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Abstract

CLIP-seq experiments are currently the most important means for
determining the binding sites of RNA binding proteins on a genome-wide
level. The computational analysis can be divided into three steps. In
the first pre-processing stage, raw reads have to be trimmed and mapped
to the genome. This step has to be specifically adapted for each CLIP-
seq protocol. The next step is peak calling, which is required to remove
unspecific signals and to determine bona fide protein binding sites on
target RNAs. Here, both protocol-specific approaches as well as generic
peak callers are available. Despite some peak callers being more widely
used, each peak caller has its specific assets and drawbacks, and it might
be advantageous to compare the results of several methods.

Although peak calling is often the final step in many CLIP-seq publica-
tions, an important follow-up task is the determination of binding models
from CLIP-seq data. This is central because CLIP-seq experiments are
highly dependent on the transcriptional state of the cell in which the ex-
periment was performed. Thus, relying solely on binding sites determined
by CLIP-seq from different cells or conditions can lead to a high false neg-
ative rate. This shortcoming can, however, be circumvented by applying
models that predict additional putative binding sites.

∗These authors contributed equally to this work
†Corresponding author
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1 Introduction

The rise of next-generation sequencing (NGS) techniques over the past decade
has led to an enormous boost in RNA research thanks to numerous discover-
ies concerning the fundamental role of RNA in gene regulation [1]. To exert
these functions, RNAs in eukaryotic cells can form ribonucleoprotein complexes
by interacting with a multitude of RNA-binding proteins (RBPs), allowing for
the evolution of complex regulatory networks. Recent studies revealed more
than 1500 RBPs in human cells, which emphasizes their fundamental impor-
tance for virtually all aspects of post-transcriptional gene regulation (PTGR),
including RNA maturation, alteration, transport, stability, and translation [2]
[3] [4] [5]. Beside their physiological roles, various diseases have been linked to
dysregulated or deficient RNA-binding proteins [6] [7]. Hence, a comprehensive
understanding of RNA-based networks is only possible when also considering the
contributions of these RBPs. The scientific community is therefore increasingly
turning to the characterization of RBP-based regulation. RBPs regulate their
target gene(s) by directly binding to the transcribed RNA. Typically, specific
sequence motifs are required for binding site recognition, although the relative
contributions of RNA sequence, structure and backbone to the binding can dif-
fer greatly among RBPs [8] [9]. The majority of RBPs appears to prefer single-
stranded regions [4]. There are, however, also many RBPs that prefer structured
RNA such as Staufen 1 [10], Roquin [11], or MLE [12]. It is currently unclear to
what extent the observed general tendency towards single-stranded RNA regions
is caused by biases in the experimental protocols. As RNA molecules generally
form extensive secondary structures, it is not surprising that the binding speci-
ficity of RBPs also strongly depends on the structural context of their binding
sites. Indeed, the importance of binding site accessibility has been shown for
many RBPs [13].

The recent development of high-throughput protocols for determining RBP
binding sites on a genome-wide scale has greatly influenced the field and opened
up new avenues for the investigation of regulatory relationships. Particularly,
CLIP-seq (cross-linking and immunoprecipitation followed by next generation
sequencing) [14] has become the standard experimental procedure for study-
ing transcriptome-wide RBP binding. Briefly, RBPs are crosslinked to their
RNA binding sites, followed by extraction and sequencing of the crosslinked
RNA fragments. After mapping of the sequenced fragments, binding regions
are identified based on the read profiles and various additional information (e.g.
from control experiments or replicates). The process of determining significantly
enriched binding regions is also known as peak calling. Subsequently, binding
motifs or predictive models can be derived from the identified sites. These can
then be employed to identify potential binding sites in yet unreported target
sequences.

In this paper, we describe selected tools and pipelines required for a com-
prehensive bioinformatics analysis of CLIP-seq datasets. We do not intend to
give a complete overview of available methods, since there is already plenty of
literature available on CLIP-seq data analysis [15] [16] [17]. Rather, we will

2



concentrate on tools which have proven valuable to us in the past. For these,
we will describe important aspects of a comprehensive analysis. A special fo-
cus will lie on the process of peak calling, which is the process of recovering
bona fide protein binding sites by signal detection and removal of false positives
originating from unspecific interactions. To our knowledge, this component of
the data analysis is still lacking a more comprehensive discussion in literature,
even though it is arguably the most critical part of the whole analysis. We will
start with a description of the different CLIP-seq variants available, address-
ing specific features and (dis)advantages. In the following section on CLIP-seq
data analysis, we will describe the different steps of pre-processing, mapping
and peak calling in greater detail. The last section considers the task of deter-
mining binding models for computationl binding site prediction. Such models
are needed to reduce the false negative rates of CLIP-seq experiments which
originate from their dependency on the expression of the detected RNA bind-
ing sites. Without these models, information from published data cannot be
transferred to different cells or conditions.

2 Overview of CLIP-seq variants

In recent years CLIP-seq has become the standard experimental procedure to
identify binding sites of RBPs on a transcriptome-wide level. Several variants
have been proposed since the introduction of CLIP [18] [19] in 2003 and its first
high-throughput sequencing extension HITS-CLIP (high-throughput sequenc-
ing of RNA isolated by CLIP) [14] in 2008, each addressing various shortcom-
ings of the previous versions. The most widely used modifications over the last
years are PAR-CLIP (photoactivatable-ribonucleoside-enhanced CLIP) [20] and
iCLIP (individual-nucleotide CLIP) [21], while recently the eCLIP (enhanced
CLIP) protocol [22] was introduced and promoted by the ENCODE consortium.
Another protocol termed irCLIP (infrared-CLIP) [23], which has been compared
to eCLIP [24] [25], has also been published in 2016. Besides, several specialised
modifications for double-strand binding RBPs exist [26] [10] [27]. These pro-
tocols add an additional ligation step to the standard protocol in which the
two double-strand RNA segments bound by the RBP are connected, leading
to chimeric reads that allow for the simultaneous identification of both RNA
strand regions. So far, CLIP-seq has been applied in numerous studies on sin-
gle RBPs. Furthermore, the method has been employed by a study on global
mRNA binding preferences [2].

Principle CLIP-seq workflow The principle workflow of a CLIP protocol
starts with UV radiation of the cell or tissue culture, which induces covalent
crosslinks between RBPs and their bound RNAs. This is followed by immuno-
precipitation of the RBP-RNA complexes and partial RNase digestion to narrow
down the binding sites to appropriate sequencing and mapping lengths. Fur-
ther steps aim at stringent purification, including radioactive labeling, recovery
by SDS-PAGE, transfer to nitrocellulose membrane to abolish loose RNA frag-
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ments, excision and proteinase K treatment to remove the RBP and recover the
trimmed RNA fragments. Finally, the fragments are reverse-transcribed and
their cDNAs are subjected to deep sequencing. The resulting sequencing data
is then analysed to obtain RBP binding sites which can be identified based on
the mapped read profiles.

PAR-CLIP PAR-CLIP [20] marked the first successful adaptation of the orig-
inal protocol, introducing a number of modifications over HITS-CLIP. To in-
crease crosslinking efficiency, cells are additionally supplemented with 4-thio-
uridine (4SU), and UV radiation is applied at 365 nm instead of 256 nm. Inter-
estingly, these modifications also lead to a high number of thymidine to cytidine
transitions in the cDNA at the crosslink sites, which can be exploited in a subse-
quent mutational analysis for pinpointing the crosslink position, thus basically
enabling PAR-CLIP to achieve single-nucleotide resolution. On the other hand,
4SU usage restricts the method to cell cultures and preferential crosslinking
to 4SU naturally biases site recovery towards U-containing sites. Also, 4SU
exhibits an increased affinity towards G:U base pairing [28], which might influ-
ence cellular RNA structure and thus also RBP binding. In addition, RNase
T1 digestion leads to a depletion of G-containing sites, due to the enzyme’s
preferential cleaving after G nucleotides [29]. Another problem is the usage of
inducible tagged proteins in the original publication, which can result in the re-
covery of non-physiological binding events due to overexpression. The last two
problems can and have been addressed in subsequent PAR-CLIP versions [29]
[30], where the latter one also describes an in vivo approach for C. elegans.

iCLIP iCLIP [21] has been particularly designed to address a specific problem
inherent to HITS-CLIP and PAR-CLIP: during cDNA synthesis, the reverse
transcriptase frequently stalls at crosslink sites still containing residual peptides,
leading to an estimated loss of over 80 % of cDNA fragments [31]. To solve
this issue, the authors developed a two-part cleavable adapter together with
an additional circularization and linearization step, allowing for the recovery
of both complete and truncated cDNAs. Additionally, random barcodes are
used, enabling easy identification and removal of PCR duplicates after mapping.
These measures lead to increased efficiency, while single-nucleotide resolution is
achieved due to the truncated cDNAs which pinpoint the crosslink position to
the reads’ 5’ ends. Still, as with PAR-CLIP and the original HITS-CLIP, the
protocol remains time-intensive (up to 5 days) and error-prone due to its many
different steps [24]. Also, a fairly huge amount of starting material (typically
106 to 108 cells) is required in order to generate a library of sufficient complexity.
This often makes successful library preparation difficult. This is especially true
for lowly expressed RBPs, RBPs with widespread binding or RBPs with low
crosslinking efficiencies and / or antibody affinities.

eCLIP Both eCLIP [22] and irCLIP [23] have been developed to deal with the
shortcomings of previous CLIP-seq variants. Particularly, high demands in cell
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numbers, many different preparation steps including radioactive reagents and
long preparation times frequently result in poor library generation efficiency.
In the eCLIP protocol, the inefficient circularization step from iCLIP is ex-
changed by two separate adapter ligation steps, which results in much higher
RNA fragment recovery. This ultimately leads to a significantly improved li-
brary complexity. Furthermore less cells are needed. Both aforementioned im-
provements enable the application of this method on formerly difficult RBPs.
Single-nucleotide resolution is achieved the same way as in iCLIP, meaning that
the reads’ 5’ end should mark the crosslink position for the huge majority of
reads. Moreover, the autoradiographic visualization step is omitted and different
samples can be pooled early in the protocol. This allows for much faster prepa-
ration times, but leaving out the autoradiographic step is also a clear drawback
since the quality of the IP can no longer be monitored. Another new feature is
the inclusion of a size-matched input control (SMInput), which enables efficient
background normalization and thus leads to a higher specificity in subsequent
binding site identification. For SMInput, 2 % of the pre-immunoprecipitation
sample is taken and sequenced together with the immuno-purified sample. It was
shown that normalization by SMInput significantly improves authentic binding
site recovery, whereas an IgG control, which is frequently employed as a CLIP-
seq control, was found unsuitable for this task. The authors also provide a peak
calling pipeline called CLIPper [32], which will be discussed in a later section.
The described improvements have made eCLIP the method of choice for the
ENCODE consortium. So far, the consortium has published eCLIP data for
more than 70 diverse RBPs, which underlines its usability and will likely help
eCLIP to become more popular in the near future.

irCLIP Compared to eCLIP, irCLIP [23] uses a complementary approach to
deal with the described shortcomings of previous CLIP protocols: the circu-
larization step from iCLIP is kept but optimized and applied in a single-tube
reaction together with reverse transcription to reduce preparation time. In addi-
tion, both circularization and reverse transcription are performed at 60°C using
thermostable enzymes to resolve potential RNA secondary structures. It will be
interesting to see whether this step also helps to improve binding site recovery in
the case of structure-binding RBPs, which might yield low library complexities
for other CLIP protocols. irCLIP achieves single-nucleotide resolution analo-
gous to iCLIP and eCLIP. Like eCLIP, irCLIP too skips radioactivity steps, but
instead introduces an infrared fluorescent dye to visually check IP quality. It
can thus prevent certain IP-related quality issues which can become a problem
in the eCLIP protocol, since eCLIP ommits the autoradiographic visualization
without substitution. Infrared dye labeling also improves other steps of the
protocol, which as with eCLIP results in lesser starting material (typically only
20,000 cells) and overall increased efficiency. On the other hand, working with
infrared dyes also requires specialized equipment, such as a gel documentation
system with near-infrared capabilities, which might not be highly available or
affordable [24]. It remains to be seen which of the two protocols will be ap-
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plied more frequently by the field. In any case, future comparisons in recovered
binding profiles should help to reveal protocol-specific advantages and biases.

3 Analysis of CLIP-seq data

The analysis of CLIP-seq data usually involves three major steps which will be
addressed here. As in many other protocols, the reads first have to be mapped to
a reference genome. If the CLIP experiment was performed for a specific RBP,
the generated reads should agglomerate in regions to which the RBP binds. To
identify these regions, a second step is performed under application of a peak
caller. Peak callers are used on the coverage profiles to determine regions that
are bound by the RBP with high affinity. Once the peaks are identified, they can
be quantified and their statistical significance should be evaluated by comparing
them to a control experiment. In a third step, the resulting data can be utilized
to find binding motifs and to train binding models, which enable the prediction
of novel RBP binding sites on transcripts not present in the CLIP-seq data.
The last step is especially important when investigating RBP binding sites in
cells or conditions for which no CLIP-seq data is publicly available.

3.1 Preprocessing of raw data and mapping

Most CLIP-seq studies are performed on organisms with well annotated genomes
like human, mouse or C. elegans [33]. Reads from CLIP-seq experiments per-
formed on these organisms can be mapped to the according reference genome
or transcriptome. A major problem regarding the quantification of read data
is the reliance of sequencing-based techniques on PCR amplification of the se-
quence libraries prior to sequencing. Although necessary in order to generate
a sufficient amount of sequencing material, the occurrence of some sequences
can be artificially boosted in the process because of biases in the PCR proto-
col, where so-called PCR duplicates are introduced. With the introduction of
random barcodes or unique molecular identifiers (UMI) in iCLIP this problem
is mitigated, as reads which contain the same random barcodes and map to
the same coordinates can be collapsed to unify all PCR duplicates into just
one representative. The methodology is not completely flawless though, as it
has been shown that during library preparation mutations can be introduced
in the random barcodes which can have a big effect on the crosslinking-event
counts [12]. Before mapping the reads, these UMIs have to be removed. Tools
such as flexbar [34] can be used to accomplish this. If no UMIs were used then
tools such as FastUniq can be employed to collapse potential PCR duplicates
[35]. Adapters that are used in the amplification steps of the sequences also
have to be trimmed from the sequences. Several programs can be used for this,
e.g. cutadapt [36], Trim Galore [37], which is based on cutadapt and fastqc, or
trimmomatic [38], which is specifically made for Illumina sequencing data.

A few things have to be considered in order to correctly map the trimmed
reads to a reference genome. In most cases, this step consumes the most compu-
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tational power. The sequences stem from RNA molecules which can be subject
to splicing in eukaryotes. The choice of the mapping software depends on prior
knowledge about the targets of the RBP and is not independent from the fol-
lowing peak calling step, since the peak caller has to deal with gaps which occur
in spliced reads. The reads can either be mapped to the genome or the tran-
scriptome. The advantage of mapping the reads to the transcriptome is that
a higher sensitivity can be achieved, but it also comes at the cost of limiting
the analysis to known transcripts. Since RBP binding sites can be located in
introns (especially in the case of splicing regulators), mapping only to exonic
parts would lead to the exclusion of these sites. Mapping to exons also leads
to a depletion of sites spanning exon borders, since the read parts are often too
short to be mapped to their corresponding exons with sufficient quality. All
these issues have to be considered in order to choose a meaningful mapping
strategy. A layered procedure of first mapping strictly to the transcriptome and
afterwards mapping the remaining reads to the genome is often used and might
work best in such cases. A wide range of mapping algorithms originally devel-
oped for RNA-seq are available. To list a few good choices for this task, TopHat
[39], GSnap [40] and segemehl [41] fulfill the aforementioned requirements and
are widely used, but also STAR [42] should be mentioned, which is the mapper
of choice in the eCLIP pipeline used by the ENCODE consortium. Of course
this list is not comprehensive and many other good choices exist. Benchmarking
and isolating the best program for this task go beyond the scope of this review
and can be found elsewhere [43, 44, 45].

3.2 Methods for peak calling

The next task after mapping reads to a reference genome or transcriptome is to
extract authentic binding sites from the mapped read profiles. Many reads stem
from unspecific binding and thus have to be discarded, which is done in the pro-
cess of peak calling. This task can typically be divided into two parts: one first
extracts potentially interesting peaks based on peak shape or height and then
filters the resulting peaks such that only sites enriched over a certain threshold
or background are kept. The first part usually results in a huge number of ini-
tial sites, including many false positive predictions. The second part therefore
should incorporate additional experimental information like read profiles from
replicates, controls, or RNA-seq samples in order to increase the signal-to-noise
ratio. Information on underlying transcript abundances is particularly impor-
tant to peak calling on CLIP-seq data, since transcript amounts differ between
transcripts from different loci, and thus directly influence the peak heights found
in the read profiles. Therefore one cannot be sure if e.g. a high peak corresponds
to a strong binding site or if this is just the result of the underlying transcript
being highly expressed in the observed cell type or condition. A correction
for transcript abundance is therefore of fundamental importance in CLIP-seq
peak calling. Interestingly, correction for transcript abundance has been shown
to significantly improve peak calling results even in the case of external RNA-
seq data [46]. Ideally however, one should choose a CLIP-specific control for
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background correction, which also incorporates protocol-intrinsic biases. The
authors of eCLIP [22] e.g. showed that using a pre-immunoprecipitation con-
trol (as described in the eCLIP section) led to a significant enrichment of true
binding sites, whereas an IgG control, which is frequently used in CLIP, was not
suitable for background correction. In general, controls that produce low com-
plexity libraries and thus poor coverage of the underlying transcriptome should
be avoided. Besides using controls, results from different replicates can be in-
tersected to further increase specificity. In order to assign significance values to
peaks, it is also important to find a suitable probability distribution for mod-
eling the underlying read counts. In the following, some prominent CLIP-seq
peak callers which have been used by our group will be discussed in more detail.

Piranha Piranha [46] is a CLIP-seq peak caller which can be applied to all
available CLIP-seq as well as RIP-seq datasets in order to identify significant
peaks. It was the first generic CLIP-seq peak caller developed, i.e. it does not
depend on certain CLIP variant properties in order to call peaks, as opposed to
PARalyzer [47], which relies on PAR-CLIP data, or CIMS [48] and CITS [49],
which were developed for HITS-CLIP. Based on the mapped reads as input,
Piranha first divides the genome into non-overlapping bins of a user-defined size
and counts the number of read starts falling into each bin. Piranha assumes that
the read starts define the site where the crosslink events take place. Bins with
zero counts are discarded, and the counts of the remaining bins are then used to
fit a probability distribution. Covariates, e.g. in the form of reads from RNA-
seq or a CLIP-seq control experiment, can be supplied to correct for different
transcript abundances or protocol biases. In the case of covariates, Piranha
uses a zero-truncated negative binomial regression for fitting the read counts
together with the supplied covariate data. If no covariates are given, the user
has the choice between four different distributions. However, the zero-truncated
negative binomial distribution is set as default and recommended, as it was
shown to have the best fit on a collection of over 100 CLIP-seq datasets. Since
Piranha assumes that most read-covered sites represent background binding, the
fitted distributions essentially model background probabilities. Therefore, the p-
value of a given bin corresponds to the probability of the site being background.
By default, Piranha reports p-values corrected for multiple testing using the
Benjamini-Hochberg method [50] with a default threshold of 0.05. As for the
bin size, the authors suggest the size to be adapted to the depth of coverage
and the CLIP-seq variant used. This is of course not intuitive, especially for
novice users. According to the authors, a good starting point for RIP-seq is
100, while e.g. for iCLIP, one could start with low sizes (e.g. 5 nt) and then
depending on the amount of noise in the dataset gradually increase the window
size. Either way, having to deal with manually adjustable bin sizes is a clear
drawback of Piranha. In addition, it lacks support for the integration of replicate
information, although one could still do a manual intersection by calling peaks
on all replicates separately and merging the results afterwards.
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PARalyzer PARalyzer [51] is a computational tool1 for the discovery of
crosslinking sites from PAR-CLIP sequencing data. In the PAR-CLIP pro-
tocol the protein crosslinking is boosted by additionally culturing the cells with
a photoreactive ribonucleoside analogue, usually 4SU. The crosslink product of
4SU is known to have a preferential base pairing to guanine (G) instead of ade-
nine (A), resulting in thymine (T) to cytosine (C) conversions in PCR-amplified
cDNA.

The rationale of PARalyzer is to examine the pattern of T to C conversions
in order to spot, with high confidence, RNA-protein interaction sites. A kernel-
density-based classifier is used to characterize crosslinked regions, identified by
T to C conversions (the signal), against not crosslinked ones, characterized by
the absence of T to C conversions (the background).

Class-specific densities (one for the signal and one for the background) are
assessed by employing a Gaussian kernel density estimator that, for each T
nucleotide, considers the number of T to C conversions and the number of
non T to C conversions in the aligned reads. For each T nucleotide in the
RNA sequence, the number of T to C conversions occurring in that position is
represented using a Gaussian distribuion with fixed variance. The distribution
is peaked on the T nucleotide and the variance distributes the signal over the
neighbouring nucleotides. The function in green, shown in Figure 1A, is the sum
of all the individual Gaussian distributions that indicate T to C conversions and
represents the signal. The background (red function in Figure 1B) is estimated
by summing all the Gaussian contributions of T nucleotides that have not turned
into C nucleotides instead of the T to C conversions. After estimating the class-
specific densities, the interaction sites are defined by the nucleotides for which
the density estimate of the signal (T to C conversions) is greater than the one
for the background (non T to C conversions) (Figure 1C).

CLIPper To distinguish peak regions from non-peak regions, the CLIPper
software [52] utilizes different statistical measures. CLIPper is intended for call-
ing CLIP-seq peaks on known genes only and therefore requires annotation. It
provides annotations for a few genome assemblies, i.e. hg19, mm9, mm10, and
ce10. For other species the user has to provide the annotation. The program de-
fines sections on the genome where reads agglomerate and identifies peaks on the
read profiles. A threshold is defined based on the amount of reads in each sec-
tion, the amount of reads in the vicinity of the section, and the amount of reads
in the gene. The threshold specifies the minimum amount of reads necessary
within this region to be deemed statistically significant. This procedure makes
sure the false positive rate of peaks is controlled. By default, CLIPper then fits a
spline function to the read profile and defines regions which are above the thresh-
old and those that are in between local minima of the fitted spline as peaks. For
these peaks, a p-value is calculated with the amount of reads in the peak region
X being modeled as X ∼ Poisson(1+reads in gene · peak length

gene length ). This procedure
assigns p-values to all peaks which in turn can be corrected for multiple testing

1PARalyzer is available at https://ohlerlab.mdc-berlin.de/software/PARalyzer_85/
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Figure 1: Crosslink site indentification with PARalyzer on a synthetic example.
Class-specific densities for both the signal and the background are estimated
using a Gaussian kernel density estimator. (A) Density estimation of the signal
(green function). For each T nucleotide a Gaussian with fixed variance is peaked
representing the number of T to C conversions occurring in the position, nor-
malized by the total number of T to C conversion in the associated read group.
The normalized sum of all their Gaussian functions is the signal. (B) Density
estimation of the background (red function). The estimation is based on the
number of T nucleotides that have not turned into Cs. (C) After estimating the
class-specific densities, the interaction sites are defined by the nucleotides where
the density estimate of the signal (T to C conversions, green line) is greater than
the one for the background (non T to C conversions, red line).

with respect to all tested peaks using the Benjamini-Hochberg procedure [50].
The local maxima in the fitted splines are explicitly highlighted (in the resulting
BED file) because these positions are the best candidates for where the analysed
RBP binds to. In the eCLIP pipeline that is used by the ENCODE consortium
[53] the peaks are annotated qualitatively after their identification. Each CLIP
experiment dataset can be compared to one control dataset. For each peak a
log2-fold-change is calculated based on the mapped reads within the peak region
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Figure 2: The figure shows a specific cluster (C) of blocks (B) and their at-
tributes e(B), b(B), l(B), S(B). The first Bm selected for this C is shown in
blue, while overlapping blocks that reach at least into the middle of Bm are
green. The dotted green lines show the borders of the first peak. All B not
used for the definition of the boundaries of the first peak are red. The density
of sequencing reads at nucleotide resolution is shown as black line.

for the experiment in comparison with the control. Furthermore, a p-value is
determined for each peak using a χ2 test or Fisher’s exact test using the mapped
and total reads of the experiment and control. Given that eCLIP pinpoints the
crosslink positions to the read starts, it is surprising that CLIPper does not take
advantage of this information, instead considering the full-length reads for peak
calling.
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Block-based peak calling A recent CLIP-seq study on the transcriptome-
wide binding sites of the bacterial RBPs Hfq and CsrA in the human pathogen
Salmonella enterica [54] introduced an experimental procedure including paired-
end signal and background libraries in triplicates. The library preparation for
the background data solely differs in the fact that no UV induced cross linking
is performed. The identification of significant peaks in the signal data was
performed based on a three step procedure. In the first step, the blockbuster
algorithm [55] subdivides the pooled signal sequencing data into clusters (C) of
blocks (B). A block is fundamentally a pile of similar reads which is characterized
by its beginning position b(B), its ending position e(B), its size S(B) and its
length l(B) (see Figure 2). Since the block boundaries set in this initial structure
do not provide appropriate peak boundaries, overlapping blocks are joined into
peaks in the second step of the procedure. The biggest block (Bm) is selected
from C if S(Bm)≥S(C)*0.01. Then, all B overlapping with Bm are selected
and removed from C. The peak boundaries are extended using all blocks that
overlap with at least half of Bm and also fulfill S(B)≥S(Bm)*0.1. The leftmost
and rightmost coordinates of the remaining B are set as final boundaries and
the procedure restarts by selecting the next Bm. In the last step, the DESeq2
algorithm [56] assesses the statistical significance of each peak based on the
individual amount of reads counted for each of the peaks in the signal and
background libraries. The final output is a p-value sorted list.

Summary and Comparison A meaningful and fair comparison of the differ-
ent peak callers is problematic. On the one hand each tool incorporates several
parameters which change the behaviour of each peak caller significantly. On the
other hand no datasets of absolute truth exist on which the different tools can
be benchmarked. Tools that work only with very specific protocols because they
rely on signatures in the data that are introduced in these protocols can not
be fairly compared. In the following discussion, PARalyzer was not considered
because its method of finding peaks is specific to PAR-CLIP data and not ap-
plicable to other CLIP-seq methods. For the other tools (CLIPper, Piranha and
block-based peak calling) specific filtering steps were undertaken as explained in
the following. To give a quantitative measure for the comparison of the different
peak callers we propose a genomic position based metric. One position corre-
sponds to one nucleotide in the reference genome of the investigated organism.
Each position that is assigned to a peak by at least one peak caller is evaluated
on whether it is also within a peak region defined by the other tools.
The problem of peak calling can be considered as two distinct steps. The first
step consists of defining regions of interest solely based on the fact that one
or more signal libraries show an agglomeration of reads in these areas. The
second step is a statistical evaluation of these regions of interest where both
the signal and the background libraries are taken into account. The two peak
callers CLIPper and Piranha can perform a statistical analysis on just signal
libraries and report a p-value for the peaks they find. The block-based method
can only perform the first step of finding read-enriched areas and relies on other
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programs, i.e. DESeq2, to do the statistical analysis. If no replicate or control
samples are available, CLIPper’s or Piranha’s built-in functionality to estimate
the background distribution is obviously the only possibility to assign signif-
icances to peaks in the read profiles. In theory this is also possible for the
block-based method, but has not yet been implemented. Piranha offers the
possibility to add covariate datasets to improve estimation of the background.
CLIPper itself does not offer this capability, yet the significance of the regions
can be reevaluated with the scripts used in the eCLIP pipeline of the ENCODE
consortium [53]. Both Piranha and CLIPper cannot handle replicate samples
which are essential for the estimation of the technical or biological variance in
the experiments, which is why splitting up the two tasks as mentioned above
is advised when replicates are available. In the following paragraphs the three
tools Piranha, CLIPper, and blockbuster based peak calling are compared with
each other on one example dataset to illustrate similarities and some distin-
guishing features between the tools.
For this example the human RBP Histone Stem-Loop-Binding Protein (SLBP)
was chosen. An eCLIP experiment [22] was recently published for this RBP and
is available on the ENCODE consortium website 2. For the analysis we utilized
the files that provide the already mapped reads to reference genome hg19. The
second-in-pair reads which should contain the cross link position at their 5’ ends
have an average length of approximately 38 nucleotides. SLBP targets histone
protein mRNAs and has a well known stem-loop binding motif [57]. One tar-
get of SLBP are transcripts of HIST2H2AC with the aforementioned stem-loop
motif in its 3’ UTR. In Figure 3 eCLIP read profiles for this one target site are
depicted. The 3’ end of gene HIST2H2AC lies in the region 149.858800 mb –
149.858910 mb (see Figure 3 tracks 1-3). The read coverage and the read start
coverage (tracks 4,5) are the determining signals for the three different peak
callers CLIPper (track 6), extended blockbuster (track 7) and Piranha (track
8). Comparing the coverage tracks with its size matched input counterparts for
this region (track 4,5 red), it can be safely stated that this region is targeted
by SLBP. This one example already clearly illustrates some of the three tools’
major differences. Where CLIPper and the block-based approach follow the
overall read coverage, Piranha is more aligned with the read start distribution.
It should be noted that in this example the stem-loop motif starts right after
the peak that was called by Piranha (a more detailed discussion of this issue
can be found in the Conclusion section).

As stated above, a fair comparison is difficult to achieve when the tools are
very flexible with different parameter settings. For the following more general
analysis the tools were called with standard parameters where possible. The
other parameter settings are best guesses as a thorough evaluation of these
settings is beyond the scope of this review. To achieve an even higher parity in
the evaluation of the peak callers, the normalization and the statistical analysis
were done with the same pipeline. For CLIPper the ENCODE consortium offers
peak files in a BED-like format where the signal library is normalized with a size

2Datasets available at https://www.encodeproject.org/experiments/ENCSR483NOP/
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Figure 3: Comparison of called peaks on data stemming from an eCLIP exper-
iment of the RBP SLBP. Tracks from top to bottom. (1) and (2) location on
chromosome 1. (3) gene HIST2H2AC (thick) with 3’ UTR (thin) and stem-loop
motif region (SLM), (4) read coverage (SMI coverage in red), (5) read start
coverage (SMI coverage in red), (6) peaks called by CLIPper, (7) peaks called
by extended blockbuster, (8) peaks called by Piranha. The figure was generated
in the R environment [58] with gviz [59].

matched input library (SMI). The peak boundaries in these BED files were taken
as input for the second step of the peak analysis: counting the reads of the signal
and the input library that fall into each peak region and evaluating the fold
change in the region with DESeq2. Piranha was called with the signal library
only to define the peak boundaries and the normalization with the SMI was done
thereafter with the same pipeline as for CLIPper and the block-based approach.
Piranha can be used with covariates that should normalize the results, but the
results of this analysis did not allow for the filtering steps that were applied
afterwards as the output of Piranha in this mode was not verbose enough.
Furthermore it has to be mentioned that Piranha was called with a bin size
of 20 (-z 20) and the merging of bins was disabled (-u 0). Piranha calculates
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Figure 4: Venn diagram of genomic positions contained in peak regions defined
by the three peak callers.

Tools Number of peaks Average peak
length

Positions in
peaks

Piranha 116 (312) 53.79 (20.00) 6240
CLIPper 135 (180) 58.05 (43.54) 7837
Block-based 146 (180) 115.89 (97.97) 17635

Table 1: General statistics of called peaks for the three methods (in brackets:
adjacent peaks not merged).

p-values for merged bins counter-intuitively such that results with merged bins
were inconsistent because the implicit output filtering of peaks relies on these
p-values. In the block-based approach blockbuster was called with a minimum
block height of 10 (-minBlockHeight 10), the blocks were extended as described
and the resulting regions were again evaluated with DESeq2. Afterwards the
identified peak regions were filtered such that only those peaks were kept that
had a normalized fold change of at least 2 when comparing signal library to
SMI.

The genomic position based overlap between the different peak callers is
depicted in Figure 4 and the overall distribution of the peaks determined by
the different tools is shown in Table 1. The block-based approach is the most
inclusive as it generates the biggest total number of positions in peaks. The
number of peaks is quite similar for all three peak callers with the block-based
approach generating the longest peaks. Piranha generates many small peaks
that are adjacent to each other as expected due to disabled bin merging. Only
11.3 % of peak positions generated by Piranha are exclusive to that tool, for
CLIPper and extended blockbuster this percentage is much higher (35.2 % and
57.6 % respectively). This shows that there are significant differences between
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Tools Pros Cons Observations

Piranha
• models back-

ground
• fast

• p-value for
merged bin coun-
terintuitive

• fixed bin width
• no replicates

• calls peaks on
read starts

• takes read ends
instead of starts
for minus strand

CLIPper
• models back-

ground
• dynamic peak

width

• slow
• needs specific

annotation
• no replicates

• calls peaks only
on known tran-
scripts

• broad peaks

Block-based
• dynamic peak

width
• fast
• supports repli-

cates

• does not model
background

• relies on block-
buster and DE-
Seq2

• broad peaks
• peaks can over-

lap

Table 2: Observed assets and drawbacks of the described CLIP-seq peak callers.

the tools and it might be worth applying the different tools to the same dataset
to find significant regions and subsequently motifs. In any case, an in-depth
knowledge of the tools is advisable and the most appropriate tools should be
chosen based on the given wet-lab protocol. Table 2 gives an overview of the
three tools, adressing strengths, weaknesses and some general observations we
gathered during this analysis.

3.3 Postprocessing

The purpose of peak calling is to reduce the false positive rate and provide a
set of high affinity binding sites. Albeit peak calling corrects for differences in
expression levels to some extent, the results of a CLIP-seq experiment will still
be highly dependent on the expression state of the cells in which the experiment
was performed. This implies that the problem of false negatives remains since
binding sites in lowly expressed genes or genes that are not expressed at all
cannot be detected in a CLIP-seq experiment. Consider Figure 5, where we
display the read starts of a CLIP-seq experiment on an artificial genomic locus.
Due to unspecific binding, reads can be detected outside of true binding sites.
Most of these reads are discarded by peak calling. However, the false negatives,
i.e. the binding sites which are not covered by reads from the experiment,
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genome

location of true
but unkown sites

CLIP-seq read (starts)

false positives

false negatives

Figure 5: False positives and negatives for a CLIP-seq experiment with respect
to true but unknown binding sites.

cannot be found by the analysis described so far. This is a problem when using
published CLIP-seq data to analyse cell lines or tissues different from the cell
lines that were used to produce the CLIP-seq data. Even for same cell lines there
can be considerable variances in expression profiles and thus also differences in
recovered binding sites. To give one example, Maticzka et al. [60] re-analysed
data from an AGO knockdown by Schmitter et al. [61] using more recent CLIP-
seq data [29]. Schmitter et al. showed that genes up-regulated in an AGO
knockdown are enriched with putative miRNA-binding sites, consistent with a
direct regulation by miRNAs in the wild type. However, one may be inclined
to perform an analysis using published CLIP-seq data from the same cell line
(which exists), instead of in silico seed-based miRNA-binding site prediction,
as it was done by Schmitter et al. in the original publication. Surprisingly,
Maticzka et al. showed that CLIP binding sites are not enriched in the up-
regulated genes, probably due to the low expression of the miRNA-regulated
genes in the wild type.

Another example is the work in [62], which shows that publicly available
data can be more or less useless (or even harmful by leading to wrong biological
conclusions) when only the peak-called sites are used. The group was studying
the tumor suppressor ANXA7, which is alternatively spliced in glioblastoma
compared to normal tissue. They did several experiments to show that an
RNA-binding protein, namely the splice factor PTBP1, is involved. Firstly,
they showed that ANXA7 is alternatively spliced. Secondly, they searched for
differentially expressed splice factors (again between glioblastoma and normal
tissue) and showed that PTBP1 is the only such factor. Thirdly, they did
an RNA immunoprecipitation with PTBP1, finding that PTBP1 coprecipitates
ANXA7 RNA. The final step would have been to determine binding sites from a
publicly available CLIP-seq dataset, which exists [63]. In this publication a set of
binding sites was determined by peak calling. However, as shown in Figure 6B,
there are no called binding sites in the vicinity of the alternatively spliced gene,
which would lead one to wrongly conclude that there are no binding sites in this
transcript region.

Thus, to overcome these kinds of problems and to make publicly available
CLIP-seq data usable for a wider community, one has to predict these missing
binding sites. Of course, these predictions have to be accompanied by additional
experimental approaches to verify them. The general approach for predicting
binding sites is to learn a model from the sites detected by a CLIP-seq experi-
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Xue et al. 2009

M4 M5 M1
M2 M3 M6 M7

M11 M8

M9-
10Our predictions

D

E

raw data
Xue et al. 2013
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Figure 6: Exon structure of ANXA7 with the alternative exon E6, which is
differentially spliced in glioblastoma. Since exon E6 is repressed by PTBP1,
one would expect binding sites of PTBP1 to the left and right of exon E6 [63].
Albeit the raw data from the publicly available CLIP-seq experiment [63] shows
some reads in that region (A), no binding sites from the CLIP-seq experiment
(as determined by peak calling) can be found (B). We predicted ten binding sites
with GraphProt (C). Nine out of the ten predicted sites could be validated by
mutation experiments [62]. Track (D) shows the raw read data of a newer CLIP-
seq experiment [64]. Some reads accumulate around our predicted binding sites.
However, as shown in the mappability track (E), the predicted sites M6,M7, M9-
10 and M11 cannot be identified by the CLIP-seq experiment since the reads
cannot be uniquely mapped in that region.

ment, and to use this model to determine missing binding sites. In the following
we will focus on two approaches for binding site identification most commonly
used in CLIP-seq data analysis.

Affinity-based approaches The first types are affinity-based approaches,
which try to learn a model that estimates the affinity of the RNA-binding protein
P for a specific sequence s. In more detail, consider the binding reaction of a
protein P to an RNA sequence s at equilibrium. Then the affinity can be
determined by

Ka(s) =
[P -s]

[P ][s]
=
kon

koff
= e−∆G/RT (1)

where kon (resp. koff) is the rate of association (resp. dissociation), and
∆G is the free energy of binding. [P -s], [P ] and [s] are the concentrations of
the protein-sequence complex, the protein, and the sequence, respectively. Now
given a set of sequences {s1, . . . , sn} that are bound by P , let {[P -s1], . . . , [P -sn]}
be the associated counts indicating how often the sequence si occurs as a binding
site of protein P . The purpose of motif finding tools is to determine parameters
Θ for their models such that the associated score SΘ(s) for a sequence s is a good
estimate for the affinity, i.e. that SΘ(s) ≈ Ka(s). If we had enough data and
knew the concentration [s] of unbound s for each sequence, then the following
score
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SΘ(s) =
[P -si]

[si]
∑n

j=1[P -sj ]

provides such an estimate for the (relative) affinity. However, there are
two caveats. First, [si] is usually unknown, and is thus often estimated from
the background distribution of sequences. Secondly, datasets are usually too
small to provide a reliable estimate for SΘ(s) for all sequences s. Hence, these
scores are often approximated by assuming fixed-length motifs and independent
contributions of each position. This basically assumes that the free energy
contribution for each base is additive. Since the affinity is related to the free
energy as described by equation (1), additivity in the free energy contribution
translates to multiplicity in the score. Examples of these types of models are
position weight matrices (PWM) [65], as used by the popular MEME tool [66],
or position-specific affinity matrices (PSAM) [67].

Given fixed-length motifs, the question is how to score binding sites that
are longer than the motif size. Early approaches used the sum of the different
subsequences, however, this does not take the concentration of the protein and
the effect of binding on the concentration into account. A better approach is
to model the occupancy of the sequence by the protein. For a sequence s, the
occupancy N(s) is the probability that s is bound by P :

N(s) =
[P -s]

[P -s] + [s]
=

[P -s] [P ]
[P -s]

[P -s] [P ]
[P -s] + [s] [P ]

[P -s]

=
[P ]

[P ] +Kd(s)
,

where Kd(s) = Ka(s)−1 is the dissociation constant. Assuming that the
protein concentration [P ] is small compared to Kd(s) to ensure an efficient
regulatory scheme [68], one yields

N(s) ≈ [P ]

Kd(s)
= [P ]Ka(s).

Thus, for the small k-mers recognized by the models explained above, the
occupancy can be estimated from the score SΘ(s) ≈ Ka(s). For larger sequences,
one can determine the occupancy as the probability that at least one k-mer of
the sequence binds. This can be done using a “noisy OR” function [69] by
calculating this probability as 1 minus the probability that none of the k-mers
bind. RNAcontext [70] is a recent approach for learning sequence and structure
preferences for RNA-binding proteins which directly estimates the occupancy
of the k-mers using a logistic regression formulation of the occupancy term.

However, it is already known that pure sequence-based models are not good
for modeling binding sites on RNAs due to the disregard of secondary struc-
ture. Examples of early models that take secondary structure into account
are BioBayesNet [71] for DNA and MEMERIS [72] for RNA. More recently,
RNAcontext presented a more integrated approach, where the occupancy for
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Figure 7: A folded binding site in graph representation (left) and its associated
feature vector (right). The red shaded areas on the left indicate two subgraphs
of radius (r) 1 with the centre indicated by a red circle (two occurences). The
blue shaded area is an example of a subgraph with r=2 (one occurence). Again,
the blue circle indicates the central node of the subgraph.

a k-mer s is determined by taking a sequence contribution N seq(s), which is
interpreted as the occupancy of the sequence s in its optimal context, and mul-
tiplying it with a contribution of the structural context N struct(s, p). Here, p
is the matrix that assigns to each position a distribution of possible structural
states such as being in a hairpin, internal or multi loop, or being in a stem. p
is calculated from s using SFOLD [73].

Classification- and Regression-based Approaches Another type of ap-
proach is not based on a physical model but considers the problem of determin-
ing binding sites as a classification or regression problem. As a classification
task, in contrast to the previous approaches, one needs a positive set (i.e. the
regions determined by the peak caller) and a negative set, which are sites that
are not bound by protein. Since the latter is usually not available, the set of
negative instances has to be generated, e.g. by shuffling the true regions on the
genome. The idea is to determine features that differentiate the binding sites
from the non-binding sites. Oversimplifying, when using k-mers, one would try
to determine k-mers that are highly enriched in the positive data and depleted
in the negative data. However, a simple k-mer approach would not work due
to the complexity of the task. Instead, advanced machine learning approaches
have to be used.

One example for such an approach is GraphProt [60], which uses sequence-
and structure-based features for that purpose. The binding site together with
a collection of different near optimal foldings is encoded as a graph. Then,
GraphProt considers small subgraphs that are determined by two different pa-
rameters, namely radius r and distance d, as features. Starting from each node
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of the graph, the radius defines how many edges can be visited to determine
the subgraph. The distance parameter d includes as features all possible pairs
of subgraphs determined by the radius r that have an edge distance of exactly
d. Thus, these features can be considered as the upgrade from sequence k-mers
with gaps to graphs. The number of occurrences of these subgraphs are stored
into a huge but sparse feature vector (see Figure 7). These feature vectors for
each binding and non-binding site are then used by a support vector machine as
input to discriminate positive from negative sites. If quantitative binding data
is available, support vector regression instead of support vector classification
can be used.

Another example for a regression-based approach is iONMF [74], which uses
orthogonal matrix factorization to determine a model for the strength of bind-
ing sites. iONMF basically uses as features the probability of each position
around the binding site to be double-stranded, the number of occurrences for
all possible 4-mers in a region around the binding sites, the region type, the GO
annotation of the RNA, and the CLIP-seq counts for a collection of proteins
different from the one investigated as possible features. The idea for training a
model is to determine a coefficient matrix for a linear regression task. I.e. mul-
tiplying these coefficients with the values for the features listed above should
approximate the CLIP-seq counts of the actual experiment as well as possible,
using the determined values for all features. Once this is achieved, new bind-
ing sites can be scored by determining the feature values and multiplying them
with the coefficients. However, due to the large number of features, one would
immediately run into overfitting problems. Omitting a lot of details, iONMF
introduces a new approach for orthogonal matrix factorization. The idea is to
yield a low-rank approximation of the feature matrices by determining modular
projection of the original data matrices, yielding an effective regularization by
avoiding multicollinearity between feature vectors.

4 Conclusion

CLIP-seq is currently one of the most important means to determine binding
sites of RNA-binding proteins on a genome-wide level. Since peak height alone
is not a good measure of significance, we advise preparing signal and back-
ground CLIP-seq libraries in replicates. This enables highly specific removal of
background noise from the signal data under application of statistical modeling.

The computational analysis of CLIP-seq data requires three steps, which
have to be adapted to the specificities of the CLIP protocols to different extents.
The first and most protocol-specific step is the preprocessing of the raw data.
Sequenced reads have to be trimmed and mapped to the genome or the tran-
scriptome. What exactly has to be trimmed depends on the adapter sequences,
as well as barcode sequences for PCR duplicate removal and de-multiplexing.
For the mapping part, several widely-applied tools exist which can also handle
splice-sensitive mapping.

The second, and one of the most important steps, is peak calling, which
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determines high confidence binding sites by removing signals corresponding to
unspecific binding. Here, both protocol-specific and generic peak callers exist.
However, as shown in the comparison of different peak callers, results can vary
drastically. This can even hold within individual tools when they are run using
slightly different parameter settings. Thus, depending on the data, it might be
worth to apply and compare the results of different peak calling techniques.

In the example case (see Figure 3) Piranha did not include the actual binding
motif, which forms a stem-loop structure recognized by SLBP. Instead, bins get
called in the upstream vicinity where most read starts occur. This is expected
and not a flaw of the algorithm, since Piranha only takes read starts into account.
It is known that double-stranded regions are less efficiently crosslinked in CLIP,
which would explain the upstream accumulation of crosslink events. On the
other hand, transcriptome-wide RBP binding preferences, whether sequence-
or structure-dependent or both, are usually not known in advance, and thus
one has to rely on the called sites to extract these preferences. Clearly, one
may extend the called sites to include more nucleotides, but this can increase
the amount of noise and other potentially (non-)RBP specific motifs returned
by the analysis. All tested tools can be a reasonable choice, depending on the
CLIP-seq protocol, but one should keep in mind their assets and drawbacks
(Table 2). For a comprehensive analysis, we recommend trying more than one
peak caller, especially if control experiments and replicates are present, which
should become standard in future CLIP-seq experiments. A compound strategy,
where the steps of site definition and their statistical evaluation are split between
programs, could further improve results. Newly developed peak callers should
combine the aforementioned strengths of the described programs. In addition,
a more thorough study with true positive sets for RBPs targeting structure
and sequence features could help to answer the question of which peak caller is
suitable in which scenario.

In the last step, which is more or less protocol-independent, motifs are de-
termined and binding models are inferred from the regions identified by the
peak caller. The importance of this step is currently largely underestimated.
However, without training binding models, published CLIP-seq data can hardly
be utilized as they are. In the worst case, the direct use of regions identified
in CLIP-seq data on different cells / conditions can lead to wrong conclusions
concerning the underlying regulatory mechanisms. The reason is simply that
a CLIP-seq experiment is expression-dependent, and binding sites in lowly or
not expressed genes are not discovered. If an RNA is expressed in the currently
investigated cell type but not in the cell type used for the original CLIP-seq
experiment, then binding models can be applied to determine potential miss-
ing binding sites. Utilizing these prediction approaches in combination with
validation experiments can therefore largely extend the explanatory power of
CLIP-seq datasets.
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dra Vasile, Yasuhiro Murakawa, Markus Schueler, Noah Youngs, Duncan
Penfold-Brown, Kevin Drew, Miha Milek, Emanuel Wyler, Richard Bon-
neau, Matthias Selbach, Christoph Dieterich, and Markus Landthaler. The
mRNA-bound proteome and its global occupancy profile on protein-coding
transcripts. Mol. Cell, 46(5):674–690, 8 June 2012.

[3] Alfredo Castello, Bernd Fischer, Katrin Eichelbaum, Rastislav Horos,
Benedikt M Beckmann, Claudia Strein, Norman E Davey, David T
Humphreys, Thomas Preiss, Lars M Steinmetz, Jeroen Krijgsveld, and
Matthias W Hentze. Insights into RNA biology from an atlas of mam-
malian mRNA-binding proteins. Cell, 149(6):1393–1406, 8 June 2012.

[4] Debashish Ray, Hilal Kazan, Kate B Cook, Matthew T Weirauch, Hamed S
Najafabadi, Xiao Li, Serge Gueroussov, Mihai Albu, Hong Zheng, Ally
Yang, Hong Na, Manuel Irimia, Leah H Matzat, Ryan K Dale, Sarah A
Smith, Christopher A Yarosh, Seth M Kelly, Behnam Nabet, Desirea Mece-
nas, Weimin Li, Rakesh S Laishram, Mei Qiao, Howard D Lipshitz, Fabio
Piano, Anita H Corbett, Russ P Carstens, Brendan J Frey, Richard A
Anderson, Kristen W Lynch, Luiz O F Penalva, Elissa P Lei, Andrew G
Fraser, Benjamin J Blencowe, Quaid D Morris, and Timothy R Hughes. A
compendium of RNA-binding motifs for decoding gene regulation. Nature,
499(7457):172–177, 11 July 2013.

[5] Stefanie Gerstberger, Markus Hafner, and Thomas Tuschl. A census of
human RNA-binding proteins. Nat. Rev. Genet., 15(12):829–845, December
2014.

[6] Stefanie Gerstberger, Markus Hafner, Manuel Ascano, and Thomas Tuschl.
Evolutionary conservation and expression of human RNA-binding proteins

23



and their role in human genetic disease. Adv. Exp. Med. Biol., 825:1–55,
2014.

[7] Silvia Carolina Lenzken, Tilmann Achsel, Maria Teresa Carr̀ı, and Silvia
M L Barabino. Neuronal RNA-binding proteins in health and disease.
Wiley Interdiscip. Rev. RNA, 5(4):565–576, July 2014.

[8] Aditi Gupta, Gupta Aditi, and Gribskov Michael. The role of RNA
sequence and structure in RNA–Protein interactions. J. Mol. Biol.,
409(4):574–587, 2011.

[9] Eckhard Jankowsky and Michael E Harris. Specificity and nonspecificity
in RNA-protein interactions. Nat. Rev. Mol. Cell Biol., 16(9):533–544,
September 2015.

[10] Yoichiro Sugimoto, Alessandra Vigilante, Elodie Darbo, Alexandra Zirra,
Cristina Militti, Andrea D’Ambrogio, Nicholas M Luscombe, and Jernej
Ule. hiCLIP reveals the in vivo atlas of mRNA secondary structures rec-
ognized by staufen 1. Nature, 519(7544):491–494, 26 March 2015.

[11] Yasuhiro Murakawa, Murakawa Yasuhiro, Hinz Michael, Mothes Janina,
Schuetz Anja, Uhl Michael, Wyler Emanuel, Yasuda Tomoharu, Mas-
trobuoni Guido, Caroline C Friedel, Dölken Lars, Kempa Stefan, Schmidt-
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