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Abstract

Motivation: The identification of disease–gene associations is a task of fundamental importance in human health re-
search. A typical approach consists in first encoding large gene/protein relational datasets as networks due to the
natural and intuitive property of graphs for representing objects’ relationships and then utilizing graph-based techni-
ques to prioritize genes for successive low-throughput validation assays. Since different types of interactions be-
tween genes yield distinct gene networks, there is the need to integrate different heterogeneous sources to improve
the reliability of prioritization systems.

Results: We propose an approach based on three phases: first, we merge all sources in a single network, then we
partition the integrated network according to edge density introducing a notion of edge type to distinguish the parts
and finally, we employ a novel node kernel suitable for graphs with typed edges. We show how the node kernel can
generate a large number of discriminative features that can be efficiently processed by linear regularized machine
learning classifiers. We report state-of-the-art results on 12 disease–gene associations and on a time-stamped
benchmark containing 42 newly discovered associations.

Contact: f.costa@exeter.ac.uk

Availability and implementation: Source code: https://github.com/dinhinfotech/DiGI.git.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The identification of causal links between genes and diseases is one
of the main goals in human health research. To this end, biologists
use high-throughput techniques to obtain vast amounts of data from
which to derive some initial hypothesis. These hypotheses are then
refined until a carefully selected subset is finally experimentally vali-
dated using low-throughput techniques to ascertain the mechanistic
and causal relationships. One of the main challenges is how to effi-
ciently exploit the large amount of genomics data to accelerate the
pace of discoveries. A common approach involves starting from a
set of genes which are believed to be causally related to a specific
disease and then identify, in the set of remaining genes, those miss-
ing genes that are potentially involved. This is done by exploiting
associations between genes (or the proteins they code for) based on
protein–protein interactions, shared biochemical pathways, etc. One
can, therefore, formulate a ranking problem, where the desired out-
put is the prioritization of genes according to their probability of
being associated with the disease. Ideally, limiting the expensive ex-
perimental validation to the most probable genes only, we can in-
crease the overall efficiency of the gene–disease discovery process.

Recently, several approaches have been proposed that encode
large amounts of relational information using the formalism of net-
works (Moreau and Tranchevent, 2012), motivated by (i) the ease
with which graphs can encode relational data and (ii) the observa-
tion that genes responsible for similar diseases are often found in the
linked neighborhood of one another (the guilt-by-association hy-
pothesis). A successful family of prioritization approaches is based
on graph kernels, which is a flexible way to induce predictive esti-
mators well suited for discrete structures, such as graphs.

Integrating heterogeneous sources of information is, however,
not an easy task. The heterogeneity arises from the different type of
relationships that can be used to build the network. These can range
from genomics proximity, to co-expression, from experimentally
validated physical interactions, to associations mined from medical
literature. It is, therefore, desirable to integrate different heteroge-
neous data sources in a flexible way so as to improve the accuracy
and reliability of the predictive estimate by compensating the noise
present in one source with more reliable information in another.
When we consider the stage at which the data sources are combined,
multiple sources gene prioritization approaches can be divided into
two main groups.
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The first group consists of methods that define similarities be-
tween genes from each data source separately and then combine the
similarities in a single gene similarity notion. EPU (Yang et al.,
2014) [a modification of PUDI (Yang et al., 2012)] is an approach
that, differently from other methods that treat unknown genes
homogeneously, partitions the unknown gene set in multiple posi-
tive and negative sets with different confidence scores (weights). It
then employs an ensemble procedure to compute the final score. In
Chen et al. (2011), a method named DIR is proposed that integrates
multiple data sources using a unified representation. It then adopts a
diffusion kernel to define a pairwise gene similarity. Finally, it inte-
grates all rank scores to select the most informative evidence among
a set of data sources. ProDiGe (Mordelet and Vert, 2011) is an effi-
cient method that uses multiple kernel learning (MKL) to combine
several data sources. The global pairwise similarity between genes is
computed combining the similarity between auxiliary gene informa-
tion, encoded as a feature vector and the diffusion kernel. Then a
MKL algorithm is used to combine pre-defined kernels and learn an
optimal combined kernel. Note that while the number of data sour-
ces can be arbitrary, only a single type of kernel is used. In Chen
et al. (2014), a kernel-based Markov random field (MRF) algorithm
is proposed. From a prior probability vector, the MRF algorithm
computes the posterior which is interpreted as the probability of
each candidate gene to be related to the selected disease. A modifica-
tion of the Gibbs sampling procedure allows to weight differently
each data source. This approach is flexible and accurate but has a
high time complexity. F3PC (Chen et al., 2015) uses a modified con-
ditional random field model, that simultaneously utilizes both gene
annotations and gene interactions while preserving their original
representation. Scuba (Zampieri et al., 2018) is a scalable MKL
method that can deal with a high number of data sources in linear
time complexity w.r.t number of sources and a constant memory
consumption. A common drawback of these approaches is that,
while different sources can be weighted differently, all nodes (genes)
in a given network are considered equally important. This hinders
the capacity to finely discriminate some genes as more relevant for a
specific disease than others.

The second group includes methods that merge networks
obtained from different sources and then define a notion of gene
similarity on the resulting global network. An example of a system
that belongs to the second group is RWR (Köhler et al., 2008) that
merges all networks and then uses a random walk with restart to in-
duce a pairwise gene similarity notion. Another example is
SmuDGE (Alshahrani and Hoehndorf, 2018), where information on
genes, phenotypes and diseases are combined in a single knowledge
graph. Genes and diseases are then vectorized using skipgrams and
the resulting encoding is finally processed by a neural network to
learn a prioritization model. This type of approaches does not distin-
guish the importance of individual sources and combines them be-
fore the definition of a similarity notion. As a result, the
characteristics of each network are lost and the properties of individ-
ual graphs are generally not further exploited.

A number of methods are available also as web servers, such as
Suspects (Adie et al., 2006), ToppGene (Chen et al., 2007),
GeneDistiller (Seelow et al., 2008), GeneWanderer (Köhler et al.,
2008), Posmed (Kobayashi and Toyoda, 2011), Candid (Hutz et al.,
2008), Endeavor (Aerts et al., 2006) and Pinta (Nitsch et al., 2010).
See Börnigen et al. (2012) for a review.

Integration system based on graph kernels often employ a MKL
strategy (Aiolli and Donini, 2015; Gönen and Alpaydin, 2011;
Wang et al., 2015; Zampieri et al., 2018), where specific kernel simi-
larities are defined for each source of information separately and the
overall similarity notion is then expressed as weighted combination
of the individual kernels, with weights that need to be specifically
tuned for each disease.

In this article, we propose a method, named Disjunctive Graph
Integration (DiGI), that does not suffer from these disadvantages.
We develop an efficient node kernel that considers features from all
pairs of sources once these have been merged in a single network.
The node kernel is not based on a diffusion notion, as in most of the
other proposals, but rather operates via a decomposition approach.

This yields a large number of highly specific features that can be
exploited by regularized estimators, such as support vector
machines, to obtain significantly improved predictive accuracy. We
show that we can achieve state-of-the-art results on a time-stamped
benchmark in which predictions are made and only benchmarked
later on when enough new data have accumulated.

2 Materials and methods

DiGI system introduces some novel key concepts in order to inte-
grate heterogeneous networks in an effective way: firstly, we distin-
guish relations that are important when considered jointly
(conjunctive), from relations that are useful to give contextual hints
(disjunctive); secondly, we introduce decomposition techniques to
partition the set of edges in the combined network in these two
types; and lastly, we introduce an efficient node graph kernel that is
aware of and can exploit the disjunctive/conjunctive distinction.

Sources combination: we first build a network representation of
the information source by considering all genes as nodes and materi-
alizing an edge between two genes if the relationship is considered
sufficiently certain (the thresholds will depend on the type of data
source). Note that, here, we consider the set intersection of all genes,
i.e. all genes that are in common among all data sources. All nodes
are then uniformly labeled using only the information source identi-
fier (i.e. the database name) and no auxiliary information or gene
identifier is employed at this stage. Using a more complex gene rep-
resentation (e.g. using a vector to encode functional descriptors) is
left for future work. We then combine the various networks by link-
ing all pairs of nodes that represent the same gene in different sour-
ces (see Fig. 1). Note that considering sources that have a different
‘density’ (i.e. average number of relations per gene) is not an issue,
since our approach will ultimately operate on a single combined
graph.

Node kernel: a common strategy to build node kernels for gene
networks is to use the notion of diffusion, i.e. spreading the informa-
tion available on whether a gene is known to be related or not, in a
discounted fashion along the network connections. The disadvan-
tage of this approach is that information on the exact topological
configuration of various parts of the network is lost and only distan-
ces are considered. Here, we expand the recent work presented in
Van et al. (2017) and propose instead to use a more expressive de-
composition kernel. The idea is to extract fragments from the local
neighborhood around genes of interest and consider those as fea-
tures. These can represent notions, such as ‘at two hops away there
is a gene with a high degree connected to two genes with very low
degree’, and many others. To be more precise, we consider as

BioGPS

Pathways

HPRD

Fig. 1. Information integration: each information source [HPRD (Chatr-Aryamontri

et al., 2015), BioGPS (Wu et al., 2009) and Pathways (Kanehisa and Goto, 2000;

Schaefer et al., 2009; Vastrik et al., 2007; Whirl-Carrillo et al., 2012)] is encoded as

a graph in a distinct layer with nodes representing genes. All pairs of nodes (marked

with the same color) that refer to the same gene are connected to form a single uni-

fied network
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features all nearby pairs of fragments, where we distinguish the
structure of each fragment and their exact distance (a formal explan-
ation of the feature extraction procedure is given below). The idea is
to extract tens of thousands of features and then let regularized pre-
dictive methods learn their relative importance for each specific dis-
ease prediction task.

Decomposition issues: one drawback of decomposition methods,
such as the one employed here, is that, in order to be efficient, these
methods often employ exact subgraph matching, i.e. two subgraphs
are tested for isomorphism and are not tested for a ‘softer’ notion of
similarity that allows a successful match of two fragments when they
share, say, 90% of the nodes. In our approach, we consider as frag-
ments only neighborhood subgraphs, i.e. given a node, we consider
the subgraph formed by all nodes that can be reached in a pre-
determined number of hops (the radius of the neighborhood). This
strategy allows us to generate a reduced number of fragments and
hence features (there are only as many neighborhoods of a fixed size
as there are nodes in a graph) compared to the exponential number
of possible subgraphs. Our approach is very efficient and works very
well (see e.g. Costa and De Grave, 2010) on sparse graphs with small
maximal node degree (like molecular graphs); however, biological
networks often exhibit ‘small-world’ properties where the presence
of a few ‘hub’ nodes (i.e. nodes with very high degree), causes short-
circuits in the majority of paths between any two nodes. Our notion
of features, i.e. of pairs of fragments at various distances, becomes in
these cases degenerate since (i) only few integer distance values are
possible and (ii) neighborhood subgraphs will often be very large as
they will likely include high-degree nodes. In these cases, we end up
obtaining only few fragments, which in addition are very large and
very specific and will likely never match exactly anywhere else in the
network, making learning and generalization next to impossible.

Edge type: to address the aforementioned issues, we have devel-
oped a decomposition kernel that distinguishes two edge types,
called the conjunctive and the disjunctive edge type. The idea is to
mark edges with an attribute that tells the kernel if the edge has to
be considered in a ‘soft/contextual’ way (disjunctive) or it is manda-
tory (conjunctive), i.e. if the matching is to be tolerant to the absence
of the edge or not. A hub node could then have all its edges marked
as disjunctive and allow for a softer context match with other hub
nodes without the need to share exactly all of them. The way we do
this is to consider only conjunctive edges when we are building the
neighborhood subgraphs, but to consider the disjunctive edges when
computing distances between pairs of fragments (see Fig. 4).

Network decomposition: Tthe aim of network decomposition is
to decompose a given network into a collection of liked subgraphs.
There is an implicit trade-off when assigning the conjunctive/dis-
junctive type to edges: on the one hand, disjunctive edges are useful
to allow soft matches, on the other hand, conjunctive edges are use-
ful to build complex features. If we use only disjunctive edges, we
obtain as features the occurrences of node labels (i.e. the label histo-
gram) because our neighborhood can never extend beyond each in-
dividual node; if we use only conjunctive edges and we have nodes
with high degree, as mentioned earlier, we end up obtaining features
that occur only once in the whole dataset and no useful generaliza-
tion can take place. To strike a balance, we employ two (non-

adaptive) strategies: (i) the k-core decomposition (Fig. 2) and (ii) the
clique decomposition (Fig. 3). In future work, we will devise adap-
tive strategies to identify edge types in a task dependent way. The k-
core-decomposition strategy (see Fig. 2) consists in identifying nodes
with high degree and separates them from the low-degree nodes.
This partitioning forms connected components that can be iterative-
ly decomposed. The edges in each component are marked as con-
junctive while the edges across components (i.e. those edges that
connect low degree nodes with high degree nodes) are marked as
disjunctive. The clique-decomposition (see Fig. 3) strategy consists
in replacing a clique (i.e. a complete subgraph where each node is
connected to every other node) with a representative node and
assigns to that node all incoming edges. The original nodes are still
available but are now connected via disjunctive nodes and can there-
fore be matched in a soft way. These strategies allow us to decom-
pose networks that have high degree nodes in low-degree
components interconnected by disjunctive edges and hence preserv-
ing the original relational information but in a way that can now be
conveniently processed by a highly discriminative node kernel.

Procedure pipeline: in summary, our approach consists of the
following steps: (i) we define a node decomposition kernel that dis-
tinguishes between conjunctive and disjunctive edge types; (ii) we
encode each information source as a network with genes as nodes
and reliable relations as edges; (iii) we decompose each network
applying the k-decomposition core first and the clique decompos-
ition after; (iv) we join all information networks by linking all corre-
sponding genes with disjunctive edges; (v) we use the node kernel as
a feature constructor to extract a direct feature encoding for each
node; (vi) for each disease, we fit a classifier (a regularized linear
SVM in our case) to predict if a node belongs to the positive class
(associated to the disease) or to the negative class (not associated);
and (vii) we use the prediction confidence (i.e. the distance from the
separating hyperplane) to impose a total order on the test instances
and we rank them accordingly.

In the following, we provide the formal definitions of the notions
previously introduced.

2.1 Background, definition and notations
We consider a graph as a tuple G ¼ ðV;E; fd; fcÞ, where V, E are the
set of nodes and edges, respectively; fd : V ! L is the discrete label
function that assigns each node of graph a discrete label in L.

Discrete labels are used for graph isomorphism checking; fc : V !
R

k is the real label function assigning each node a k-dimensional
real attribute vector. We define the distance D(u, v) between two
nodes u and v, as the number of edges on the shortest path between
them. The neighborhood of a node u with radius r,
NrðuÞ ¼ fv jDðu; vÞ � rg, is the set of nodes at distance not greater
than r from u. The corresponding neighborhood subgraph Nu

r is the
subgraph induced by the neighborhood (i.e. the subgraph obtained
considering all the edges with endpoints in the node setNrðuÞ). The
degree of a node u, degðuÞ ¼ jNu

1 j, is the cardinality of its neighbor-
hood. The maximum node degree in the graph G is indicated as
deg(G).

Disease–gene prioritization: Ggiven a set of genes associated to a
genetic disease and a set of candidate genes, disease–gene prioritiza-
tion is a task which aims at ranking the candidate genes based on
their likelihood of being related to the disease.

Given a set of genes G ¼ fg1; g2; . . . ; gNg and a set of diseases
D ¼ fd1; d2; . . . ; dkg, we define the set of genes associated with

Fig. 2. K-core decomposition: nodes are partitioned according to their degree: given

a degree threshold (here D ¼ 3) all nodes with degree less or equal than D are con-

sidered in part 1 (nodes with light color) and the others in part 2 (nodes with dark

color). Edges between nodes in different parts are marked as disjunctive (repre-

sented with dashed line) (center), the others as conjunctive. The procedure is iterated

until there are no nodes with degree exceeding the threshold (right)

Fig. 3. Clique decomposition: a four-clique is abstracted by a new node. All edges

incident on the original nodes are transferred to the new node. Original nodes are

linked by disjunctive edges to the abstract node
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disease d as Pd ¼ fg1; g2; . . . ; gpg � G, the set of genes not associ-

ated with disease d as N d ¼ fg1; g2; . . . ; gng and the set of candidate

genes as Ud ¼ G n ðPd [N dÞ. We call gene prioritization the task of

ranking a candidate-set of genes Ud according to their likelihood of
being related to disease d.

The conjunctive disjunctive node kernel (CDNK): Iin Van et al.
(2017, 2018), we proposed the CDNK as an extension of the decom-
position graph kernel, neighborhood subgraph pairwise distance
kernel (NSPDK) (Costa and De Grave, 2010), to define a similarity
notion between nodes within graphs rather than between entire
graphs.

In NSPDK, a graph G is decomposed in features (pairwise neigh-
borhood subgraphs) constituted by couples of subgraphs of radius r
rooted at nodes of G which are at distance d. Given two rooted
graphs Au, Bv, where u and v are nodes of G, the relation
Rr;dðAu;Bv;GÞ is true iff Dðu; vÞ ¼ d and Au ffi Nu

r is (up to iso-

morphism ffi) a neighborhood subgraph of radius r of G as well as

Bv ffi Nv
r . We denote with R�1 the inverse relation that returns all

pairs of neighborhoods of radius r at distance d in G,

R�1
r;d ðGÞ ¼ fðAu;BvÞjRr;dðAu;Bv;GÞ ¼ trueg. The kernel jr;d over

G � G, counts the number of such fragments in common in two input
graphs:

jr;dðG;G0Þ ¼
X

ðAu ;BvÞ 2R�1
r;d
ðGÞ

ðA0
u0 ;B

0
v0 Þ 2R�1

r;d
ðG0Þ

1AuffiA0
u0
� 1BvffiB0

v0
;

where 1AffiB is the exact matching function that returns 1 if A is iso-
morphic to B and 0 otherwise. Finally, the NSPDK is defined as
KðG;G0Þ ¼

P
r

P
d jr;dðG;G0Þ, where for efficiency reasons, the val-

ues of r and d are upper bounded by given maximal values r� and
d�, respectively.

CDNK extends NSPDK and defines a node kernel KðGu;Gu0 Þ be-
tween two copies of the same network G where it distinguishes the
nodes u and u0, respectively. In addition, we consider a bipartition
of the edge set in the conjunctive (^) and disjunctive (_) part, i.e.
E ¼ E^ [ E_, to induce an edge type notion. We denote a graph
with ^;_ edges with G^_. We define the KðG^_u ;G^_u0 Þ between

nodes u and u0 belonging to G^_ as follows. When computing dis-
tances to induce neighborhood subgraphs, only conjunctive edges
are considered. When choosing the pair of neighborhoods to form a
single feature, we additionally consider roots u and v that are not at
distance d but such that u is connected to w via a disjunctive edge
and such that w is at distance d from v (see Fig. 4). In this way, dis-
junctive edges can still allow an information flow even if their end-
points are only considered in a pairwise fashion and not jointly.

In order to obtain a formal definition of the proposed kernel, we
start by defining new specific notions of distance and neighborhood
subgraph, which only depends on conjunctive edges. With D^ðu; vÞ,
we denote the length of a shortest path between u and v (belonging

to G^_) where all edges are conjunctive edges. We can then define

N^r ðuÞ ¼ fv jD^ðu; vÞ � rg and the conjunctive neighborhood sub-

graph N^u
r as the subgraph induced by N^r ðuÞ only considering con-

junctive edges. We can now define two relations: the conjunctive
relation R^r;d;uðAw;Bv;G

^_Þ, which is true iff w ¼ u and D^ðw; vÞ ¼
d and Aw ffi N^w

r , is (up to isomorphism ffi) a conjunctive neighbor-

hood subgraph of radius r of G^_ as well as Bv ffi N^v
r ; the disjunct-

ive relation R_r;d;uðAw;Bv;G
^_Þ which is true iff w ¼ u and

Aw ffi N^w
r and Bv ffi N^v

r are true and 9z s.t. ðD^ðz; vÞ ¼ dÞ
^ ððw; zÞ is a disjunctive edgeÞ. We define j^_r;d on the inverse rela-

tions R^�1
r;d;u and R_�1

r;d;u as j^_r;d ðG^_u ;G^_u0 Þ ¼ CþD, where

C ¼
X

A0u0 ;B
0
v0 2R^�1

r;d;u0 ðG
^_Þ

Au ;Bv2R^�1
r;d;u
ðG^_Þ

1AuffiA0
u0
� 1BvffiB0v0

;

D ¼
X

A0
u0 ;B

0
v0 2R_�1

r;d;u0 ðG
^_Þ

Au ;Bv2R_�1
r;d;u
ðG^_Þ

1AuffiA0
u0
� 1BvffiB0v0

:

The CDNK is defined as KðG^_u ;G^_u0 Þ ¼
P

r

P
d j^_r;d ðG^_u ;G^_u0 Þ,

where once again for efficiency reasons, the values of r and d are
upper bounded to a given maximal r� and d�.

Direct feature extraction: Rrather than working in the kernel
space with quadratic complexity, we follow Costa and De Grave
(2010) and extend the explicit feature generation technique that can

express KðG;G0Þ directly as hwðGÞ;wðG0Þi. We then build /ðG^_u Þ
to express KðG^_u ;G^_u0 Þ ¼ h/ðG^_u Þ;/ðG^_u0 Þi. In this article, /ðG^_u Þ
is a feature constructor procedure that can take a typed network
with a distinguished node and return a sparse vector representation

in R
n with n ¼ 230. To do so the key idea is to calculate a quasi-

isomorphism certificate hash codes for the graph fragments. These
hashes can then be used to compute codes for the pairs of neighbor-
hood subgraphs at given distances and ultimately yield a direct fea-
ture indicator [see Costa and De Grave (2010) for full details]. The
feature description associated to an individual node is finally
obtained as the union of all the pairwise features that have one of
the roots centered in that node.

Auxiliary node information integration: To integrate auxiliary
information available on nodes, fc, we upgrade the feature con-

structor procedure via UðG^_u Þ ¼ /ðG^_u Þ � fcðuÞ, where ‘*’ is the

convolution operation. In words, the vector representation for each
node is obtained convolving the associated real vector with the
CDNK sparse vector resulting from structural information as
defined previously. The kernel, now suitable for graphs with real-

valued vector labels, is defined as KðG^_u ;G^_u0 Þ ¼ hUðG^_u Þ;
UðG^_u0 Þi.

2.2 Information source integration
Each information source is encoded independently as a graph with
genes as the node set and edges as reliable pairwise relations. The
relations in each information source need to be thresholded as an in-
dependent and domain specific pre-processing step, i.e. edges are
not associated to real-valued reliability scores, but rather edges that
are above the threshold are materialized and those below are
removed. Each resulting graph is called a ‘layer’ and is indicated as
Gl where l 2 f1; . . . ;Lg and L is the number of layers. Given two
layers Gi and Gj and two nodes gi

u 2 Gi; gj
v 2 Gj such that gi

u and gj
v

identify the same gene gk 2 G, i.e. gi
u 	 gj

v 	 gk, we add a disjunctive
edge with endpoints gi

u and gj
v (see Fig. 1).

2.3 Network decomposition
Decompositional graph kernels based on neighborhoods do not
work well when nodes have high degrees. Unfortunately, in biologic-
al networks high degree nodes are likely to occur. To tackle this
issue, Van et al. (2017) introduces a network decomposition proced-
ure to obtain a collection of sparse sub-networks connected by dis-
junctive edges. The proposed decomposition is a two-step procedure

Fig. 4. Given a graph (left) a CDNK feature is defined as a pair of near neighbor-

hood subgraphs. Each feature is defined by two neighborhood subgraphs with mu-

tual distance d. Each neighborhood is defined by a root vertex and a radius r (r ¼ 1

in this case). Two features are depicted in the figure (right): one has roots u and v

and the second has roots u and v0. The distance between the neighborhood sub-

graphs is the length of the path (marked in red) between the respective roots. Note

that a disjunctive edge (dashed line) works as a displacement: from u, we move to

the node connected by the disjunctive edge and we consider that as the starting point

for the path. (Color version of this figure is available at Bioinformatics online.)
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where the iterative k-core decomposition is followed by the clique
decomposition.

Iterative k-core decomposition: The node set is partitioned in
two groups on the basis of the degree of each node w.r.t. a threshold
degree D. The node partition is used to induce the conjunctive ver-
sus disjunctive edge partition: edges that have endpoints in the same
part are marked as conjunctive, while edges with endpoints in differ-
ent parts are marked as disjunctive. We apply the k-core decompos-
ition iteratively considering only the graph induced by the
conjunctive edges until no node has a degree greater than D (the de-
gree is defined by only considering incident conjunctive edges).

Clique decomposition: Cliques are abstracted in a new ‘represen-
tative’ node. All the cliques with a size (i.e. number of nodes) greater
than a user defined threshold size C are identified. The endpoints of
all edges incident on the clique’s nodes are transferred to the repre-
sentative node. Disjunctive edges are introduced to connect each
node in the clique to the representative. Finally, all edges with both
endpoints in the clique are removed.

2.4 Gene feature vectors
For each node/gene gk, we employ CDNK to extract its correspond-
ing explicit feature encoding. We then average all vectors across in-
formation layers, which correspond to nodes encoding the same
gene:

/ðgkÞ ¼
1

L

X

i;ujgi
u	gk

/ðGi
uÞ

for each gk 2 G. The resulting vectors are then used to build the data
matrix. This can then be processed by any machine learning classi-
fier that can receive a sparse input format, such as most implementa-
tions of support vector machines.

3 Empirical evaluation

We evaluate the performance of DiGI in two experimental settings.
In the first setting, cross-validation, we compare our method with
other state-of-the-art methods for disease–gene prioritization on 12
disease–gene associations using a leave-one-gene-out setup. In the
second setting, unbiased, we compare our method with popular web
servers for disease–gene identification on a time-stamped benchmark
containing 42 newly discovered associations.

3.1 Data sources
In the experiments, we use the following sources of gene
information.

• Human Protein Reference Database (HPRD): a database of cura-

ted proteomic information pertaining to human proteins. It is

derived from Keshava Prasad et al. (2009) with 9465 vertices

and 37 039 edges. We employ the HPRD version used in Chatr-

Aryamontri et al. (2015) that contains 7311 nodes and 30 503

edges.
• BioGPS (Van Dam et al., 2015; Wu et al., 2009): a gene co-

expression graph (7311 nodes and 911 294 edges) constructed

from the BioGPS dataset, which contains 79 tissues, measured

with the Affymetrix U133A array. Edges are inserted when the

pairwise Pearson correlation coefficient between genes is larger

than 0.5.
• Pathways: pathway datasets are obtained from the database of

KEGG (Kanehisa and Goto, 2000), Reactome (Vastrik et al.,

2007), PharmGKB (Whirl-Carrillo et al., 2012) and PID

(Schaefer et al., 2009), which contain 280, 1469, 99 and 2679

pathways, respectively. A pathway co-participation network is

constructed by connecting genes that co-participate in any path-

way. It contains 7311 nodes and 2 254 822 edges.

• String: the String database gathers protein information covering

seven levels of evidence: genomic proximity in procaryotes, fused

genes, co-occurrence in organisms, co-expression, experimentally

validated physical interactions, external databases and text min-

ing. Overall, these aspects focus on functional relationships that

can be seen as edges of a weighted graph, where the weight is

given by the reliability of that relationship. To perform the un-

biased evaluation, we employed the version 8.2 of String (Jensen

et al., 2009), from which we extracted functional links genes to

construct a network with 16 113 nodes and 298 719 edges.
• Phenotype: the phenotype similarity dataset (Van Driel et al.,

2006) contains the similarities between phenotypes. For each

phenotype, we collected from OMIM (version 2009) a set of

genes which were known to be involved in the phenotype. We

constructed a network in which each node is a gene that is

related to at least one phenotype and a link between two genes is

formed if there exists two of their corresponding phenotypes hav-

ing a similarity 
0.3. This yields a network with 2089 nodes and

126 294 edges.
• HumanNet-CF (Hwang et al., 2019): co-functional network in

which links are co-functional links from co-essentiality, co-ex-

pression, pathway database, protein domain profile associations,

gene neighborhood and phylogenetic profile associations. This

network includes 14 739 genes and 252 590 links.
• HumanNet-PI (Hwang et al., 2019): protein–protein interaction

network in which nodes are genes and links indicate that the cor-

responding proteins interact, according to high-throughput

assays and literature. It contains 15 352 genes and 158 499 links.

3.2 Cross-validation evaluation
We follow the experimental setup used in Chen et al. (2015) and
Zampieri et al. (2018) and select BioGPS, HPRD and Pathways as
the information sources. In this experiment, 12 disease–gene associ-
ation classes are selected based on the disease classification proposed
in Goh et al. (2007) using OMIM data source, with at least 30 con-
firmed genes. The number of known causing disease genes regarding
a single disease is often limited. Therefore, in order to have a suffi-
cient number of positive genes for model training, we consider dis-
ease classes instead of individual diseases. For the sake of simplicity,
we refer to each disease class as a disease.

For each disease d 2 D, a positive set, Pd, is constructed contain-

ing all confirmed genes related to the disease. The negative set, N d,
is a random sample from the set of known genes G of size

jN dj ¼ 1
2 jP

dj, such that each gene is associated with at least one

other disease (i.e. not the one that defines the corresponding Pd), i.e.

elements in N d
are sampled from [i6¼d Pi. In disease–gene prioritiza-

tion tasks, often, given a specific genetic disease, the associated
negative genes are not easily accessible, i.e. only the positive set is
available. In our experimental setup, we consider as negative the set
(of the same size as the positive set) of genes that are causing other
diseases. The ratio here is that those genes that are known to cause a
disease are well studied and their relation to the disease under con-
sideration would have likely been uncovered if present.

We build a pair train-test set using a leave-one-out cross-valid-
ation strategy: a single gene gk is extracted at random from the set

Pd [ N d and it is added to the candidate gene set Ud; we train a clas-

sifier f on the training set Td ¼ ðPd [ N dÞ n fgkg and estimate the

classifier’s predictive performance on the test set T̂
d ¼ Ud [ fgkg.

We rank all genes gk 2 T̂
d

using the classifier’s output and com-

pute the decision score qk ¼ jfgj jf ðgkÞ
f ðgjÞgj
jT̂ d j

. The score expresses the

fraction of genes that are considered less related to disease d than
the leave-one-out-gene under consideration.

Under this cross-validation setting, we perform two experiments.
In the first, we select BioGPS, HPRD and Pathways as information
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sources. We then employ the same experimental setting as in
Zampieri et al. (2018) in order to compare our method to those
evaluated in Zampieri et al. (2018). We then collect all decision
scores for all genes for all diseases and in Table 1, we report the
average area under the receiver operating characteristic curve (AUC
ROC).

In the second experiment, we use two recent data sources:
HumanNet-CF (Hwang et al., 2019) and HumanNet-PI (Hwang
et al., 2019). Table 2 shows the average performance over 12 dis-
ease–gene classes using a range of different performance metrics.
Detailed experimental results and descriptions of the used metrics
are available in Supplementary Table S1.

3.3 Unbiased evaluation
Cross-validated experimental setups in situations where instances
cannot be considered independent (e.g. instances embedded in a net-
work of pairwise dependencies) can yield over-optimistic estimates.
A better approximation of the true predictive capacity of a method
(an unbiased estimate) can be achieved when time stamps, the time
when information is encoded into the datasets, for instances are
available. In this way, one can estimate the answer for the question:
what is it going to be the prediction accuracy of a given method in
the future, when more instances from the same population are going
to be available? We perform this type of experimental evaluation
following the unbiased setting proposed in Börnigen et al. (2012)
and similar in spirit to the CAFA strategy (Radivojac et al., 2013).
Here, we compare our method to approaches for disease–gene pri-
oritization that are accessible as web servers.

In Börnigen et al. (2012), new disease–gene associations discov-
ered during a 6-month period beginning in May 15, 2010 have been
identified. These were used to build a set of 42 newly discovered dis-
ease–gene associations over 35 diseases. As soon as a new disease–
gene association was uncovered, a series of gene prioritization web
tools have been queried with a known positive gene set (�17 genes
for each query). Using this protocol, the researchers have been able
to guarantee that the information regarding the disease–gene associ-
ations in the test set was not available during the training phase of
the various tools.

To be able to compare DiGI on a fair basis, for all sources of in-
formation we consider a version release that is prior to May 15,
2010. In this setting, we use two sources: String v8.2 (Jensen et al.,
2009) and Phenotype (Van Driel et al., 2006).

We now consider two cases that we call genome-wide and candi-
date-set. Formally, for each of the novel gene–disease association
i 2 f1; 2; . . . ;42g, we are given access to a set Pi of genes that are
known to be related to the given disease. Note that in 42 novel asso-
ciations, we have 35 diseases with an average of �17 associated
genes per disease.

In the genome-wide case, we build a negative training set consid-
ering 10 times the number of positive instances sampled at random

from all the remaining genes, i.e. N i � G n Pi : jN ij ¼ 10jPij. The

training set is, therefore, Ti ¼ Pi [ N i. Finally, the test set is built as
the novel gene together with the remaining genes, i.e.

T̂
d ¼ G n Ti [ gi. On average, each test set contains more than 16 K

genes.
In the candidate-set case, we first construct a candidate-set, U i,

for each novel association. The genes in the candidate-set are located

within the chromosomal regions around the gene involved in the
novel association (this is estimated using the Ensembl gene identi-

fier). On average, the candidate-set contains 100 genes, i.e. T̂
d ¼

U i [ gi with jU ij � 100. The negative training set is built as a ran-
dom sample from the remaining genes up to 10 times the positive

training set, i.e. N i ¼ G n ðPi [ T̂
dÞ : jN ij ¼ 10jPij.

In both cases, we normalize the ranks over the total number of
genes (i.e. in the genome-wide case over 16 K and in the candidate-
set case over 100). In Table 3, we report the median and the SD of
the normalized ranks for the novel genes. We also report the true
positive rate (TPR) at 5, 10 and 30% and the AUC ROC achieved
by averaging over the 42 prioritizations.

In this last setting, we also tested our method augmented with
auxiliary node information (denoted as DiGI_RV). We followed
Van et al. (2018) and used the Gene Ontology to construct binary
vectors representing bag-of-words encoding for each gene. The
resulting representations are then clustered in k groups and each
gene is finally equipped with a k�dimensional vector which
expresses the distances to each cluster center (for details see
Supplementary Material).

4 Results and discussion

In Table 1, we report a comparison of DiGI with other disease–gene
association prediction approaches for the cross-validation setting
and observe consistent improvements in the AUC ROC metric.
Under the same setting, Table 2 shows comparison between DiGI
and other methods using recent data sources and more evaluation
measures. As can be seen from the table, DiGI shows best perform-
ances in all considered measures. It is worth to notice that, SmuDGE
is trained using neural networks. This model normally shows poten-
tial results in case of having a sufficient number of training exam-
ples. However, in this setting, notwithstanding we consider disease
class, the number of positive genes is still limited. This could be a
reason for the relatively low performances of SmuDGE.

In Table 3, we compare DiGI with competitive approaches for
disease–gene association prediction. We observe improved results in
all metrics and in all settings (i.e. genome-wide and candidate-set).
The rank and precision results are noteworthy, with a 30% relative
error reduction (the error is computed as ðe1 � e2Þ=e1 where in our
case, e ¼ 1�TPR) on the best alternative (Scuba) in the TPR@5%
and 26% in the TPR@10%. Considering the application case of
these prioritization tools, i.e. the identification of a small subset of
genes to be validated via expensive and time consuming low-
throughput lab experiments, these improvements could potentially
yield significant savings and conversely important speed up in the
discovery rate of novel associations. Regarding the performance of
the proposed method with the use of real node labels, DiGI_RV, it
shows similar results as DiGI. However, in the median rank and
TPR@5%, it reaches better results. It can be noticed that the better
performance in TPR@5% is particularly relevant for practical use.
In fact, already the top 5% of candidate genes constitutes a large
number of genes to validate, so we can conclude that the use of real
vector labels can be considered particularly beneficial.

Table 2. Leave-one-gene-out comparison on 12 disease–gene asso-

ciations’ problems with recent HumanNet-CF and HumanNet-PI in-

formation sources

Scuba SmuDGE NSPDK DiGI

fmax 72.6 71.3 72.7 75.4

auc� roc 73.7 67.1 73.1 78.4

aupr 75.5 67.4 74.5 79.7

p� qscores 30.0 29.2 29.0 24.8

rank 2.73 3.08 2.62 1.56

Note: Best performance in bold.

Table 1. Predictive performance comparison for a leave-one-gene-

out cross-validation setting for disease–gene prioritization on 12

disease–gene associations problems with three information

sources

DIR F3PC MRF GeneWanderer Scuba DiGI

AUC 71.6 83.0 73.1 71.1 87.6 88.1

Note: The highest performance in bold [DIR (Chen et al., 2011), F3PC

(Chen et al., 2015), MRF (Chen et al., 2014), GeneWanderer (Köhler et al.,

2008), Scuba (Zampieri et al., 2018)].
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Finally, in Figures 5 and 6, we report the exact relative rank pos-
ition of the 42 genes in the genome-wide and candidate cases. Most of
the novel genes are highly prioritized with 22 (resp. 17) genes ranking
in top 5% with 22 (resp. 17) genes in the genome-wide (candidate-set)
case. Only one gene is not prioritized above the 50% threshold.

Web server: we provide a web server within the Freiburg RNA
tools framework (Raden et al., 2018) at http://rna.informatik.uni-
freiburg.de/DiGI. The server accepts in input a list of identifiers for
the genes that are believed to be associated with the disease of inter-
est. The server uses the data sources introduced in to output a list of
candidate genes ranked according to the method we proposed. We
allow further analysis possibilities by providing links for each gene
to the set of its neighbors according to each available data source.

5 Conclusion

We have proposed a novel approach to tackle disease–gene priori-
tization when multiple information sources are available. Our kernel
method is not based on a notion of information diffusion but rather

on the idea of extracting a large number of discriminative topologic-
al features from local neighborhood in a unified network. In future
work, we will investigate how to incorporate additional real-valued
node information.
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