidirectional LSTM. All 3 tools were trained using only
sequence features.

Fig. 2a and b show the 10-fold cross-validation results over
the 2 benchmark sets for GraphProt, DeepCLIP, and RNAProt.
For both sets, RNAProt achieves the highest total average AUC
(87.26% and 89.30%), followed by DeepCLIP (84.03% and 87.00%),
and GraphProt (81.71% and 83.81%). We note that both deep-
learning methods outperform GraphProt on both sets. To signify
performance differences between 2 methods, we calculated the
2-sided Wilcoxon test on the AUC distributions for each method
combination and each of the 53 data sets (see Supplementary
Tables S3 and S4 for AUCs and P-values). Fig. 2c and d contrast
the single data set AUCs of GraphProt with RNAProt (Fig. 2c)
and DeepCLIP with RNAProt (Fig. 2d), coloring significantly bet-
ter method AUCs (GraphProt: red; DeepCLIP: yellow; RNAProt:
blue). We can see that RNAProt outperforms GraphProt in 49
cases and DeepCLIP in 42 cases, while DeepCLIP and GraphProt
both only perform better on 2 data sets. The 2 data sets are the
same for both methods (ALKBH5, C17ORF85), which are from the
original GraphProt publication. We can only speculate here that
RNAProt’s lower performance might be due to some intrinsic in-
compatibilities of the data set and the utilized RNN network.

As for the largely lower performances of DeepCLIP, we assume
that it is possible to tune its hyperparameters (e.g., CNN filter or
regularization settings) to increase its performance. Out of the
box, however, RNAProt clearly outperforms DeepCLIP. Moreover,
DeepCLIP has a clear disadvantage regarding run time (see the
“Run time comparison” section below).

Hold-out validation comparison

We also compared results to DeepRAM, a tool which allows the
testing of various deep neural network architectures to com-
pare their performances on DNA or RNA sequence data derived
from chromatin immunoprecipitation with high-throughput se-
quencing (ChIP-seq) or CLIP-seq. For the comparison, we chose
their best-performing architecture (ECBLSTM), a Word2Vec em-
bedding of the input sequence (k-mer length = 3, stride = 1),
followed by 1 CNN layer and 1 bidirectional LSTM layer. Since
DeepRAM does not support cross-validation, we used a hold-
out setting (i.e., 1 train-test split) for comparison, where mod-
els were trained on 90% of the data and tested on the remaining
10% for each data set. Note that we ran RNAProt with default
hyperparameters, while DeepRAM does not offer default hyper-
parameters and requires hyperparameter optimization for each
training run. We therefore manually reduced the number of ran-
dom search iterations from 40 to 20 inside the DeepRAM code,
to make the comparison more fair and run times more bearable.
By this, the run time for a data set with 10,000 instances (81 nt
long) got reduced to 5–6 hours, while for the same set RNAProt
needs 1–2 minutes.

Fig. 3 shows the hold-out results over the 2 benchmark sets
for DeepRAM and RNAProt. As we can see, average hold-out AUC
performances of the 2 methods are very close for the 2 sets
(DeepRAM: 87.42% and 89.28%; RNAProt: 87.50% and 89.34%).
Again, there are only 2 data sets (ALKBH5, C17ORF85) where
RNAProt performance drops considerably compared to Deep-
RAM, consistent with the cross-validation results above. For the
remaining 51 data sets, there can be differences of 2% to 3% (both
ways) but in general the performance is very similar (for full re-
sults, see Supplementary Tables S5 and S6). We thus can con-
clude that for the given data sets, there is no real advantage of
using a more complex architecture like DeepRAM’s ECBLSTM.

As shown in the DeepRAM paper, more complex architec-
tures like ECBLSTM can benefit from larger data sets (>10,000
positive instances). As our benchmark data sets contain be-
tween 1,338 and 9,206 positive sites (on average 6,389.4),
ECBLSTM might perform better as data set sizes increase. How-
ever, >10,000 sites is often not a realistic estimate of the real
number of RBP binding sites coming from a CLIP-seq experi-
ment. For example, in order to get a high-confidence set of RBP
binding sites from an eCLIP data set, the ENCODE consortium
advises use of a strict filtering routine [36], leaving often only
a few thousand sites, if not less, for subsequent analysis and
model training. In addition, as pointed out in the DeepRAM pa-
per, more complex models tend to be harder to interpret. On
top of that, high test set performance does not guarantee that
the model learned something biologically meaningful. We are
also facing a trade-off between accuracy, interpretability, and
run time. Depending on the application, the user might prefer a
faster or a more accurate method, or they might care more about
the interpretation of the prediction. In this regard, it would be in-
teresting to explore in future studies whether ensemble predic-
tions (including various more interpretable and more complex
models) could help to combine individual model strengths.
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Figure 2: The 10-fold cross-validation results for GraphProt, DeepCLIP, and RNAProt. (a) Results for the first benchmark set contain 23 CLIP-seq data sets from 20
different RBPs and various CLIP-seq protocols (average method AUCs on top). (b) Results for the second benchmark set contain 30 eCLIP data sets from 30 different
RBPs (average method AUCs on top). (c) Comparing single data set AUCs between GraphProt and RNAProt for all 53 data sets, the blue dots indicate a significantly

better AUC for RNAProt (n = 49), the gray dots indicate no significant difference (n = 2), and the red dots indicate a significantly better AUC for GraphProt (n = 2). (d)
Comparing single data set AUCs between DeepCLIP and RNAProt for all 53 data sets, the blue dots indicate a significantly better AUC for RNAProt (n = 42), the gray dots
indicate no significant difference (n = 9), and the yellow dots indicate a significantly better AUC for DeepCLIP (n = 2). A 2-sided Wilcoxon test was used to calculate
P-values (significance threshold = 0.05).

Run time comparison

Model training is known to be the computationally most ex-
pensive part of working with deep neural networks. We there-
fore compared the times it takes to train a single model with
DeepCLIP, RNAProt, and, as a reference, the classical machine
learning method GraphProt. Note that DeepRAM always runs a
hyperparameter optimization for model training, making it un-
suitable for this comparison. Specifically, we took 10,000 train-
ing instances (5,000 positives) of length 81 nt from the RBFOX2
eCLIP data set and trained a sequence model for all 3 methods (3
times each). We used default parameters for all methods, and for
DeepCLIP and RNAProt set the patience and maximum number
of epochs to 20 and 200, respectively (also see the “Computing
benchmark results” section).

Fig. 4 shows the obtained average training times for Deep-
CLIP, RNAProt (CPU and GPU modes), and GraphProt (for full
results, see Supplementary Table S7). We note that Graph-
Prot model training is the fastest, at 40.3 seconds, followed by

RNAProt (GPU) at 72 seconds, RNAProt (CPU) at 8 minutes, and
DeepCLIP at 37.4 minutes. In other words, RNAProt GPU is 31
times faster (RNProt CPU 4.7 times faster) than DeepCLIP. This
clearly shows RNAProt’s ability for on-the-fly model training, as
well as the benefit of using a GPU (even an average consumer-
grade GPU as described here). Since RNAProt supports many dif-
ferent features and settings, fast model training allows the user
to try different settings for a specific task in a short amount of
time. As for the run time difference, it seems that DeepCLIP cur-
rently does not support GPU computing, or at least we could not
find any hints in the code. This would explain the slow run time,
which unfortunately makes it less useful for on-the-fly training
and testing. Still, its run times are much more practical than the
ones we got with DeepRAM: due to its hard-coded hyperparam-
eter optimization, DeepRAM can easily take 12 hours for model
training (with the default number of random search iterations
and benchmark data set sizes), even though it uses GPU com-
puting.
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8 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

Figure 3: Hold-out validation results for DeepRAM and RNAProt. (a) Results for the first benchmark set contain 23 CLIP-seq data sets from 20 different RBPs and various
CLIP-seq protocols. (b) Results for the second benchmark set contain 30 eCLIP data sets from 30 different RBPs. For both sets, we also report the average method AUC

on top.

Figure 4: Model training time comparison. Training times are in minutes (averaged over 3 runs) for training a single model with 10,000 instances (81 nt) for GraphProt,
RNAProt, and DeepCLIP. ∗RNAProt using CPU only for calculations (no GPU).

Visualizations capture known binding preferences

As deep-learning models are complex by design and thus hard
to interpret, the development of visualizations that help to ex-
plain what is learned by a model is an important and active area
of research. For RNAProt, we chose to visualize position-wise im-
portances using 2 approaches: saliency maps and in silico muta-
genesis (see the “Visualization” section for details).

To compare RNAProt sequence logos and profiles with known
RBP binding preferences from the literature, we trained se-
quence models on 6 different RBP data sets with known bind-
ing preferences. Fig. 5 shows the obtained sequence logo and
known preferences (based on RBP motifs listed in the ATtRACT
database [37]), as well as the top scoring training site profile for
each RBP. As we can see, the logos clearly capture the literature
preferences, both for RBPs without a single dominant motif (hn-
RNPK, KHDRBS1, PTBP1, SRSF1) and for RBPs with strong individ-
ual motifs (QKI, RBFOX2). This shows that saliency can be used
to extract meaningful logos, which provide a rough idea about
global model preferences. In addition, the saliency and mutation
tracks give clues to local position-wise preferences. As shown,
both match literature knowledge, but can also give interesting
new insights. For example, important positions for the first 3
RBPs are more scattered in the observed profiles, while for QKI

and RBFOX2 the model pays much more attention to the precise
binding motif locations, with other positions having little effect
on the model prediction. Both tracks are thus helpful to under-
standing local model decisions, but they are only informative for
individual sites. To better understand global model preferences,
we hope to integrate new visualizations in the near future, since
this is also a very active area of research, albeit less mature than
work on local preferences [38].

Additional features boost performance

Since RNAProt supports various additional features on top of
the sequence information, we also checked how including these
features in training influences model performance. When gen-
erating training sets with RNAProt, the user can specify which
features to compute and then, for training, can select which
feature information the model should be trained on (see the
“Supported features” section for details). For the comparison, we
used RNA secondary structure, phastCons conservation scores,
phyloP conservation scores, exon-intron annotation, and a com-
bination of exon-intron and conservation scores.

Fig. 6 shows the 10-fold cross-validation results for the 2
benchmark sets, for each described feature. We observe that
the conservation and exon-intron features can, depending on
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Figure 5: Comparison of RNAProt sequence logos and profiles with known RBP binding preferences. Literature knowledge was obtained from the ATtRACT database
[37]. All models were trained using only the sequence feature. Logos were generated by extracting the top site saliency positions for each of the top 200 scoring training
sites, and extending them by 3 on each side to generate logos of length 7. Logo character heights correspond to their respective saliency values at each of the 7

positions. On the right site, profiles for the top scoring training sites are shown, offering several tracks: the site nucleotide sequence, the position-wise saliency, and
single mutation effects. The single mutations track shows how much every possible single nucleotide mutation at each position changes the total site score (positive
or negative).

the data set, strongly boost model performance on the bench-
mark sets. As for the structure feature, individual data set
performances are usually very similar between structure and
sequence-only models (see Supplementary Tables S1 and S2
for full results), although for the eCLIP set the overall perfor-
mance with structure is slightly higher (89.41% vs 89.30% for the
sequence-only model). We assume that this can be further tuned
on the data set level by changing the structure calculation set-
tings of RNAProt (different modes available, plus RNAplfold set-
tings for window length, maximum base pair span, and mean
probability region length). As for region type and conservation
features, these performances of course highly depend on the
selected negative regions. For example, using exon-intron an-
notations with negative regions located only inside introns and
positive regions with a high amount of exonic sites will naturally
lead to higher performance. But this does not make the model
more useful. Thus, what the focus of the prediction should be is
important. If the prediction should be on transcripts only, then
exon-intron distinction becomes meaningless. However, some
intrinsic bias of an RBP regarding regions can also be natural and

of interest, such as when predicting on gene sequences contain-
ing introns and exons. In this regard, RNAProt offers several op-
tions to control negatives selection: users can either supply their
own negative regions or the sampling of negative regions can be
further specified by excluding certain genomic or transcript re-
gions (see documentation for details).

Regarding the tested features, note that we did not include
transcript or repeat region annotations in the comparison. As
for the first feature, our tests showed performances similar to
exon-intron inclusion, but we think that this feature needs an
accurate (i.e., condition-specific) CDS and UTR region annotation
to make sense. In line with this, it has been shown that context
choice (i.e., selecting the authentic transcript or genomic con-
text surrounding binding sites) affects the performances of RBP
binding site prediction tools [39]. As RNAProt supports both ge-
nomic and transcript region annotations, it can easily be com-
bined with isoform detection tools in future workflows. Regard-
ing repeat region annotations, it did not make sense to test this
feature since the eCLIP pipeline that produced the benchmark
set binding sites only considers uniquely mapped reads. How-
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10 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

Figure 6: The 10-fold cross-validation results for RNAProt models trained with additional features. (a) Results for the first benchmark set contain 23 CLIP-seq data sets
from 20 different RBPs and various CLIP-seq protocols. (b) Results for the second benchmark set contain 30 eCLIP data sets from 30 different RBPs. The “sequence” is

included for reference, using only sequence information for training. For both sets, we report the average AUC with included additional feature(s) on top.

ever, a recent pipeline update [36] now also allows mapping to
certain repeat elements and has already led to the discovery of
many new RBP binding sites overlapping with these elements.
Repeat region annotation could thus become an informative fea-
ture once these data sets are available.

Structure information can increase specificity

Given that additional features can increase predictive perfor-
mance, we next checked whether they also can help in a more
practical scenario. For this, we downloaded a data set consist-
ing of predicted structurally conserved binding sites of the RBP
Roquin (also termed constitutive decay elements [CDEs]) [40].
The CDEs were predicted using a biologically verified consensus
structure consisting of a 6–8 bp long stem capped with a YRN
(Y: C or U; R: A or G; N: any base) tri-nucleotide loop, including
all human 3’UTRs as potential target regions. After preprocess-
ing and training set generation (same number of random nega-
tives; 81 nt site length), we trained a structure and a sequence
model on the resulting 2,271 CDEs. For the structure prediction,
we used an RNAplfold window length of 70 nt, a maximum base
pair span of 50 nt, and a mean probability region length of 3 (see
Supplementary Methods for more details).

Comparing the 10-fold cross-validation results of the 2 mod-
els, the sequence model achieves an average AUC of 79.22%,
while the structure model performs almost 20% better (99.02%).
We also note a high standard deviation for the individual se-
quence model AUC (7.66%), which is not the case for the struc-
ture model (0.43%). This means that the sequence model has

problems with consistently classifying the test sites correctly,
while the added structure information almost completely re-
solves this issue. We can thus conclude that the addition of
structure information allows us to predict the given set of po-
tential CDEs with high accuracy. As a reference, we also trained
2 GraphProt models (1 with sequence and 1 with structure infor-
mation), which resulted in average AUCs of 70.81% and 78.49%,
respectively.

To complete the use case, the authors also experimentally
verified 2 CDEs in the 3’UTR of the UCP3 gene (transcript ID
ENST00000314032.9; length 2,277 nt). We therefore trained an-
other structure model, excluding the 2 sites from the training
set, and ran RNAProt using its window (profile) prediction mode
on the transcript. Fig. 7a shows the transcript, along with ver-
ified and predicted CDEs. We note that our model predicts 4
CDEs in total (all in the 3’UTR), with 2 of them perfectly over-
lapping the verified CDEs. Fig. 7b shows the profile of the sec-
ond site (compare to the red hairpin in Fig. 1C of Braun et al.
[40]), with saliencies and the single mutations track highlighting
the hairpin loop portion and parts of the surrounding stem. The
stem loop can also be recognized in the structural elements track
on the bottom. The single mutations track (measuring effects
of single nucleotide changes on the whole-site score) indicates
that the loop nucleotides are a particularly important sequence
feature. In contrast, the structure feature contributes more to
the area surrounding the loop, by providing the stem informa-
tion. This again matches what is known about Roquin binding,
with few sequence preferences in the hairpin aside from the de-
scribed loop preferences. As a reference, we also trained a se-
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Figure 7: Roquin structure model predictions on the UCP3 gene transcript ENST00000314032.9. (a) The ENST00000314032.9 transcript (length 2,277 nt; 5’ and 3’ un-
translated regions (UTRs) in light gray, coding sequence (CDS) in dark gray) is displayed together with verified and predicted Roquin binding sites (CDEs). (b) RNAProt
site profile for the second verified CDE is shown with sequence, saliency map, single mutations, and structural elements tracks.

quence model (validation set AUC 94.73%) and predicted CDEs
on the transcript. This resulted in 18 predictions, with only 1
overlapping the first verified site, despite the very good valida-
tion AUC. This clearly demonstrates how additional features like
structure information can help to make predictions more spe-
cific (F-score, sequence model = 0.10; F-score, structure model
= 0.67).

Conclusion

In this article we presented RNAProt, an RBP binding site pre-
diction framework based on RNNs. Devised as an end-to-end
method, RNAProt includes all necessary functionalities, from
data set generation over model training to the evaluation of
binding preferences and binding site prediction. We compared
it to other popular tools in the field, showing its state-of-the-
art performance and improved run time efficiency. The short
training times allow for on-the-fly model training, which is
great for quickly testing hypotheses regarding data set, param-
eter, or feature selections. Moreover, RNAProt is currently the
most flexible method when it comes to supported position-wise
features for learning, as well as input data types. RNAProt is
easy to install and use, assisted by comprehensive documen-
tation. Furthermore, it provides comprehensive statistics and
visualizations, informing the user about data set characteris-
tics and learned model properties. All this makes RNAProt a
valuable tool to apply and include in RBP binding site analysis
workflows.

Availability of source code and requirements
� Project name: RNAProt
� Project page: https://github.com/BackofenLab/RNAProt
� Operating system(s): Linux
� Programming language: Python
� Other requirements: Anaconda
� Installation: conda install -c bioconda rnaprot
� License: MIT
� biotools ID: biotools:rnaprot
� RRID: SCR 021218

Data Availability

All benchmark and training data sets used to create the reported
results can be downloaded from Zenodo [41]. Supplementary
Methods and Tables can be found on the GigaScience website and
on GitHub [24]. A code snapshot as well as Supplementary Data
are also available via GigaDB [42].

Additional Files

Supplementary Table S1: 10-fold cross validation results for
GraphProt, DeepCLIP, RNAProt, and RNAProt with additional fea-
tures. Results for the first benchmark set, containing 23 CLIP-seq
datasets from 20 different RBPs and various CLIP-seq protocols.
Supplementary Table S2: 10-fold cross validation results for
GraphProt, DeepCLIP, RNAProt, and RNAProt with additional fea-
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tures. Results for the second benchmark set, containing 30 eCLIP
datasets from 30 different RBPs.
Supplementary Table S3: 10-fold cross validation single fold
AUC results for GraphProt, DeepCLIP, and RNAProt. Benchmark
Set 1: Set from Table S1 (23 datasets). Benchmark Set 2: Set from
Table S2 (30 datasets).
Supplementary Table S4: Two-sided Wilcoxon Test on Table S3
single fold AUCs, to determine significantly different AUCs be-
tween methods and single datasets. Calculated p-values for two
method comparions are shown: RNAProt vs. GraphProt, and
RNAProt vs. DeepCLIP.
Supplementary Table S5: Hold out validation results for Deep-
RAM and RNAProt. Results for the first benchmark set, contain-
ing 23 CLIP-seq datasets from 20 different RBPs and various CLIP-
seq protocols.
Supplementary Table S6: Hold out validation results for Deep-
RAM and RNAProt. Results for the second benchmark set, con-
taining 30 eCLIP datasets from 30 different RBPs.
Supplementary Table S7: Single model training runtime com-
parison for GraphProt, DeepCLIP, and RNAProt. Runtime is given
in minutes (min), together with the mean runtime over three
runs for each method.
Supplementary methods
Dataset construction
Cross validation comparison
Hold-out comparison
Roquin CDE dataset preparation and prediction
Runtime comparison

List of abbreviations

AUC: area under the receiver operating curve; eCLIP: enhanced
CLIP; CDE: constitutive decay element; CDS: coding region;
CLIP-seq: cross-linking and immunoprecipitation followed by
next-generation sequencing; CNN: convolutional neural net-
work; iCLIP: individual-nucleotide resolution UV cross-linking
and immunoprecipitation; LSTM: Long Short-Term Memory;
PAR-CLIP: photoactivatable-ribonucleoside-enhanced crosslink-
ing and immunoprecipitation; RBP: RNA-binding protein; RNN:
Recurrent neural network; UTR: untranslated region.
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