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ABSTRACT

Alternative splicing (AS) involving NAGNAG tandem
acceptors is an evolutionarily widespread class
of AS. Recent predictions of alternative acceptor
usage reported better results for acceptors sepa-
rated by larger distances, than for NAGNAGs.
To improve the latter, we aimed at the use of
Bayesian networks (BN), and extensive experimental
validation of the predictions. Using carefully con-
structed training and test datasets, a balanced sen-
sitivity and specificity of �92% was achieved. A BN
trained on the combined dataset was then used to
make predictions, and 81% (38/47) of the experimen-
tally tested predictions were verified. Using a BN
learned on human data on six other genomes, we
show that while the performance for the vertebrate
genomes matches that achieved on human data,
there is a slight drop for Drosophila and worm.
Lastly, using the prediction accuracy according to
experimental validation, we estimate the number of
yet undiscovered alternative NAGNAGs. State of the
art classifiers can produce highly accurate predic-
tion of AS at NAGNAGs, indicating that we have iden-
tified the major features of the ‘NAGNAG-splicing
code’ within the splice site and its immediate neigh-
borhood. Our results suggest that the mechanism
behind NAGNAG AS is simple, stochastic, and
conserved among vertebrates and beyond.

INTRODUCTION

Alternative splicing (AS) is now well established as a wide-
spread phenomenon in higher eukaryotes and a major

contributor to proteome diversity. Over half of the multi-
exonic human genes are believed to have splice variants
(1,2). Large-scale detection of AS usually involves
expressed sequence tags (ESTs) or microarray analysis
(1,3). However, due to various sampling biases, not
all AS events can be detected by these methods; further-
more, exon arrays usually do not probe short distance
events. Moreover, nowadays genomic sequence data is
being churned out at a much faster rate than transcript
data, that is, several genomes have low transcript cover-
age. Thus, there is a need for independent methods of
detecting AS.
Alternative acceptors are the second most common kind

of AS in human, after exon skipping (4). NAGNAG AS,
involving tandem acceptors separated by three nucleo-
tides, is a common type of AS, contributing almost half
of all cases of conserved alternative acceptor usage (5,6).
NAGNAG splicing results in two possible splice var-
iants—splicing after the first AG results in the E (exonic,
also known as proximal) isoform, whereas splicing after
the second AG results in the I (intronic, also known
as distal) isoform (Figure 1)—accordingly, we refer to
constitutively spliced NAGNAG acceptors as the E- or
I-class, and to usage of both acceptors, or AS, as the EI-
class. According to the data present in the Tandem Splice
Site DataBase TASSDB (7), 16% (1815 of 10 740) of
human NAGNAG acceptors are alternatively spliced.
However, 40% (3562) of the remaining NAGNAG accep-
tors have less than ten ESTs each, thus implying that a
subset of these NAGNAGs may simply lack evidence of
AS due to insufficient sampling of the transcriptome. An
accurate predictive method would give us a meaningful
estimate of the number of yet undiscovered alternative
NAGNAG acceptors. Previous work on predicting
alternative 30 splicing, while reporting good results overall,
had modest results for NAGNAG AS compared to cases
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involving larger distances (8). This seems to contrast with
previous work which reported that a simple model based
on splice site strength was enough to explain NAGNAG
and other short-distance tandem AS (9).
To improve the prediction of NAGNAG AS, we used

Bayesian Networks (BN), which are probabilistic graphi-
cal models, and TassDB (7) to carefully construct our
training and test datasets. BNs are an increasingly popular
machine learning approach to data modeling and classifi-
cation (10,11). We achieved a high balanced sensitivity
and specificity and good results in extensive experimental
validation of predictions. We show that the performance
on a dataset from literature (8) can be improved by a
careful consideration of available transcript evidence to
include only strongly supported NAGNAGs as constitu-
tive or alternative. Using a BN learned on human data
on six genomes from mouse to worm; we show that the
performance is comparable or only slightly inferior to that
achieved in human. Our results suggest that the mecha-
nism behind NAGNAG splicing is simple, and maintained
in evolution.

MATERIALS AND METHODS

Before describing the materials and methods in detail, we
note that an overview of the workflow is provided as
Supplementary Data (Supplementary Data File 6).

Feature design and extraction

Feature extraction was done using data on NAGNAGs
from TassDB (7), using PHP and Perl scripts. The region
used for analysis can be seen in Figure 2. Since the com-
position of the splice site neighborhood influences splicing
in general, the base pairs at positions �20 to +3 with
respect to the NAGNAG were each used as a single fea-
ture, as were the two Ns in the NAGNAG motif. The last
three positions of the upstream exon were also included,
since they can influence both the process of splicing, as
well as reflect any influence of codon usage near the exon
boundary. Thus, we had a total of 28 features which each
represented a nucleotide, and thus had four possible
values (A, C, G, T). A weak polypyrimidine tract (PPT)
can contribute to AS, and the number of pyrimidines in
the 30 region of the intron is a measure of PPT strength.
Therefore, we designed three features related to the
pyrimidine content in the 20-bp region upstream of the

NAGNAG: ‘Y-content’, which refers to the number of
pyrimidines in this region, ‘MaxY-content’, which is the
maximal run of consecutive Ys in this region, and their
starting position, ‘MaxY-content position’. Additionally,
three more PPT-related features were derived from the
50-bp region upstream of the NAGNAG. Following
(12), we measured the maximal number of Ys in a 20-nt
window, starting from 50-nt upstream of the NAGNAG.
Since U and C are not functionally equivalent, PPTs con-
taining 11 continuous Us are the strongest, and the pres-
ence of blocks of purines can be detrimental to splicing
(13), we also tested two features called ‘T-strength’ and
‘R-strength’, which measured the longest continuous U
(Ts in genomic sequences) and R (A or G) strings, starting
from 50-nt upstream of the NAGNAG. Since the archi-
tecture of the pre-mRNA plays an important role in
constitutive and AS (14), the length of the upstream
intron (ending in the NAGNAG motif) as well the
length of the upstream and downstream exons were
taken as features. Splice site strength, being one of the
most important determinants of splicing outcome, was
also included as a feature—the strength of the two possi-
ble splice sites for each NAGNAG exon, as computed
using MAXENTSCAN (15), contributed two more fea-
tures. Lastly, since GC-content can also play a role in
splicing, we measured the GC content of the upstream
intron as well as the upstream and downstream exons,
leading to three more features. In all, 42 features were
used (Table 1).

Analyses with dataset D1

The dataset D1 used in (8) was provided by Martin
Akerman. To derive the features, we used the genomic
coordinates to find the NAGNAGs in TassDB (7), since
it contains information about all NAGNAGs in the
human genome (as of early 2006). In order to use an
SVM for comparison, since that is what was used in (8),
we used the WEKA package and the SMO implementa-
tion of SVMs therein, using a polynomial kernel. To begin
with, we used the labels as provided in D1, and then we
replaced the labels according to TassDB, and finally
we replaced the samples labeled constitutive by samples
with �10 ESTs (for one variant only) from TassDB.
Leave-one-out cross-validation was used, as in (8). For
feature selection within WEKA, we used the method
‘CfsSubsetEval’, as well as manual inclusion and exclusion
of features. We also repeated the analysis with a Bayesian
network to ensure that BNs are a good choice for this

Figure 1. NAGNAG alternative splicing. Nomenclature of NAGNAG
AS with E and I sites and isoforms.

Figure 2. Nomenclature of features used in this study. Nomenclature of
sequence features used to analyze NAGNAG splicing. The region used
to derive all 42 features is shown, along with the names given to the
positional features. Positional features, including the last three nucleo-
tides of the upstream intron, were derived using the database TassDB,
which in turn used reference annotations (RefSeq when available, else
ENSEMBL).
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task, and found that the BNs did match the performance
of the SVM.

Datasets derived from TassDB

The dataset D2 of human NAGNAG acceptors was
extracted from TassDB (7) using the criteria: (i) constitu-
tive: �10 ESTs supporting either E or I variant, 0 for the
other; (ii) alternative: �2 ESTs supporting each variant,
�10% of ESTs supporting minor variant (Supplementary
Data File 2). The remaining human NAGNAGs were
used for prediction only (Supplementary Data File 3).
NAGNAG acceptors from the mouse, rat, chicken, zebra-
fish, fly and worm genomes were extracted in the same
manner. Only NAGNAG acceptors from transcripts
with a correct exon–intron structure as well as a correct
open reading frame were used.

Validation of splicing class assignments using
next-generation sequence data

Published next-generation transcriptome sequence data
(Illumina GA II) was retrieved from the Short Read
Archive section of the GEO database at NCBI (accession
number GSE12946) (16).The dataset comprised 313
million 32-mer readings, obtained from cDNA from nine
different human tissues and five breast cell lines. For the
analysis we required exact matches of the readings to one
of the isoforms. Matches had to overlap at least 6 nt on
both sides of the exon–exon junction and were discarded if
the same sequence occurred somewhere else in the human
transcriptome (RefSeq transcripts or NAGNAG isoform
sequences).

Bayesian networks

We used the algorithms for feature selection, model
learning and classification as described in (17), and made
available via the public webserver BioBayesNet (18).
BioBayesNet restricts the structure of the BNs by using
the so-called tree-augmented naı̈ve Bayes (TAN) structure
(19). In contrast to a naı̈ve Bayes classifier/network, where
the attributes are assumed to be independent, a TAN
classifier augments the underlying naı̈ve Bayes classifier
by allowing at most one additional parent per node.
Feature selection was carried out in three stages. First, a
‘discretizer’ applying the algorithm of Fayyad and Irani
(20) discards features for which no suitable discriminative
intervals are found. Secondly, the sequential feature subset
selection (SFFS) algorithm (21) was applied. Thirdly,
we enforced inclusion or exclusion of features manually.

Experimental validation and quantification of
splice variants

For validation and quantification of splice variants,
PCRs were performed using 200 pg cDNA templates
from the Human Multiple Tissue cDNA Panels I and II
(Clontech, Heidelberg, Germany). For each given gene,
a suitable tissue was determined from expression
data obtained from the Stanford SOURCE database
(21). PCR primers were obtained from Metabion
(Supplementary Data File 5), each sense primer labeled

with 6-carboxyfluorescein (FAM). Reactions were set up
with BioMix Red (Bioline, Luckenwalde, Germany) and
10 pmol primer in 25 ml total volume, according to the
manufacturer’s instructions. The thermocycle protocol
was 2min initial denaturation at 948C, followed by 42
cycles of 45 s denaturation at 948C, 50 s annealing at
568C, 1min extension at 728C, and a final 30min exten-
sion step at 728C. Each product was diluted 1/40, and 1 ml
of the dilution mixed with 10 ml formamide (Roth,
Karlsruhe, Germany) and 0.5 ml of GeneScan GS500LIZ
(Applied Biosystems, Darmstadt, Germany) were heated
to 948C for 3min. The mixture was than separated on an
ABI 3730 capillary sequencer and analyzed with the
GeneMapper 4.0 software (Applied Biosystems). If two
peaks with about the expected fragment sizes (with a
tolerance of �3 nt) and distance (3 nt) were visible, the
isoform ratios were calculated based on the peak areas.

Information gain

Information gain is defined as the reduction in the entropy
of the class variable, given the feature. The formula for
information gain is:

IG(Class | Feature)=H(Class)�H(Class | Feature)

where H(Class) is the entropy of the class variable, and
H(Class|Feature) is the conditional entropy of the class
variable, given the feature. Information gain is a well
established measure for feature selection in Machine
Learning (22). We used the WEKA package (22) for com-
puting information gain, in order to rank the features
according to how informative they were. We also used it
for prediction based on SVMs, as implemented in the
SMO option, and for prediction using Naı̈ve Bayes
classifiers.

The BayNAGNAG webserver

We used WEKA to implement the BNs, and C++ code
was written to enable the web browser to interact with
WEKA, using the features derived from the user’s input
along with saved BN models to produce the predicted
splicing outcome.

Estimating the number of undiscovered alternative
NAGNAGs

To estimate the number of alternative NAGNAGs which
lack transcript evidence as of now, we used the accuracy
of predictions according to the experimental validation,
as follows: We computed the average accuracy of predic-
tion in the three probability intervals f1=0.5�0.69,
f2=0.7�0.89 and f3=0.9�1.0, according to the experi-
mental results. If fi is the fraction of experimentally vali-
dated predictions in the interval i, and ni is the number
of samples in the test dataset which are currently labeled
as constitutive, but predicted to be alternative, then
the estimated number of yet undiscovered alternative
NAGNAGs is

N= n1 � f1+ n2 � f2+ n3 � f3.
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We used the validation accuracies for two different
thresholds (�1%, and �10%) of abundance of the
minor variant, leading to two estimates of the number of
yet undiscovered alternative NAGNAGs.

RESULTS

Performance on a dataset from the literature

While an SVM reported in (8) succeeded in predicting AS
for alternative acceptors separated by up to a distance of
100 nt, NAGNAG acceptors were shown to be the least
predictable (8). To understand the reasons behind that, we
obtained the underlying dataset from the authors, called
D1 in the following. However, in the following we did not
use conservation based features, because we aim at pre-
dicting AS using information only from a single genome.
Using our own set of 42 features (Table 1), we verified that
the reported performance is matched by the BN, as well as
by an SVM implementation provided in the WEKA pack-
age (22). The predicted NAGNAG class is the one which
receives the maximum score or posterior probability from
the classifier. We computed the receiver operating curve
(ROC), which is a plot of the true positive rate versus the
false positive rate, and measured the area under the ROC
curve (AUC), which is a standard measure of the quality
of a classifier (23). An ideal classifier, which makes no
errors, would achieve an AUC of 1. By means of the
SMO (Sequential Minimal Optimization) implementation
of a support vector machine in WEKA and all our fea-
tures, the AUC obtained for distinguishing EI and E cases
is 0.79, the same as reported (8). Using a subset of features

(Table 2) yielded by feature selection improves this to 0.82.
Similarly, using all 42 features, the AUC obtained for
distinguishing EI and I cases is 0.7, the same as reported
(8), and this improves to 0.77 using feature selection.

To check whether this relatively modest performance
was due to the set of constitutive NAGNAGs in D1
being in fact contaminated by alternative NAGNAGs,
we searched the Tandem Splice Site DataBase (TassDB)
(7) for the NAGNAGs in the D1 dataset, and replaced the
labels ‘alternative’ and ‘constitutive’ according to TassDB.
Indeed, this revealed that many NAGNAGs in D1 labeled
constitutive were in fact alternative according to the
transcript evidence in TassDB—119 of 397 (30%) cases
assigned to the E-class, and 104 of 177 (58.8%) cases
assigned to the I-class, are in fact alternative (EI-class)
according to TassDB. Incorporating this information
resulted in improved performance—the AUCs achieved
were 0.89 for distinguishing EI cases from E cases, and
0.85 for distinguishing EI cases from I cases (Table 2).

However, such relabeling still allows samples which
have very low transcript coverage and are thus potentially
mislabeled also in TassDB, and it also changes the ratios
of the sizes of the various classes, especially for the EI
versus I problem. Therefore, we replaced all samples
labeled constitutive in D1 by samples from TassDB
which had �10 ESTs supporting one splice site, and
none for the other. Since there are only 331 such samples
in the I-class, we randomly chose 331 (of 5032) samples
from the E-class. This new mixed dataset yielded signifi-
cantly improved performance, with AUC values of 0.97
and 0.94 for EI versus E and EI versus I, respectively.

Table 2. Performance on the dataset D1, using SVMs

Classification
problem

Original sample labels Sample labels according to TassDB

AUC Featuresa used AUC Features used

E versus EI 0.82 N1, N2, MAXENT-E,
MAXENT-I, D1, p�1,
Y-content,

0.89 N1, N2, D1, D3, U1, U2, p�8, p�5, p�2, p�1

I versus EI 0.77 N1, N2, MAXENT_E,
MAXENT_I, D1, p�2,
p�1, GC-intron,

0.85 N1, N2, D1, D2, D3, U1, U2, U3, p�19, p�18,
p�16, p�13, p�12, p�11, p�10, p�9, p�8, p�6,
p�5, p�2, p�4, p�3, p�2, p�1

aFor nucleotide nomenclature see Figure 2. Y-content: fraction of the 20-bp upstream of the NAGNAG motif that are pyrimidines, GC_intron:
G+C content of the intron ending with the NAGNAG, MAXENT_E, MAXENT_I: MAXENT scores for the É and I splice sites.

Table 1. Features for machine learning used in this study

Feature subset Number of
features

Motivation

N1, N2, D1, D2, D3 and positions in the PPT 25 NAGNAG splicing is influenced by the NAGNAG motif and its
sequence context

U1, U2, U3 3 Potential influence on protein context
Length of neighboring exons and upstream intron 3 The architecture of the pre-mRNA influences AS
GC content of neighboring exons and upstream intron 3 GC content can influence AS
Features related to the pyrimidine content of the PPT 6 Composition of the PPT influences splicing
Splice site strength of E and I splice sites 2 Alternative NAGNAGs tend to have comparable splice site strengths

3572 Nucleic Acids Research, 2009, Vol. 37, No. 11



Removing all NAGNAGs containing a GAG, as done
in (8), did not affect the performance drastically, as we
obtained AUC values of 0.96 and 0.92 for EI versus
E and EI versus I, respectively. Thus, the use of strict
thresholds on EST evidence of constitutive splicing greatly
reduces the noise in the dataset, and improves the predic-
tion performance. It must be pointed out that we only
used transcript evidence for the human genome, that is,
some of the alternative cases might be human-specific.

To further validate the relabeling of samples in D1,
we analyzed next-generation transcriptome data
(Illumina/Solexa GA II), 313 million sequences, obtained
from nine different human tissues and five breast cell lines
(16) as an additional source of experimental evidence for
NAGNAG isoforms. A total of 7509 NAGNAG cases
had sequences specifically matching at least one of the
isoforms (total of 363009 sequences). We note that the
coverage of the transcriptome by these Solexa data is
not exhaustive, so there are likely more examples of AS
NAGNAGs than thereby supported. We applied stringent
filters on the number of sequences supporting an event—
these filters had been previously shown to help in the
detection of experimentally reproducible AS (24). To con-
sider a NAGNAG to be alternatively spliced, we required
at least two supporting sequences for each isoform, and at
least 10% of the total sequences to support the minor
isoform. A constitutive NAGNAG had to be supported
by at least 10 sequences for one isoform, and 0 for the
other. We then computed the intersection of this dataset
with D1 (Supplementary Data File 8), and compared the
labels of the samples. 203 cases of D1 were found in the
filtered Solexa dataset—of 142 cases labeled constitutive in
D1, 66 (46%) had evidence for being alternatively spliced.
When we repeated the comparison after replacing the
labels according to TassDB, there were 74 cases labeled
constitutive, of which only 12 (16%) were alternative
according to the Solexa data. This underscores the need
to use thresholds of transcript support for both constitu-
tive and AS as well as confirms our relabeling.

In-silico performance on a TassDB derived dataset

Having seen that sets of constitutive splice events might
in fact be significantly corrupted by (not yet detected)
alternative acceptors, we decided to take extra care in
our selection of human alternative and constitutive
NAGNAGs for training data by considering only
NAGNAGs which are strongly supported in TassDB.
Thus, a NAGNAG was considered constitutive if it had
�10 ESTs supporting one splice site, and none for the
other. To be considered alternative, there had to be �2
ESTs for each splice variant, and �10% of the ESTs must
support the minor variant. Such filtering of alternative
events was not required in D1 as another stringent
filter—of conserved AS—had already been applied.

This TassDB dataset (called D2 in the following) con-
sists of 5363 constitutive (5032 E, 331 I) and 902 alterna-
tive NAGNAGs. We also repeated the comparison with
the filtered Solexa dataset (Supplementary Data File 9) as
in the previous section—2890 cases of D2 were found in
the filtered Solexa data, and of the 2466 cases labeled

constitutive, only 37 (1.5%) had evidence of AS in the
Solexa data. The much lower number of mislabeled con-
stitutive samples in D2 when compared to the original D1,
further justified the choice of stringent filters.
D2 was partitioned into two equal parts, and then, in

turn, we used half of the data to train the BNs, and the
remaining half was used for testing. The test set remained
untouched while the training set was used for discretiza-
tion, feature selection and learning the BN. Finally, the
BN which had been learned on the training set was used to
classify the samples in the test set. This procedure was
carried out twice, using each half for training and testing
in turn, and the average of the two runs was taken as the
final performance.
We classified each candidate as belonging to one of the

three classes (EI/E/I). The BN achieved AUC of 0.96, 0.97
and 0.98 respectively for identifying EI, E and I variants,
as seen in the ROC plot (Figure 3). The balanced sensi-
tivity and specificity obtained was 92%, 95% and 93%
(EI/E/I). We would like to note that in contrast to (8),
which divided this classification into two sub-tasks,
namely predicting EI versus E, and EI versus I, we treat
it as a 3-class problem, thus covering all three possible
splicing outcomes at the same time.
Another noteworthy difference is that while (8) reported

worse performance for distinguishing between EI and
I cases, compared to distinguishing between EI and E
cases, in the 3-class problem, the highest performance is
achieved in predicting the I-class, that is, constitutive
usage of the downstream acceptor. This is intuitively
easy to grasp, since the scanning mechanism (24) implies
that the upstream acceptor is preferentially used, so that
constitutive usage of the downstream acceptor is only
likely when the upstream splice site is quite weak, for
example, when we have a GAGHAG pattern (H=A,
C or T). Previous experimental work on 30 splicing (25),
as well in-silico analyses of NAGNAG splicing (26,27)
have shown that the nucleotide preceding the AG can

Figure 3. In-silico performance of the Bayesian network. ROC
plot showing the performance achieved on the 3-class [I-class (red),
E-class (green), and EI-class (blue)] classification problem. The I-class
is relatively the easiest to predict, whereas the EI-class, or AS, is the
hardest.
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influence the choice of 30 splice site, with the following
order of preference: CAG>TAG>AAG>GAG. Con-
sistent with this, 227 of 331 I cases (68.6%) in the D2
dataset have a GAGHAG pattern. The order of prefer-
ence is also reflected in the sequence logos (28,29) con-
structed using the D2 data (Supplementary Data File 1).
Removing all NAGNAGs containing a GAG from the

training and test sets results in AUC of 0.90, 0.94 and 0.90
respectively for identifying EI, E and I variants. Removing
such NAGNAGs can be considered, as GAGs are believed
to rarely serve as functional splice sites (8,30), and there-
fore such NAGNAGs are considered ‘implausible’ for the
purposes of AS (31). However, since TassDB contains 182
alternative NAGNAGs of this kind (of which 59 have �2
ESTs supporting each variant), we decided to include
them. The BN achieves AUC of 0.83, 0.98 and 0.99 respec-
tively for identifying EI, E and I variants on the subset of
GAG-containing NAGNAG motifs and predicts 6% of
the EST-supported ones to be alternatively spliced. On
the other hand, among the currently known constitutively
spliced GAG-containing NAGNAG acceptors eight
(1.2%) are being predicted to be alternative.

Experimental validation

Having established that highly accurate predictions of
NAGNAG splicing are possible in-silico, we decided to
perform extensive experimental validation of predictions.
Experimental validation was performed using RT–PCR
followed by capillary electrophoresis with laser-induced
fluorescence detection. NAGNAG AS appears in our
experimental readout as two fluorescence peaks separated
by three nucleotides (Figure 4). To avoid false positive
results due to noise, a threshold has to be defined above

which the intensity of the minor peak is considered as a
robust signal of AS. Accordingly, we measured the accu-
racy of predictions against the threshold of the isoform
ratio, that is, the abundance of the minor transcript
(lower peak).

Candidates for experimental work were chosen from
both, the entire D2 dataset described in the previous sub-
section (termed ‘training data’), and the remaining 4475
(913 EI, 3206 E and 356 I) human NAGNAGs in TassDB
(termed ‘test data’). The BN learned on D2 uses 14 fea-
tures (Figure 5) and was applied to classify both training
as well as test data (Supplementary Data Files 2 and 3,
respectively), and candidates were chosen based on the
classification results. Besides the prediction of AS
for exons with low EST coverage, we decided to select
candidates of several different types, as explained in the
following, where P(EI) refers to the probability of being
alternative.

Class 1: NAGNAGs from the training data, labeled consti-
tutive, but given a P(EI) �0.9 by the BN. As control,
constitutive training NAGNAGs with a P(EI) �0.1 were
chosen. With these candidates, we wanted to test whether
the BN can find alternative acceptors even within the
ones which had strong transcript support in favor of
being constitutive. At a minor variant abundance thresh-
old of 4%, the validation rate is 100% for both cases (6/6;
Table 3), and controls (2/2). These results indicate that
even strong transcript support (EST coverage �10) can
miss alternative splice events and cannot ‘prove’ that an
exon is indeed constitutive. The highest number of ESTs
among these six was 36, for SNTA1 (NM_003098, exon 8)
for which we detected 4% usage of the acceptor that was
unsupported by ESTs. The highest observed splice ratio of
43% was obtained for C3ORF34 (NM_032898 exon 2)
which was originally covered by 21 ESTs confirming the
E acceptor exclusively.

Class 2: NAGNAGs from the training data, labeled alter-
native, but given a P(EI) �0.1 by the BN. As control,
alternative training NAGNAGs with a high P(EI)

Figure 5. Bayesian network to predict NAGNAG alternative splicing.
The 14-feature Bayesian network learned on the D2 dataset. Note
that the class node, which has an edge to all other nodes, is omitted
for ease of visualization. Thus, this is just the augmenting tree in the
TAN classifier.

Figure 4. Experimental validation of predictions using RT–PCR
and quantification by capillary electrophoresis. Experimental results
indicating (A) constitutive NAGNAG splicing of VPS13D exon 27
and (B) alternative NAGNAG splicing of INPP5E exon 6, minor
isoform abundance 24%.
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were also chosen. With this class, we wished to identify
constitutive NAGNAGs which had erroneous transcript
evidence of being alternative. At a minor variant abun-
dance threshold of 4%, the validation rate is 80% (4/5)
for cases being constitutive and 100% (6/6) for controls
being alternative.

Class 3: NAGNAGs from the test data, labeled constitutive,
but given a P(EI) �0.5 by the BN. Candidates were
chosen from each interval of 0.1 between 0.5 and 1. As
controls, two test acceptors, labeled constitutive and with
P(EI) �0.1 where chosen. The underlying consideration
was to test not only the ability of the BN to identify alter-
native NAGNAGs among the acceptors with low tran-
script coverage, but also to test whether a higher P(EI)
corresponded to a higher accuracy of prediction. The
results of the experiments on candidates from this class
demonstrates that for a given threshold of isoform
ratios, higher posterior probabilities result in more reliable
predictions (Table 4). The validation rate for the controls
at a minor abundance of 4% is 50% (1/2).

Class 4: NAGNAGs from the test data, labeled alternative,
but given a P(EI) �0.1 by the BN. As control, alternative
NAGNAGs with a P(EI) �0.9 were also chosen. Note that
the difference when compared to Class 2 is that these are
alternative NAGNAGs with relatively weaker transcript
support. For Class 4, the validation rates at a minor abun-
dance of 4% are 83% (5/6) for cases being constitutive,
and 50% (3/6) for controls being alternative.

In all, 63 NAGNAGs were investigated (Supplementary
Data File 4), and the experiments confirmed that the BN
can accurately predict NAGNAG-splicing outcome in
81% (38/47) of candidates. Surprisingly, the validation
rate for controls was lower with 75% (12/16).

Most informative features

Next we asked which the most informative features for
our classification problem are. By measuring the informa-
tion gain, we identified the two Ns in the NAGNAG
motif, and the splice site scores, to be by far the most
informative features (Table 5), which is also in agreement
with the literature (8,9,25–27). The downstream N (N2,
Figure 2) is the most informative feature, followed by
the splice site score of the I acceptor. The next two most
informative features are the upstream N (N1, Figure 2),
and the splice site score of the E acceptor. The nucleotides
immediately upstream and downstream of the NAGNAG
acceptor (positions �1, +1, �2 and �3) are the next four
informative features, and the nucleotide at position +3
is ranked 10, reflecting the highly localized nature
of NAGNAG splicing. The feature ranked 9 is the GC-
content of the downstream exon—NAGNAGs whose
downstream exon has a higher GC-content are enriched
in usage of the I acceptor and correspondingly in alterna-
tive NAGNAG splicing.
We note that while the splice site scores are very infor-

mative, they are not present in the 14 feature BN learned
on D2 (Figure 5)—this is because the relevant information
is already captured by N1, N2 and the immediate neigh-
borhood. The splice site scores are based on information
that also uses positions which are relatively distant from
the NAGNAG, and likely not strongly influential on the
splicing outcome. Moreover, using the splice site scores
introduces a systematic bias against the downstream
acceptor, since the ‘PPT’ (polypyrimidine tract) now con-
tains an AG dinucleotide.

Prediction on the mouse, rat, chicken, zebrafish and
fly genomes

To test how the BN trained on human performs on data
from other species, we first extracted mouse NAGNAG
data from TassDB (7), using the same EST-based filtering
criteria as for the D2 data above. The performance on
the mouse NAGNAG data was nearly identical to that
on human (Table 6, Supplementary Data File 10).
Encouraged by this, we used the same EST-based filtering
in rat, chicken, zebrafish and fly, and predicted
NAGNAG splicing using the BN. The performance
achieved for the three vertebrates was very similar to

Table 5. Top 10 features according to the information gain

Featurea Information gain

N2 0.492
MaxEntScan I 0.448
MaxEntScan E 0.252
N1 0.199
p�1 0.040
D1 0.020
p�2 0.014
p�3 0.005
G/C content of 30 exon 0.005
D3 0.004

aFor nomenclature see Figure 2.

Table 3. Accuracy of prediction against threshold of the minor splice

variant

Threshold of the minor
splice variant (%)

Experimentally confirmed predictions of AS

Class 1a (%) Class 3b (%)

10 50 60
8 50 90
6 67 90
4 100 100

aSix predictions with P(EI)� 0.9.
bTen predictions with P(EI)� 0.9.

Table 4. Accuracy of predictions against posterior probability

P(EI)a Accuracy of predictions

0.9–1 100% (10/10)
0.7–0.89 80% (8/10)
0.5–0.69 50% (5/10)

aAbundance of the minor splice variant� 4%.
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that on human and mouse, whereas the performance on
fly data, while not as high as that on the others, was still
quite good (Table 6). Investigating the cause behind the
reduction in performance on the Drosophila genome, we
found that excluding positions not in the immediate neigh-
borhood of the NAGNAG—in particular, excluding all
features except the two Ns in the NAGNAG, and the
two nucleotides immediately upstream, lead to a slight
improvement on Drosophila data. This simplified BN
trained on human D2 data with just four features, also
almost matched the performance of the previous BN with
14 features (Figure 5) on the other five genomes, as well as
when evaluated by the above outlined experimental results
(data not shown).

Prediction on the worm genome

TassDB also contains data from the worm genome, how-
ever, there are no examples of constitutive I variants
with 10 or more ESTs. We used the 3-class BN with
four features (the two Ns in the NAGNAG, and the two
nucleotides immediately upstream) trained on human
D2 data to predict NAGNAG-splicing outcomes for
Caenarhabditis elegans, and obtained AUC values of
0.93 for predicting the EI and E-classes. Only one
sample was predicted to belong to the I-class. A 2-class
BN trained on human D2 data from only the E and EI-
classes produced the same AUC values. A closer look at
the data revealed that none of the 391 NAGNAGs (369 E,
22 EI) had G as the upstream N (N1, Figure 2; which is
most often the case for constitutive I variants) in the
NAGNAG. Thus, it appears that the splice site sequence
context is different in NAGNAG splicing in C. elegans,
compared to vertebrates. This is in agreement with pre-
vious studies that identified an extended 30 splice site con-
sensus in C. elegans (28).

Performance using a minimal set of features

Since reducing the number of features lead to an improve-
ment in prediction of NAGNAG AS in Drosophila and
worm, we asked how many features we could omit with-
out a significant drop in performance on the human D2
dataset. We found that using only the two Ns in the
NAGNAG motif, or only the splice site scores (computed
by MAXENTSCAN) led to only slightly worse perfor-
mance. We also found that using a naı̈ve Bayes classifier
instead of a BN (with the same features), led to only a

minor drop in performance.In order to compare the
impact of leaving out features, we compared the error
rates of classification using different feature subsets
under a 10-fold cross-validation setting with D2. The
results show that the error rate is lowest (5.9%) when
using only N1, N2, p1, p2 and D1, that is the two Ns
in the NAGNAG, and the immediate two upstream and
one downstream positions. The error rate using only the
MAXENTSCAN scores (7.4%), is higher than that
obtained using all features (7.1%), only N1 and N2

(6.7%), or the 14-feature BN we used for the experimental
validation (6.3%). We would also like to point out that
there is practically no difference in the computational cost
of using the various models—the cost of extra features in
training the models is not much, and more importantly,
once trained, the various models take near-identical time
to classify new data.

Webserver and performance on examples from the literature

To further validate our classifier, we tested it on examples
of experimentally studied NAGNAGs from the literature
(30), which includes interesting examples of tissue-specific
variations of the isoform ratio. As shown in Table 7, the
results were promising—13/17 (76%) of the cases were
predicted to be alternative. An additional 5/7 cases from
(29) were also correctly predicted (data not shown). Thus,
the performance on these cases from the literature further
underscores the usefulness of our classifier. To enable
others to do similar experiments as well as reproduce
our results and/or predict NAGNAG AS in candidate
acceptors of their interest, we developed a webserver—
BayNAGNAG, available at: http://www.tassdb.info/
baynagnag/

A user can provide a NAGNAG motif along with the
upstream and downstream sequence context, the intron
length and the last base of the upstream exon. These are
then used to predict the class, and the posterior

Table 7. Predictions of the 14-feature BN on experimentally studied

cases from the literature (30)

Gene Isoform ratios
(E:I) in different
tissues (30)

P(EI) P(E) P(I)

DRPLA 8:2–9:1 0.76 0.22 0.02
GHRHR 2:8 0.92 0.04 0.05
BAIAP2 1:9–0:10 0.88 0.04 0.07
PTMA 0:10–1:9 0.14 0.33 0.53
IGF1R 7:3–8:2 0.56 0.43 0
PAX3 0:10-10:0 0.72 0.03 0.25
PAX7 0:10–9:1 0.69 0.13 0.18
LEP 1:9–10:0 0.61 0.38 0.02
DNMT1 (Mouse) 4:6–6:4 0.58 0.07 0.35
CAST 9:1–10:0 0.90 0.08 0.03
MAN2B1 0:10–3:7 0.23 0.67 0.10
PSEN2 7:3 0.45 0.55 0
LAP1B 0:10–10:0 0.84 0.15 0.01
NOXO1 0:10–9:1 0.08 0.91 0.01
CCL20 4:6–9:1 0.80 0.18 0.02
SGNE1 4:6–8:2 0.48 0.41 0.11
TGFA 5:5–9:1 0.93 0.04 0.03

Table 6. Area under the ROC curve for the three classes and six

organisms

Organism AUC

EI E I

Human 0.967 0.985 0.989
Mouse 0.966 0.982 0.989
Rat 0.967 0.985 0.991
Chicken 0.972 0.983 0.986
Zebrafish 0.967 0.983 0.992
Fruitfly 0.924 0.971 0.952
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probabilities of all three classes are provided as output.
Predictions using two different BNs are provided—one
which uses 14 features (Figure 5) and was used in
the experimental validation, and the other trained
on MAXENTSCAN (15) scores (of the E and I) splice
sites only. Furthermore, we also provide an additional
file (Supplementary Data File 7) with the required
information for all 10 740 human NAGNAGs used in
our study.

Estimating the number of undiscovered alternative
NAGNAGs

Using the accuracy of predictions according to the exper-
imental validation, we estimate the number of yet undis-
covered alternative NAGNAGs in the human genome
(10 740 NAGNAGs, 8925 constitutive, 1815 alternative)
to be 258–515. The corresponding estimates for mouse
(8735, 7386, 1349), fly (1589, 1411, 178) and worm (4697,
4661, 34) genomes are 214–417, 106–214 and 101–185,
respectively.

DISCUSSION

We have demonstrated that BNs can produce highly reli-
able predictions of NAGNAG-splicing outcomes. Once
transcript evidence had been carefully considered to
create a training dataset, the BN achieved high perfor-
mance, not only in-silico with a balanced sensitivity and
specificity of �92%., but also according to extensive
experimental validation. Altogether, we investigated the
AS of 63 NAGNAGs in one to two tissues and confirmed
our predictions in 81% of cases and 75% of controls
(4% threshold for the minor isoform). The surprisingly
low confirmation rate of controls is primarily due to the
50% (3/6) success rate for low expressed genes (Class 4).
Likely, some of these failures are false negatives as AS
may take place in other cell types than those tested.
In turn, this implies that also some non-confirmed case
predictions of AS are false negatives within our experi-
mental setup. Summing up cases and controls with P(EI)
�0.9, the confirmation rate is 89% (25/28) despite that the
just discussed problematic Class 4 controls are included. It
is natural to ask why ESTs failed to detect the predicted
AS in Class 1 candidates, which was successfully validated
by our experiments. In our opinion, some of these cases
are easily explained by the low minor abundance, which
implies that it is not surprising if a relatively low number
of ESTs fails to detect AS. For instance, the NAGNAG
belonging to the gene NF1 in Class I has a minor abun-
dance of 0.05, so one would expect to see, on average, 1
EST out of 20 supporting the minor variant. However,
since this NAGNAG is only covered by 10 ESTs, it is
not surprising that AS is not detected.

To the best of our knowledge, this is the first instance
of such extensive validation of in-silico predictions of
NAGNAG splicing, and is also among the most extensive
experimental validations of non-EST based methods of
predicting AS published so far.

The single biggest factor contributing to the performance
of the BN was the preparation of the training dataset.

As we showed by prediction on the dataset D1 from liter-
ature (8), judicious use of transcript evidence, especially
a threshold on the number of transcripts required to
label an exon as constitutive, makes a big difference.
A strict threshold on the EST evidence required to label
a splice site as constitutive or alternative is required to
minimize the noise inherent in EST databases, and the
performance of a classifier can only be as good as the
quality of the data that it is trained with.
The most informative features (Table 5) are the two

Ns in the NAGNAG motif, and the splice site scores.
To some extent, the scores for the upstream and down-
stream splice sites, and the upstream and downstream Ns
can be substituted by each other. The nucleotides imme-
diately neighboring the NAGNAG are the next most
important, while other features make only small contribu-
tions to the prediction performance. Thus it is evident that
most of the information required for prediction is encoded
in the immediate splice site neighborhood.
A BN trained on human data achieved near-identical

performance on the mouse, rat, chicken and zebrafish
genomes, indicating that the determinants of NAGNAG
splicing outcome are conserved among vertebrates.
Furthermore, the fact that the most informative features
were the two Ns in the NAGNAG motif, and its immedi-
ate neighboring nucleotides, suggests that the mechanism
is simple in nature and maintained in evolution. Given the
relatively low transcriptome coverage in rat, chicken and
zebrafish, one might ask whether the subset of NAGNAG
acceptors we studied for these genomes represent the
highly expressed subset of genes and thus likely enriched
in conserved alternative events. However, this would
not appear to be the case, as we obtain nearly identical
results for mouse, which has much higher transcriptome
coverage. Thus, our BN should be useful to annotate
NAGNAG splicing in animal genomes that currently
lack extensive transcript data.
The BN trained on human data was also able to predict

NAGNAG AS in the Drosophila genome, though with
a drop in performance. However, training using data
from Drosophila itself did not improve the performance,
indicating that the mechanism may well be conserved
between vertebrates and Drosophila. Furthermore, using
only four features (the two Ns in the NAGNAG, and the
two nucleotides immediately upstream), a BN trained on
human data achieved good performance on the worm
genome, which contains no instances of the I-class with
strong EST support.
This suggests that perhaps what is different in

NAGNAG splicing in C. elegans, compared to vertebrates
is not the mechanism but rather the evolutionary con-
straints on the splice site sequence context.
Simpler approaches like using only the two Ns in the

NAGNAG motif, or only the splice site scores (computed
by MAXENTSCAN), or using a naı̈ve Bayes classifier, led
to only slightly worse performance, indicating that the
other features and the corresponding dependencies
learned by the BN are weak in their discriminative
power, and in generalization to other datasets. All this
points to a simple and stochastic mechanism, at least in
as much as predicting the class (EI/E/I) of NAGNAG
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splicing is concerned. This is in agreement with (9), who
proposed a model based on the sequence context from �6
to +6 at the intron-exon boundary, that is, from �3 to
+6 with respect to the NAGNAG, or 15 positions in all.
We have shown that the class (EI/E/I) of NAGNAG spli-
cing can be predicted in the vast majority of cases with
even fewer positions, that is, �2 to +1 with respect to the
NAGNAG, or 9 positions in total. However, the predic-
tion of splice ratios and their tissue and/or developmental
stage dependent changes has to involve additional cis and/
or trans features and can not be based on a simple sto-
chastic mechanistic assumption. We note that the possi-
bility of such a mechanism does not preclude regulation or
a biological function (5,32). Stochastic splice site selection
might in fact help production of constant splicing ratios,
which have been observed in some NAGNAG sites with
clear functional implications (5). At a qualitative level, the
stronger splice site seems to correspond to the more abun-
dant variant in most cases, thus supporting a model in
which the two splice sites compete for binding to the spli-
ceosome. However, quantitative prediction of the precise
abundance is much more challenging. Since NAGNAG
AS is frame-preserving (and thus not subject to NMD),
save for the �2% of the cases which introduce an in-frame
stop codon (25), the vast majority of cases should lead to
different proteins Studies so far have found evidence of
both cases where such proteins have variations in func-
tion, as well as those in which there is no noticeable dif-
ference, and thus the AS is apparently just ‘tolerated’ by
the cell [(5) and the references therein].
We also estimated that there are up to several hundred

undiscovered alternative NAGNAGs in the human,
mouse, fruitfly and worm genomes. We note that these
numbers could be an underestimate, since we only con-
sider predictions with P(EI)� 0.5. Given the current level
of annotations of the rat, chicken and zebrafish genomes,
genomic information about a substantial fraction of
NAGNAG acceptors is likely lacking, therefore such
estimation would not be meaningful.
Despite the experimentally validated accuracy achieved

in predicting the outcome of NAGNAG splicing at the
‘ternary level’ (EI, E or I), the ‘NAGNAG-splicing code’
is not completely solved. Open questions are the isoform
ratios and their tissue specificity observed for several
NAGNAGs (25,30,33). Here, sequence features may con-
tribute to the isoform ratio although we consider them
uninformative for discrimination at the class level, consti-
tutive versus alternative. Prediction of isoform ratios
should also address the influence of the sequence context
in the intron and in particular of the branch point on the
isoform ratios (27). This is a particularly hard task since
computational identification of the branch point is an
unsolved issue in the splicing field. Finally, the current
limitation in studying isoform ratios is that the available
transcript data reflect the natural situations with low
resolution. In the future a considerably higher amount
of transcript data provided by next-generation sequencing
technologies might allow an accurate approximation of
isoform ratios and ultimately to decipher the splicing
code completely.

CONCLUSIONS

BNs can produce highly reliable predictions of
NAGNAG-splicing outcomes once transcript evidence
had been carefully considered to create training dataset.
This indicates that we have identified, on a qualitative
level, the most important features of the ‘NAGNAG-
splicing code’. As a BN trained on human data achieved
near-identical performance on other genomes from mouse
to zebrafish and most of the information needed for
prediction is encoded in the immediate splice site neigh-
borhood, we conclude that the mechanism is simple in
nature and maintained in evolution, as well as that our
BN should be useful to annotate NAGNAG splicing in
animal genomes that currently lack extensive transcript
data.
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