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2 A single-cell RNA-sequencing training and analysis suite using Galaxy

Abstract

Background: The vast ecosystem of single-cell RNA-sequencing tools has until recently been plagued by an excess of
diverging analysis strategies, inconsistent file formats, and compatibility issues between different software suites. The
uptake of 10x Genomics datasets has begun to calm this diversity, and the bioinformatics community leans once more
towards the large computing requirements and the statistically driven methods needed to process and understand these
ever-growing datasets. Results: Here we outline several Galaxy workflows and learning resources for single-cell
RNA-sequencing, with the aim of providing a comprehensive analysis environment paired with a thorough user learning
experience that bridges the knowledge gap between the computational methods and the underlying cell biology. The
Galaxy reproducible bioinformatics framework provides tools, workflows, and trainings that not only enable users to
perform 1-click 10x preprocessing but also empower them to demultiplex raw sequencing from custom tagged and
full-length sequencing protocols. The downstream analysis supports a range of high-quality interoperable suites separated
into common stages of analysis: inspection, filtering, normalization, confounder removal, and clustering. The teaching
resources cover concepts from computer science to cell biology. Access to all resources is provided at the
singlecell.usegalaxy.eu portal. Conclusions: The reproducible and training-oriented Galaxy framework provides a
sustainable high-performance computing environment for users to run flexible analyses on both 10x and alternative
platforms. The tutorials from the Galaxy Training Network along with the frequent training workshops hosted by the
Galaxy community provide a means for users to learn, publish, and teach single-cell RNA-sequencing analysis.

Keywords: scRNA; Galaxy; resources; high-performance computing; single-cell; 10x; training; Web

Background
Single-cell RNA sequencing and cellular heterogeneity

The continuing rise in single-cell technologies has led to pre-
viously unprecedented levels of analysis into cell heterogeneity
within tissue samples, providing new insights into developmen-
tal and differentiation pathways for a wide range of disciplines.
Gene expression studies are now performed at a cellular level of
resolution, which, compared to bulk RNA-sequencing (RNA-seq)
methods, allows researchers to model their tissue samples as
distributions of different expressions instead of as an average.

Pathways from single-cell data

The various expression profiles uncovered within tissue sam-
ples infer discrete cell types that are related to one another
across an “expression landscape.” The relationships between
the more distinct profiles are inferred via distance-metrics or
manifold learning techniques. Ultimately, the aim is to model
the continuous biological process of cell differentiation from
multipotent stem cells to distinct mature cell types, and in-
fer lineage and differentiation pathways between transient cell
types [1].

Elucidating cell identity

Trajectory analysis that integrates the up- or downregulation of
significant genes along lineage branches can then be performed
to uncover the factors and extracellular triggers that can coerce
a pluripotent cell to become biased towards one cell fate out-
come compared to another. This undertaking has created a new
frontier of exploration in cell biology, where researchers have as-
sembled reference maps for different cell lines for the purpose
of fully recording these cell dynamics and their characteristics
to create a global “atlas” of cells [2, 3].

Pitfalls and technical challenges Sequencing sensitivity and nor-
malization. With each new protocol comes a host of new tech-
nical problems to overcome. The first wave of software utilities
to deal with the analysis of single-cell datasets were statistical

packages, aimed at tackling the issue of “dropout events” dur-
ing sequencing, which would manifest as a high prevalence of
zero-entries in >80% of the feature count matrix. These zeroes
were problematic because they could not be trivially ignored as
their presence stated either that the cell did not produce any
molecules for that transcript or that the sequencer simply did
not detect them. Normalization techniques originally developed
for bulk RNA-seq had to be adapted to accommodate for this
uncertainty, and new ones were created that harnessed hurdle
models, data imputation via manifold learning techniques, or
by pooling subsets of cells together and building general linear
models [4].

Improvements in sequencing. With the downstream analysis
packages attempting to solve the dropouts via stochastic meth-
ods, the upstream sequencing technologies also aspired to solve
the capture efficiency via new well, droplet, and flow cytometry–
based protocols, all of which lend importance to the process of
barcoding sequencing reads.

In each protocol, cells are tagged with cell barcodes such
that any reads derived from them can be unambiguously as-
signed to the cell of origin. Unique molecular identifiers (UMIs)
are also used to mitigate the effects of amplification bias of
transcripts within the same cell. The detection, extraction, and
(de-)multiplexing of cell barcodes and UMIs is therefore one of
the first hurdles that researchers encounter when receiving raw
FASTQ data from a sequencing facility.

The burgeoning software ecosystem
Since its conception, several different packages and many
pipelines have been developed to assist researchers in the anal-
ysis of single-cell RNA sequencing (scRNA-seq) [5, 6]. Most of
these packages were written for the R programming language
because many of the novel normalization methods developed to
handle the dropout events depended on statistical packages that
were primarily R-based [7]. Stand-alone analysis suites emerged
as the different authors of these packages rapidly expanded
their methods to encapsulate all facets of the single-cell anal-
ysis, often creating compatibility issues with previous package
versions. The Bioconductor repository provided some much-
needed stability in this regard by hosting stable releases, but re-
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Tekman et al. 3

searchers were still prone to building directly from repository
sources in order to reap the benefits of new features in the up-
stream versions [8, 9].

Nonexchangeable data formats. Another issue was the pro-
liferation of the many different and quickly evolving R-based file
formats for processing and storing the data, such as SingleCell-
Experiment as used by the Scater suite, SCSeq from RaceID, and
SeuratObject from Seurat [10, 11]. Many new packages would
cater only to one format or suite, leading to the common prob-
lem that data processed in one suite could not be reliably pro-
cessed by methods in another. This incompatibility between
packages fuelled a choice of one analysis suite over another, or
conversely required researchers to dig deeper into the internal
semantics of R S4 objects to manually slot data components to-
gether [12]. These problems only accelerated the rapid develop-
ment of these suites, leading to further version instability. As
a result of this analysis diversity, there are many tutorials on
how to perform scRNA-seq analysis, each oriented around one
of these pipelines [13].

Error propagation and analysis uncertainty. A crucial quality
control step upstream, such as filtering or the removal of un-
wanted variability, can propagate forward into the downstream
sections to yield wildly different results on the same data. This
uncertainty, and the statistically driven methods to overcome
it, leaves a wide knowledge gap for researchers simply trying to
understand the underlying dynamics of cell identity.

Rise of 10x Genomics
10x launch. In 2015, 10x Genomics released their GemCode prod-
uct, which was a droplet-sequencing–based protocol capable of
sequencing tens of thousands of cells with an average cell qual-
ity higher than other facilities [14]. This unprecedented level of
throughput steadily gained traction amongst researchers and
start-ups seeking to perform single-cell analysis, and thus 10x
datasets began to prevail in the field.

10x analysis software. 10x Genomics provided software that
was able to perform much of the pre-processing, and provided
feature-count matrices in a transparent HDF5-based format that
provided a means of efficient matrix storage and exchange, and
conclusively removed the restriction for downstream analysis
modules to be written in R.

ScanPy, a popular alternative. The ScanPy suite [15], written
in Python using its own HDF5-based AnnData format, became
a valid alternative for analysing 10x datasets. The Seurat devel-
opers had similar aspirations and soon adopted the LOOM for-
mat, another HDF5 variant. However, the popularity of ScanPy
increased as it began to integrate the methods of other stand-
alone packages into its codebase, making it the natural choice
for users who wanted to achieve more without compromising
on compatibility between different suites [9].

Solutions in the cloud
Accessible science. As the size of datasets scaled, so did the com-
puting resources required to analyse them, in terms of both pro-
cessing power and storage. Galaxy is an open source biocomput-
ing infrastructure that exemplifies the 3 main tenets of science:
reproducibility, peer review, and open access—all freely accessi-
ble within the web browser [16]. It hosts a wide range of highly
cited bioinformatics tools with many different versions and en-
ables users to freely create their own workflows via a seamless
drag-and-drop interface.

Reproducible workflows. Galaxy can make use of Conda or
Containers to set up tool environments to ensure that the bioin-
formatics tools will always be able to run, even when the library

dependencies for a tool have changed, by building tools under
locked version dependencies and bundling them together in a
self-contained environment [17]. These environments provide a
concise solution for the package version instability that plagues
scRNA-seq analysis notebooks, in terms of both reproducibility
and analysis flexibility. A user could keep the quality control re-
sults obtained from an older version of ScanPy whilst running a
newer ScanPy version at the clustering stage to reap the bene-
fits of the later improvements in that algorithm. By allowing the
user to select from multiple versions of the same tool, and by fur-
ther permitting different versions of the tools within a workflow,
Galaxy enables an unprecedented level of free-flow analysis by
letting researchers pick and choose the best aspects of a tool
without worrying about the underlying software libraries [18].
The burdens of software incompatibility and choice of program-
ming language that plagued the scRNA-seq analysis ecosystem
before are now completely removed from the user.

User-driven custom workflows. Analyses are not limited to
one pipeline either because the datasets that are passed be-
tween tools can easily be interpreted by a different tool that is
capable of reading that dataset. In the case of scRNA-seq, Galaxy
can convert between CSV, MTX, LOOM, and AnnData formats.
This interexchange of modules from different tools further ex-
tends the flexibility of the analysis by again letting the user de-
cide which component of a tool would be best suited for a spe-
cific part of an analysis.

Training resources. Galaxy also provides a wide range of
learning resources, with the aim of guiding users step by step
through an analysis, often reproducing the results of published
works. The teaching and training materials are part of the
Galaxy Training Network (GTN), which is a worldwide collabo-
rative effort to produce high-quality teaching materials to ed-
ucate users in how to analyse their data, and in turn to train
others on the same materials via easily deployable workshops
backed by monthly stable releases of the GTN materials [19].
Training materials are provided on a wide variety of different
topics, and workshops are hosted regularly, as advertised on the
Galaxy Events web portal. The GTN has grown rapidly since its
conception and gains new volunteers every year, who each con-
tribute and coordinate training and teaching events, maintain
topics and subtopics, translate tutorials into multiple languages,
and provide peer review on new material [20].

Methods
Stable workflows in Galaxy

The analysis of scRNA-seq within Galaxy was a 2-pronged ef-
fort concentrated on bringing high-quality single-cell tools into
Galaxy and providing the necessary workflows and training to
accompany them. As mentioned in the previous section, this
effort needed to overcome incompatible file format issues and
unstable packages due to rapid development and needed to es-
tablish a standardized basis for the analysis.

Tutorials

The tutorials are split into 2 main parts as outlined in Fig. 1:
first, the pre-processing stage, which constructs a count ma-
trix from the initial sequencing data; second, the cluster-based
downstream analysis on the count matrix. These stages are very
different from one another in terms of their information con-
tent: the pre-processing stage requires the researcher to be more
familiar with wetlab sequencing protocols than a typical bioin-
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4 A single-cell RNA-sequencing training and analysis suite using Galaxy

Figure 1: The main stages of single-cell analysis, separated broadly into the up-
per and lower stages of pre-processing and downstream analysis, respectively.
Top: The 2 main routes to generating a count matrix from sequencing data: via
1-click quantification solutions or through manual demultiplexing. Bottom: The

4 main stages required to perform cluster-based analysis from the count matrix,
through filtering, normalization, confounder removal, and embedding.

formatician would normally know, and the downstream anal-
ysis stage requires the researcher to be familiar with statistics
concepts that a wetlab scientist might not be too familiar with.
The tutorials are designed to broadly appeal to both the biologist
and the statistician, as well as complete beginners to the entire
topic.

Pre-processing workflows
The pre-processing scRNA-seq materials tackle the 2 most com-
mon use-cases that researchers will encounter when they first
enter the field: processing scRNA-seq data from 10x Genomics,
and processing data generated from alternative protocols. For
instance, microwell-based protocols have been known to yield
more features and display lower levels of dropouts compared to
10x, and so we accommodate for them by providing a more cus-
tomizable path through the pre-processing stage [21].

Barcode extraction. Before the era of 10x Genomics, scRNA-
seq data had to be demultiplexed, mapped, and quantified. The
demultiplexing stage entails an intimate knowledge of cell bar-
codes and UMIs, which are protocol dependent, and expects the
bioinformatician to know exactly where and how the data were
generated. One common pitfall at this very first stage is estimat-
ing how many cells to expect from the FASTQ input data, and
this requires 3 crucial pieces of information: which reads contain

the barcodes (or precisely, which subset of both the forward and
reverse reads contains the barcodes); of these barcodes, which
specific ones were actually used for the analysis; and how to re-
solve barcode mismatches/errors.

Barcode estimation. Naive strategies involve using a known
barcode template and querying against the FASTQ data to pro-
file the number of reads that align to a specific barcode, often
employing “knee” methods to estimate this amount [22]. How-
ever, this approach is not robust; certain cells are more likely
to be overrepresented compared to others, and some cell bar-
codes may contain more unmappable reads compared to oth-
ers, meaning that the metric of higher library read depth is not
necessarily correlated with a better-defined cell. Ultimately, the
bioinformatician must inquire directly with the sequencing lab
oratoryas to which cell barcodes were used, because these are
often not specific to the protocol but to the technician who de-
signed them, with the idea that they should not align to a spe-
cific reference genome or transcriptome.

One-click pre-processing
Quantification with Cell Ranger. 10x Genomics simplified the
single-cell RNA package ecosystem by using a language-
independent file format and streamlining much of the bar-
code particularities with their Cell Ranger pipeline, allowing re-
searchers to focus more on the internal biological variability of
their datasets [23].

Quantification with STARsolo. The pre-processing workflow
(titled “10X StarSolo Workflow”) in Galaxy uses the RNA STAR-
solo utility as a drop-in replacement for Cell Ranger, not only
because is it a feature update of the already existing RNA STAR
tool in Galaxy but because it boasts a 10-fold speedup in com-
parison to Cell Ranger and does not require Illumina lane-read
information to perform the processing [24, 25].

Other approaches. The pre-processing workflows for these
“1-click” solutions consume the same datasets and yield approx-
imately the same count matrices by following similar modes
of barcode discovery and quantification. Within Galaxy, there is
also Alevin (paired with Salmon) and scPipe, which can both also
perform the necessary demultiplexing, (alignment-free) map-
ping, and quantification stages in a single step [26, 27, 28].

Flexible pre-processing
CELSeq2 barcoding. The custom pre-processing workflow (titled
“CELSeq2: Single Batch mm10”) is modelled after the CEL-seq2
protocol using the barcoding strategies of the Freiburg Max-
Planck Institute laboratory as its main template, but the work-
flow is actually flexible to accommodate any droplet- or well-
based protocol such as SMART-seq2 and Drop-seq [29].

Manual demultiplexing and quantification. The training pic-
tographically guides users through the concepts of extracting
cell barcodes from the protocol, explains the significance of
UMIs in the process of read deduplication with illustrative exam-
ples, and instructs the user in the process of performing further
quality controls on their data during the post-mapping process
via RNA STAR and other tools that are native to Galaxy.

Training the user. At each stage, the user’s knowledge is
queried via question prompts and expandable answer box di-
alogs, as well as helpful hints for future processing in comment
boxes, all written in the transparent Markdown specification de-
veloped for contributing to the GTN.

Downstream workflows
Common stages of analysis. The downstream modules are de-
fined by the 5 main stages of downstream scRNA-seq analy-
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Figure 2: Downstream analysis workflows as shown in the Galaxy Workflow Ed-
itor for (top) RaceID and (bottom) ScanPy, each displaying modules symbolizing

the 5 main stages of analysis.

sis: filtering, normalization, confounder removal, clustering, and
trajectory inference. There are 3 workflows to aid in this process
(2 of which are shown in Fig. 2), each sporting a different well-
established scRNA-seq pipeline tool.

Quality control with Scater. The Scater pipeline follows a
visualize-filter-visualize paradigm, which provides an intuitive
means to perform quality control on a count matrix by use of
repeated incremental changes on a dataset through the use of
principal component analysis and library size–based metrics
[30]. Once this pre-analysis stage is complete, the full down-
stream analysis (comprising the 5 stages mentioned above) can
be performed by workflows based on the following suites: RaceID
and ScanPy.

Downstream analysis with the RaceID suite. RaceID was de-
veloped initially to analyse rare cell transcriptomes whilst being
robust against noise and thus is ideal for working with smaller
datasets in the range of 300–1,000 cells. Owing to its complex cell
lineage and fate prediction models, it can also be used on larger
datasets with some scaling costs.

Downstream analysis with the ScanPy suite. ScanPy was de-
veloped as the Python alternative to the innumerable packages
for scRNA-seq that were based on R, which was the dominant
language for such analyses, and it was one of the first packages
with native 10x Genomics support. Since then it has grown sub-
stantially and has been re-implementing much of the newer R-
based methods released in BioConductor as “recipe” modules,
thereby providing a single source to perform many different
types of the same analysis.

The workflows derived from both these suites emulate the 5
main stages of analysis mentioned previously, where filtering,
normalization, and confounder removal are typically separated
into distinct stages, though sometimes merged into 1 step de-
pending on the tool.

Filtering
Cell and gene removal. During the filtering stage, the initial
count matrix removes low-quality or unwanted cells using typi-
cal parameters such as minimum gene detection sensitivity and
minimum library size, and low-quality genes are also removed
under similar metrics, where the minimum number of cells for a
gene to be included is decided. The Scater pre-analysis workflow
can also be used here to provide a principal component analysis–
based method of feature selection so that only the highly vari-
able genes are left in the analysis.

Disadvantages of filtering. There is always the danger of over-
filtering a dataset, whereby setting overzealous lower-bound

thresholds on gene variability can have the undesired effect of
removing essential housekeeping genes. These relatively uni-
formly expressed genes are often required for setting a baseline
to establish a threshold to distinguish the more desired differ-
entially expressed genes. It is therefore important that the user
first perform a naive analysis and only later refine their filtering
thresholds to boost the biological signal.

Normalization
Library size normalization. The normalization step aims to re-
move any technical factors that are not relevant to the analysis,
such as the library size, where cells sharing the same identity
are likely to differ from one another more by the number of tran-
scripts they exhibit than due to more relevant biological factors.

Intrinsic cell factors. The first and foremost is cell capture ef-
ficiency, where different cells produce more or fewer transcripts
based on the amplification and coverage conditions in which
they are sequenced. The second is the presence of dropout
events, which manifest as a prevalence of “zeroes” in the final
count matrix. Whether a “zero” is imputable to nondetection of
an existing molecule or to the absence of the molecule in the
cell is uncertain. This uncertainty alone has led to a wide se-
lection of different normalization techniques that try to model
this expression either via hurdle models, imputing the data via
manifold learning techniques, or working around the issue by
pooling subsets of cells together [31].

In this regard, both the RaceID and ScanPy workflows of-
fer many different normalization techniques, and users are en-
couraged to take advantage of the branching workflow model of
Galaxy to explore all possible options.

Confounder removal
Regression of cell cycle effects. Other sources of variability stem
from unwanted biological contributions known as confounder
effects, such as cell cycle effects and transcription. Depending
on the stage of the cell cycle at which a cell was sequenced,
2 cells of the same type might cluster differently because one
might have more transcripts as a result of it being in the M-phase
of the cell cycle. Library sizes notwithstanding, it is the variabil-
ity in specific cell cycle genes that can be the main driving fac-
tor in the overall variability. Thankfully, these effects are easy to
regress out, and we replicate an entire stand-alone ScanPy work-
flow dedicated to detecting and visualizing the effects based on
the original notebook [32].

Transcriptional bursting. The transcription effects are harder
to model because these are semi-stochastic and remain not well
understood. In bulk RNA-seq the expression of genes undergo-
ing transcription is averaged to give “high” or “low” signals, pro-
ducing a global effect that gives the false impression that tran-
scription is a continuous process. The reality is more complex,
where cells undergo transcription in “bursts” of activity followed
by periods of no activity, at irregular intervals [33]. At the bulk
level these discrete processes are smoothed to give a continuous
effect, but at the cell level it could mean that even 2 directly ad-
jacent cells of the same type normalized to the same number of
transcripts can still have different levels of expression for a gene
due to this process. This is not something that can be countered
for, but it does educate the users in which factors they can or
cannot control in an analysis and how much variability they can
expect to see.

Clustering and projection
Dimension reduction and clustering. Once a user has obtained a
count matrix in which they are confident, they are then guided
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6 A single-cell RNA-sequencing training and analysis suite using Galaxy

through the process of dimension reduction (with choice of dif-
ferent distance metrics), choosing a suitable low-dimensional
embedding, and performing clustering through commonly used
techniques such as k-means, hierarchical, and neighbourhood
community detection. These complex techniques are illustrated
in layman’s terms through the use of helpful images and com-
munity examples. For example, the GTN ScanPy tutorial ex-
plains the Louvain clustering approach [34] via a stand-alone
slide deck to assist in the workflow [35].

Commonly used embeddings. The clustering and the clus-
ter inspection stages are notably separated into distinct utilities
here, with the understanding that the same initial clustering can
appear dissimilar under different projections, e.g., t-distributed
stochastic network embedding (t-SNE) against Uniform Mani-
fold Approximation and Projection (UMAP) [36, 37]. Ultimately
the user is encouraged to play with the plotting parameters to
yield the best-looking clusters.

Static plots or interactive environments. Cluster inspection
tools are available that allow users to easily generate static plots
tailored to pipeline-specific information as originally defined by
the software package authors. However, the AnnData and LOOM
specifications store these map projection data separately, en-
abling the use of a plethora of possible plotting tools, includ-
ing HTML5-based interactive visualizations, such as cellxgene
[38], that permit on-demand querying and rendering of individ-
ual cell features without the need to generate static images. A
collection of these Galaxy interactive tools can be accessed at
the website live.usegalaxy.eu. Although these tools are excellent
at dynamically displaying map projections, especially 3D ones,
further computation must be performed to complete a full pseu-
dotime analysis.

Pseudotime trajectory analysis
Inferring developmental pathways. The cell pseudotime series
analysis is often referred to as the trajectory inference stage be-
cause cells are ordered along a trajectory to reflect the continu-
ous changes of gene expression along a developmental pathway
under the assumption that the cells are transitioning from one
pluripotent type to another less potent type.

Pseudotime techniques. For the trajectory inference stage,
there is the Partition-based Graph Abstraction (PAGA) technique
championed by ScanPy [39], and there are also the FateID and
StemID packages for the RaceID workflow [40]. The former pro-
vides a level of graph abstraction to the datasets in order to in-
fer a community graph structure, which it can use to learn the
shape of the data and infer pathways between neighbourhoods.
The latter is more intuitive, in that it constructs a minimal span-
ning tree of related clusters that infer lineage, and cell fate deci-
sions that can be explored by querying branches in the tree, as
a function of the genes that are up- or downregulated along the
currently explored pathway. The statistical strength and signif-
icance of each pathway guides the user along more valid trajec-
tories that would more accurately reflect the biological variation
occurring within transitioning cells.

Sharing reference maps
The insights and novel cell types discovered in these analyses
can also be integrated into the Human Cell Atlas portal [41],
which is an initiative that aims to classify unique or rare cell
types, as well as their transitive properties, in order to build a
comprehensive map of cells that can be used to investigate the
various differentiation pathways of multipotent stem cells in the
human body.

Galaxy Training Network

Tutorial Hierarchy
Tutorials in the GTN are grouped by topic, e.g., Variant Calling,
Transcriptomics, Assembly. These tutorials can also declare pre-
requisites, so that users can review required concepts from pre-
vious tutorials, e.g., quality control checks from bulk RNA-seq
still being used in scRNA-seq. Not only does this allow users to
derive a clear route through the range of training materials, but it
also empowers them to choose their own learning path through
the network of topics. In particular for scRNA-seq, users can
start their training from pre-processing tutorials and continue
till downstream analysis.

Tutorial structure
Tutorials usually consist of a hands-on workflow that guides the
user through an analysis with Galaxy utilizing a step-by-step ap-
proach, often accompanied by a slide deck that either serves to
explain stand-alone concepts more concisely or is used during
workshops and trainings as a way to introduce the user to the
topic. In an effort to maintain reproducibility in science, all tu-
torials require example workflows, and all materials needed to
run the workflows and tutorials are hosted for free with open
access at Zenodo with a permanent DOI tag.

User-driven contribution
The user contributions are the heart of the GTN community, and
options are given to appeal to different levels of contribution. At
the casual level, each tutorial has at the bottom an anonymous
feedback form that rates the quality of the tutorial and asks for
hints on what could be improved, which the tutorial authors can
then act on. At the more eager level, users can contribute di-
rectly to the material hosted at the GitHub repository using the
approachable GTN Markdown format, which further empowers
contributors not only to adapt existing material but also to write
tutorials in their own specialist topics. The GitHub code reviews,
paired with the plain-text GTN Markdown format, facilitate easy
peer review of tutorial topics by using standard diff utilities.

Galaxy subdomains and environments

Subdomains encapsulate relevant tools
The Galaxy tools and the GTN are further tied together by Galaxy
subdomains, which better serve the various topics within their
own self-contained environments. These complement the train-
ing materials by providing only the necessary Galaxy tools in or-
der to not trouble the user with unrelated tools that might not
be so relevant to the material; e.g., Variant Analysis tools are not
included in an scRNA-seq environment. This also has the bene-
fit that smaller more specialized Galaxy instances can be pack-
aged and deployed, avoiding the overhead of presenting the en-
tire Galaxy tool repertoire.

Single Cell and Human Cell Atlas
In this light, the singlecell.usegalaxy.eu subdomain hosts the
entirety of the single-cell materials, tools, workflows, and single-
cell–related events. The full list of tools in the subdomain, as well
as their application to the aforementioned stages of scRNA-seq
analysis, is detailed in Supplemental Table 1. Human Cell Atlas
community members, led by the European Bioinformatics Insti-
tute and the Wellcome Sanger Institute, have their own subdo-
main at humancellatlas.usegalaxy.eu [42], providing access to
widely applicable tools including ScanPy, Seurat, and Monocle3
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Figure 3: Galaxy Training Network hosting a comprehensive suite of tools, train-
ings, and workflows to perform scRNA-seq analysis.

[43], but also specialist tools such as those for cell type predic-
tion (including scmap [44], scPred [45], and Garnett [46]).

Analysis in Galaxy workflows
The tools outlined in the Downstream workflows subsection
expose the full set of parameters of their underlying program
suites in order to serve the same level of customization that the
users would expect when running a notebook-based analysis.
This suits the needs of most researchers, but some are more
used to processing the data directly in a language-driven note-
book environment.

Galaxy Interactive Environments
For the more computer programming–oriented users, Galaxy
hosts interactive environments at live.usegalaxy.eu, which al-
lows users to spin up their own Jupyter [47] or RStudio [48] note-
books whilst harnessing the same cloud compute infrastructure.
Here, users can import their Galaxy datasets, process them in
their own desired manner, and export them back into their his-
tories in a similar way to how datasets are treated in workflows.

List of Galaxy Interactive Environments
In addition to interactive notebooks, the Galaxy Interactive En-
vironments also boasts a selection of other interactive tools
such as the aforementioned cellxgene featured in Fig. 3, as well
as SPARQL, a query language interface; BAM/VCF IOBIO, a file
format analysis viewer [49]; EtherCalc, a web spreadsheet [50];
PHINCH, a metagenome visualizer [51]; Wallace, a species mod-
elling platform [52]; WILSON, an omics visualizer [53]; IDE for
materials science; Panoply, a netCDF viewer [54]; HiGlass, a Hi-C
data visualizer [55]; and even an XFCE Virtual Desktop environ-
ment [56].

Discussion
Growth of scRNA training materials

The amount of single-cell materials on the GTN is increasing
substantially every year, with at first only 1 pre-processing tu-
torial in 2018, 1 downstream tutorial at the start of 2019, and
at the present time of writing 3 pre-processing tutorials and 3
downstream analysis workflows, further accompanied by slide
decks and interactive visualizations. Single-cell Galaxy work-
shops based on these materials have been given at the Single-

Cell RNAseq Training Course 2018 at the Earlham Institute, the
2019 Galaxy Community Conference, within the Freiburg MeIn-
Bio Consortium, and at the Association of Biomolecular Re-
source Facilities. The trainings also lend themselves seamlessly
to online webinars, which have proved useful during the COVID-
19 lockdown period.

Reproducible cloud-based analysis

The advent of scRNA-seq analysis within the Galaxy framework
re-echoes the efforts to standardize the analysis of scRNA-seq,
with the promise of presenting reproducible research. The bur-
den of computation on the ever-growing size of the datasets
is shifted to the cloud computing resources, and as scRNA-
seq technology scales, more researchers are likely to migrate
towards cloud-based solutions to reap the benefits of supe-
rior computing abilities and storage capabilities. Ultimately, the
Galaxy framework abstracts the user from the many non-trivial
technicalities of the analysis and exposes them to a legible in-
terface of tools from which they can pick and choose.

Longevity and accessibility

The community regularly comes together during scheduled code
festivals (CoFests) or hackathons to review, contribute, and ac-
tively maintain the training materials. The number of commu-
nity contributions has steadily increased over the past 4 years
[16], and this growth trend ensures that the Galaxy resources will
stay current and adapt to changes in scRNA-seq technology and
analysis methods if necessary. The GTN also makes use of lan-
guage translation tools to provide international interpretations
of the training materials to reach a wider more internationally
diverse audience.

Future of scRNA-seq in Galaxy

The capacity for growth of scRNA-seq in Galaxy is limitless, with
the continuing acquisition of new single-cell tools being incor-
porated into Galaxy workflows, and the expanding GTN com-
munity bringing more expert-level contributions to the training
material. The vestiges of incompatible libraries and inexchange-
able file formats are unburdened from the user as the epoch of
web-based tools and strong biocomputing frameworks becomes
more dominant. From the first data upload to the final finishing
touches of a customized workflow, the single-cell Galaxy portal
upholds the ideals of open science by supporting the user all the
way from the initial training to the final publication, where they
can export and share their results with a single click.

Availability of Source Code and Requirements
� Project name: Single-Cell RNA-seq Analysis in Galaxy
� Project home page: singlecell.usegalaxy.eu
� Operating system(s): Web-based, platform independent
� License: GNU GPL v3

Availability of Supporting Data and Materials

All datasets used in the GTN are independently hosted at Zen-
odo and are easily findable under the tag “Galaxy Training Net-
work,” as well as being directly hosted within the Galaxy Data
Libraries on the UseGalaxy.eu server.

The tool wrappers that serve as the functional components
of the many different single-cell analysis tools are hosted at the
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GitHub Tools-IUC repository, as well as at the Galaxy Toolshed
under the category of “Transcriptomics.”

Additional Files

Supplemental Table 1. Comprehensive table of all single-cell
RNA-analysis related software packages within Galaxy and their
capabilities.
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