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Abstract
Background: Alternative splicing is a major contributor to the diversity of eukaryotic
transcriptomes and proteomes. Currently, large scale detection of alternative splicing using
expressed sequence tags (ESTs) or microarrays does not capture all alternative splicing events.
Moreover, for many species genomic data is being produced at a far greater rate than
corresponding transcript data, hence in silico methods of predicting alternative splicing have to be
improved.

Results: Here, we show that the use of Bayesian networks (BNs) allows accurate prediction of
evolutionary conserved exon skipping events. At a stringent false positive rate of 0.5%, our BN
achieves an improved true positive rate of 61%, compared to a previously reported 50% on the
same dataset using support vector machines (SVMs). Incorporating several novel discriminative
features such as intronic splicing regulatory elements leads to the improvement. Features related
to mRNA secondary structure increase the prediction performance, corroborating previous
findings that secondary structures are important for exon recognition. Random labelling tests rule
out overfitting. Cross-validation on another dataset confirms the increased performance. When
using the same dataset and the same set of features, the BN matches the performance of an SVM
in earlier literature. Remarkably, we could show that about half of the exons which are labelled
constitutive but receive a high probability of being alternative by the BN, are in fact alternative
exons according to the latest EST data. Finally, we predict exon skipping without using
conservation-based features, and achieve a true positive rate of 29% at a false positive rate of 0.5%.

Conclusion: BNs can be used to achieve accurate identification of alternative exons and provide
clues about possible dependencies between relevant features. The near-identical performance of
the BN and SVM when using the same features shows that good classification depends more on
features than on the choice of classifier. Conservation based features continue to be the most
informative, and hence distinguishing alternative exons from constitutive ones without using
conservation based features remains a challenging problem.
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Background
Eukaryotic primary mRNAs consist of exons and introns.
The mature transcript as the substrate for translation is
produced by removing introns in a process called splicing.
Splicing can be either constitutive, always producing the
same mRNA, or alternative, by skipping of variable parts
of the primary transcript.

Alternative splicing is a mechanism for producing tran-
script and protein diversity [1]. It is particularly wide-
spread in higher eukaryotes, especially mammals. Various
studies have estimated that up to 74% of all human genes
are alternatively spliced. Large scale detection of alterna-
tive splicing is usually done using expressed sequence tags
(ESTs) [2] or microarrays (reviewed in [3] and [4]). Since
alternative splicing can be highly specific for tissues or
developmental stages, these methods can only detect
splice events that occur in the underlying probe samples
with sufficient frequencies and/or are limited to by the
microarray design. Furthermore, nowadays Whole
Genome Shotgun (WGS) sequencing projects are churn-
ing out genomic data at a higher rate than corresponding
transcriptome data – the number of ESTs in GenBank
Release 161 had increased by 19% in one year, compared
to a gain of 39% in the number of contigs in the WGS
GenBank division [5]. Thus it can be expected that in the
foreseeable future, we shall have several genomes without
the level of corresponding extensive transcript coverage
required to reveal the extent of alternative splicing, and
hence transcriptomic and proteomic variability. Accord-
ingly, there is a need for in silico methods of detecting
alternative splicing. Moreover, such methods can provide
further insights into the mechanisms of alternative splic-
ing.

Exon skipping, whereby a given exon in its entirety is
either included in, or excluded from the mature transcript,
is the most prevalent form of alternative splicing in
humans [6]. It has been shown that sequence-based fea-
tures, derived from the exon and its flanking introns, can
be used to predict skipping of exons that are conserved
between human and mouse and alternatively spliced in
both species; denoted conserved exon skipping events [7].
Previous studies have used such features with state-of-the-
art classifiers such as support vector machines (SVMs)
[8,9] and regularized least-squares classifier [10], and
achieved success in predicting exon skipping. Other
approaches use protein domain information [11] and
evolutionary conservation [12-14] to detect alternative
splice events.

Here, we use Bayesian networks (BNs), a state-of-the-art
machine learning method, to predict conserved exon skip-
ping events. BNs are an increasingly popular machine
learning approach to data modeling and classification

[15,16]. The ability of BNs to cope with features of various
value ranges and to learn dependencies between features
makes them especially versatile and suited to a large vari-
ety of applications. BNs allow multiple dependencies
between variables, impose no fixed ordering of variables,
allow integration of arbitrary features, and the network
structure can be automatically learned. This makes BNs a
flexible choice for biological sequence data analysis [17-
21]. We introduce several novel features that distinguish
alternative exons from constitutive exons, including fea-
tures based on the single-strandedness of exonic splicing
enhancers and silencers (ESEs and ESSs), and features
involving intronic splicing regulatory elements (ISREs).
By validating our classifiers on various datasets, we iden-
tify features which are discriminative irrespective of data-
set-specific biases, and provide independent measures of
the predictive power of the BNs.

Even though conservation based features have proved to
be among the most discriminative features for predicting
exon skipping, it is desirable to be able to predict alterna-
tive splicing using only information from a single
genome. We show that our approach can still predict exon
skipping without using conservation-based features.

Methods
Datasets and genome browser
We used the dataset of [8], henceforth called dataset D1,
consisting of 243 alternative and 1,753 constitutive exons,
kindly provided by Gideon Dror. In this dataset, constitu-
tive exons are supported by at least four ESTs each in
human and mouse with no EST evidence for exon skip-
ping, whereas alternative exons are skipped in both spe-
cies. The second dataset is the ACESCAN training set [10],
henceforth called dataset D2, which comprises 5,069 con-
stitutive and 241 alternative exons. For validation pur-
poses we use the genome builds hg18 for human and
mm9 for mouse of the UCSC Genome Browser [22] were
used.

Features for machine learning
In total, we used 365 features in this study (Table 1).
Thereof, 228 were previously used by [8]: (1) exon length,
(2) symmetry, that is, divisibility of exon length by 3; (3)
percent identity of the alignment between the exon and its
mouse ortholog; (4–7) length of and percent identity of
the best local alignment between the up- and downstream
100 nt intronic flanks and their mouse orthologs, which
are in total four features; (8–199) trimer counts for the
exon and the 100 nt flanking intronic regions, which are
a total of 64 × 3 = 192 features; (200) intensity of the poly-
pyrimidine tract (PPT) as the number of pyrimidines in
the window -19 to -4 from the 3'ss; and (201–228) nucle-
otides at the 5'ss positions -3 to -1 and +3 to +6, which are
a total of 7 × 4 = 28 features. The features (1–7), used for
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the first time in [7], were kindly provided by Gideon Dror,
along with the dataset D1.

We also used six features from [10]: the percent identity of
the global alignments between up- and downstream 100
nt intronic flanks and their mouse orthologs, lengths of
the upstream and downstream flanking introns, and the
strength of the 3' and 5' splice sites (3'ss and 5'ss) com-
puted by MAXENTSCAN [23]. We used the programs
"needle" and "water" from the EMBOSS software suite
[24] for aligning the exons and the intronic flanks with
their mouse orthologs and computing the conservation
based features.

Among the new features we added were dinucleotide
counts for the exon and the 100 nt intronic flanks, a total
of 16 × 3 = 48 features. As it has been shown that exon
skipping is more prevalent in regions of low GC content
[25], we used the GC content of the exon and the intronic
flanks as three additional features.

To use features based on ESEs and ESSs, we applied neigh-
bourhood inference (NI) scores [26]. Briefly, each hex-
amer has an NI score between -1 and 1, with negative
scores indicating a tendency towards acting as an ESS, and
a positive score, a tendency to act like an ESE. Hexamers
with a score of 1 or -1 are considered "trusted" ESEs and
ESSs, respectively, and those with a score of greater than
0.8 or smaller than -0.8 are considered to have "strong"
ESE or ESS activity. We used the density of NI scores,
defined as the number of hexamers with NI scores 1, ≥ 0.8,
> 0, < 0, ≤ -0.8, -1, normalized by the number of hexamers
in the exon (6 features). Additionally, the distribution of
ESEs and ESSs may have a bearing on splicing as well.
Therefore, we used the variance of NI scores for "trusted"
and "strong" ESEs and ESSs (2 features). Since the density
of ESEs and ESSs near splice junctions has been suggested
to be important in determining splicing outcome [4,27-
29], we also measured the densities in the first and last 50
nucleotides of the exon (for exons shorter than 50 nt, the
entire exon was used; 2 features).

Table 1: Features for machine learning used in this study

Feature subset Number of features Motivation First use

Exon: length, symmetry, and identity with 
mouse ortholog

3 Alternative exons tend to be shorter, 
frame-preserving, and more conserved 

compared to constitutive exons

[7]

Conservation of intronic flanks: length/
identity of the best local and identity of 

the global alignment

2 × 3 Alternative exons tend to have higher 
conservation in their intronic flanks

[7,10]

Conservation in a 12 nucleotide region 
spanning the 3' and 5'ss

2 As alternative exons and their intronic 
flanks are more conserved, this may in 

particular concern the exon/intron 
boundaries

This work

PPT intensity 1 Alternative exons tend to have weaker 
PPTs

[8]

Nucleotides at seven positions flanking 
the 5'ss

4 × 7 Alternative exons tend to have specific 
nucleotide preferences near the 5'ss

[8]

Frequency of di- and trimers in the exon 
and flanking introns

3 × 16
3 × 64

Motifs which are part of splice regulatory 
motifs might differ in their abundance in 

alternative and constitutive exons

[8] (trimers), this work (dimers)

Splice site strength of 3'and 5'ss 2 Alternative exons tend to have weak splice 
sites

[10]

Length of flanking introns 2 Alternative exons tend to be flanked by 
long introns

[10]

GC content of exon and intronic flanks 3 GC-poor regions tend to promote 
alternative splicing

This work

Features based on NI scores 24 Alternative exons tend to have fewer ESEs 
and more ESSs

This work

Features based on PU values 15 Single-stranded motifs are likelier to bind 
to regulators

This work

PTB-binding sites 6 PTB is a regulator alternative splicing This work
Features based on ISREs 8 Alternative exons tend to have more ISREs 

in their intronic flanks
This work

Density of various motifs 22 Several motifs are known to be associated 
with alternative splicing

This work

Combination features 7 Combining features can capture more 
information

This work

Note that the total number of features used is 365 whereas the sum of the entries here is 378, because some features have been counted in more 
than one category (for example, in PU value and NI score related features).
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We also designed features using very recently published
datasets of conserved ISREs enriched in the upstream and
downstream intron flanks of all exons, as well ISREs
enriched in upstream and downstream introns flanking
alternative exons [30]. We used the density of ISREs from
these four lists in both upstream and downstream 100 nt
flanking intronic regions, giving us eight novel features.

Secondary structure can influence alternative splicing
[31]. The single-strandedness of ESE, ESS or ISRE motifs
was characterized using PU (Probability of being
Unpaired) values [32], which represent the probability
that all the bases in the given motif are unpaired. Since
local RNA folding is influenced by the length of the
sequence context [33], we minimized potential biases by
using 11 to 30 nt symmetrical context lengths up- and
downstream of a given hexamer, and computing the aver-
age of the 20 PU values thus obtained [34]. We pre-com-
puted PU values in this manner for all the hexamers in the
exons, and combined the NI scores with PU values. Vari-
ous thresholds were used for absolute NI score value (1, =
0.8, > 0) and a PU value of 0.6. Two kinds of combina-
tions were used: (i) a "Boolean" combination, that is,
counting the number of hexamers with NI and PU values
both above the thresholds; and (ii) the product of NI and
PU values (4 features). Similarly, we used PU values in
conjunction with ISRE information to characterize the
single-strandedness of intronic splicing regulatory ele-
ments (4 features).

Mutations around the splice junctions can effect splicing.
Therefore, we designed a feature to measure how well the
immediate neighbourhood of the splice junctions was
conserved. We formed two 12-mers consisting of the bases
from positions -6 to +6 around the 3'ss and the 5'ss. The
number of identical nucleotides between the human and
mouse 12-mers result in two new features.

We also used several motifs from a recent study character-
izing conserved motifs associated with constitutive and
alternative splicing [35]. However, depending on the par-
tition, these features were either not discriminative or
weakly so, indicating that they are important only for a
small minority of the alternative exons.

To count the number of binding sites for the Polypyrimi-
dine-tract-binding protein (PTB), a well-studied repres-
sive regulator of alternative splicing [36], we counted the
simplest known motifs for its binding sites – UCUU and
CUCUCU, as well as the sum. The density of PTB binding
sites in the 100 nt intron flanks and the exon gives nine
features.

Lastly, we used novel features derived from features
already known to be discriminative. For example, while it

is known that skipped exons tend, on the average, to be
shorter than constitutive exons, it has been shown that
long exons can be skipped if flanked by very long introns
[37]. Furthermore, it is possible that the shorter the exon
is with respect to the flanking introns, the harder it is for
the spliceosome to reliably recognize it. Consequently, we
used the ratio of upstream and downstream intron length
to exon length, as well of the intron lengths, as three fea-
tures. We also used the pairwise products of human-
mouse identity of the exon and each 100 nt intron flank
as well as of the exon and both flanks, in order to capture
information about simultaneous conservation of the exon
and the intronic flanks (four features).

Information gain and information gain ratio
To compare the information content of the features, we
used information gain, and information gain ratio, which
are established measures of the usefulness of features in
the field of machine learning [38]. The formula for infor-
mation gain is:

IG(Class | Feature) = H(Class) - H(Class | Feature)

where H(Class) is the entropy of the class variable, and
H(Class | Feature) is the conditional entropy of the class
variable, given the feature. We used the WEKA package
[38] for computing information gain and information
gain ratio, in order to rank the features according to how
informative they were.

Bayesian networks
We used the algorithms for feature selection, model learn-
ing and classification as described in [17], and made avail-
able via the public webserver BioBayesNet [39].

Feature subset selection
Given a training set, we selected features in a three step
procedure. First, we use an entropy based method devel-
oped by [40] to find partitions of the feature ranges which
best separate the given classes (in the following called
"discretizer"). Features for which the entire feature range
is partitioned into at least two intervals, such that the dis-
tributions of the two classes differ significantly in these
intervals, are called "discriminative" and they are the basis
of further analysis. On the other hand, those features for
which no such intervals are found are essentially non-
informative, or "non-discriminative" features for our pur-
poses.

Once the discretization algorithm has chosen the set of
discriminative features, an optimal (in the local sense)
subset can be selected using the sequential floating feature
selection (SFFS) method [41]. Briefly, this algorithm starts
with an initially empty feature subset, and at each step,
adds the feature which most improves a specific quality
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measure. After this addition, all previously added features
are deleted from the subset, unless doing so worsens the
quality measure. This is done in order to avoid getting
trapped in local minima. The algorithm stops when nei-
ther inserting new features nor deleting existing ones
improves the quality measure provided by the subset.

Thirdly, one can enforce inclusion or exclusion of any
given feature manually. The manual feature selection con-
sists only of removing a few "weak" features (as measured
by low information gain, or negligible information loss
when they are omitted for classification purpose) as they
are unlikely to generalize well to unseen data; and addi-
tion of a few "strong" features (as measured by high infor-
mation gain), which were selected by the discretizer but
not by the SFFS algorithm.

Learning the Bayesian network
We restrict the structure of the BNs by using the so-called
tree-augmented naïve Bayes (TAN) structure [42]. In a
naïve Bayes classifier/network, the attributes are assumed
to be independent, given the class, that is, the node repre-
senting the class variable is a parent of all other nodes, and
there are no other edges in the network. A TAN classifier
augments the underlying naïve Bayes classifier by allow-
ing at most one additional parent per node, that is, each
node is the child of the class attribute node, and of at most
one more node. We use TAN classifiers because while
learning the best BN structure, given some training data, is
in general an NP-hard problem [43], for TAN networks
there exist efficient structure-learning algorithms that
reduce the problem of determining the optimal tree struc-
ture to finding a maximum-weighted spanning tree [44].
Once the structure of the network has been learned, the
(conditional) probability distributions over the feature
values of each feature (given the class label and optionally
the value of the parent feature) are estimated in a straight-
forward manner from count statistics derived from learn-
ing data. Finally, Bayesian inference of marginal
probabilities can be approximately calculated by the effi-
cient technique of variable elimination [45].

Data partition
Given a dataset (D1 or D2), we partitioned the data into
three equal parts as carried out in [8]. Then, in turn, we
used two-thirds of the data to train the BNs, and the
remaining one-third was used for testing. The test set
remained untouched while the training set was used for
discretization, feature selection, and learning the BN [39].
Finally, the BN which had been learned on the training set
was used to classify the samples in the test set. This proce-
dure was repeated twice for the other two one-thirds, and
the average of the three runs was taken as the final per-
formance. For comparing 2-fold, 3-fold, 5-fold and 10-
fold cross-validation, we used WEKA [38].

Results and discussion
Improved prediction of conserved cassette exons by 
Bayesian networks
As pointed out by [8], good performance at low false pos-
itive rates is especially important for the task of distin-
guishing alternative exons from constitutive exons on a
genome-wide scale, since the latter comprise the majority
of exons. Furthermore, a low number of false positives is
critical in case of experimental verification of predictions.
To this end, we measure the true positive rate (TP) at false
positive rate (FP) of 0.5%, and call it TP0.5. We also com-
pute the receiver operating curve (ROC) and measure the
area under the ROC curve (AUC), which is a standard
measure of the quality of a classifier [46].

We used the dataset and the cross-validation scheme
described in [8]. This dataset contains 243 alternative and
1,753 constitutive exons and is called D1 in the following.
The overall performance obtained, using novel features in
addition to those described in the literature (Table 1), was
TP0.5 = 61%, and AUC = 0.94 (Figure 1), compared to
TP0.5 = 50%, and AUC = 0.93 reported in [8] using SVMs.
This substantial improvement demonstrates that many of
the novel features are informative and discriminative for
conserved exon skipping events.

Feature selection
The number of features studied in machine learning tasks
is often very high, and many (possibly most) of them
might be irrelevant, or redundant [38]. Therefore, it is cus-
tomary to preprocess the data in order to select a useful
subset of features – this is called "feature selection". Fea-
ture selection can be carried out in three stages within the
BioBayesNet framework [39]. Firstly, a "discretizer" apply-
ing the algorithm of Fayyad and Irani [40] discards fea-
tures for which no suitable discriminative intervals are
found. Secondly, the sequential feature subset selection
(SFFS) algorithm [41] can be applied to select a subset of
the remaining features. Thirdly, one can enforce inclusion
or exclusion of any given feature manually. The manual
feature selection (on D1 and D2) typically involved the
addition and removal of 5 or fewer features each, given a
feature subset of 20–30 features obtained using the two
automated approaches.

The performance on D1 using only feature selection using
the "discretizer" was TP0.5 = 39%, and AUC = 0.93. Using
the SFFS algorithm for further feature selection resulted in
TP0.5 = 47%, and AUC = 0.94, whereas the manual inclu-
sion/exclusion of features gave the final performance of
TP0.5 = 61%, and AUC = 0.94. This illustrates that the over-
all quality of classification, as measure by the AUC, is
quite robust, and we get good performance even when
only the "discretizer" is used, but the performance at low
false positive rates is quite sensitive to small changes in
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the feature subset, so the other two methods of feature
selection result in significant improvement. We note that
manual feature selection is only needed to improve TP0.5
– if we consider more global measures of classification
performance such the AUC or balanced sensitivity and
specificity, the automated feature selection methods suf-
fice. Using only automated feature selection, we routinely
achieve AUC values in the 0.93–0.96 range, and balanced
sensitivity and specificity in the 87%–91% range.

Discriminative features
ESEs and ESSs are motifs bound by proteins which either
enhance or suppress splicing. It has been shown that alter-
native and constitutive exons differ in the density of ESEs
and ESSs [29]. We used Neighborhood Inference (NI)
scores to infer ESE and ESS activity for all hexamers [26].
We used the density of ESEs and ESSs, with various thresh-
olds for the NI scores. The constitutive exons have a
slightly higher density of ESEs than do alternative exons
(median 0.266 vs. 0.254), as well as ESSs (median 0.0694

vs. 0.0679) This was also confirmed using other ESE/ESS
datasets [27,29] and is in agreement with previous studies
[26,27,29,30]. Depending on the split, the density of ESEs
and ESSs was either not discriminative, or weakly so. Var-
ying the threshold of the NI score did not change this. On
the other hand, some of the novel features using NI scores
were discriminative on most splits – for instance, the aver-
age of all positive NI scores, as well as the average of all
negative NI scores. Similarly, the average of all "strong
ESEs" (NI score ≥ 0.8) and "strong ESSs" (NI score ≤ -0.8)
were discriminative features. However, the density of ESEs
and ESSs near the splice sites was not found to be discrim-
inative.

Splicing regulatory elements are found in introns as well
[47]. Consequently, we also designed features using very
recently published datasets of conserved intronic splicing
regulatory elements (ISREs) [30]. Similar to ESE and ESS
based features, we also used the density of ISREs in the
upstream and downstream intronic flanks. Four sets of

ROC plot showing the average performance of the 3-fold cross-validation on datasets D1 (red line) and D2 (green line)Figure 1
ROC plot showing the average performance of the 3-fold cross-validation on datasets D1 (red line) and D2 
(green line).
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ISREs (enriched in the upstream and downstream flank of
all exons as well as enriched in the flanks of alternative
exons) are given in [30]. We found three of these sets to be
discriminative (ISREs from downstream intronic flanks of
all exons were not discriminative). For these three dis-
criminative features, alternative exons have a higher den-
sity of ISREs than constitutive exons, which agrees well
with the finding that the set of ISREs has an overlap with
ESSs, and thus many of them may have silencing tenden-
cies [30].

Secondary structure can influence alternative splicing
[31]. To the best of our knowledge, existing methods to
predict alternative splice events do not use secondary
structure related properties. Previously, we found that
functionally important splicing motifs are preferentially
located in single-stranded mRNA secondary structures
[34] and that ab initio motif finding benefits from taking
the single-strandedness of motif occurrences into account
[48]. Thus, we use features based on a measure of the sin-
gle-strandedness of ESE, ESS or ISRE occurrences, reason-
ing that single-strandedness of enhancer and silencer
occurrences influence the propensity of proteins to bind
them. Interestingly, we found that the single-strandedness
of ESE motifs is informative. The density of single-
stranded ESEs is higher in constitutive than in alternative
exons (0.0194 vs. 0.0177, using a PU value of 0.5 for sin-
gle-strandedness). Moreover, the information gain of this
feature was more than that of the ESE density feature
(0.0170 vs. 0.0096). As single-stranded motifs are
expected binding sites for splicing regulatory proteins, this
observation adds to previous evidence that mRNA sec-
ondary structures influence alternative splicing [34].

The density of PTB binding sites in the exon and the
upstream 100 nt intronic flank were weakly discrimina-
tive, indicating that they are important only for a small
minority of the alternative exons. The density of PTB bind-
ing sites in the downstream 100 nt intronic flank was not
discriminative.

The conservation around the splice site, as measured by
the number of human-mouse identical positions in a win-
dow of 12 nt (6 on either side) around the exon bounda-
ries, is a highly discriminative feature, despite other
features already capturing both conservation information
as well as splice site strength. It is interesting that while
alternative exons have weaker splice sites, they have
stronger conservation around the splice junctions. While
only 17.6% of the constitutive exons have identical
matches from positions -6 to +6 at the 3'ss, the corre-
sponding figure for alternative exons is as high as 54.7%.
At the 5'ss, the corresponding numbers are 30.0% and
60.3%, respectively. This is consistent with a previous
study [49].

The GC content of the upstream intronic flank was found
to be a useful discriminative feature, and was lower for
flanks of alternative exons than of constitutive exons
(median values 0.39 vs. 0.42), in agreement with previous
studies [25]. However, neither the GC content of the exon
nor of the downstream intronic flank was found to be dis-
criminative.

We tested if the di- and trimer (2 and 3 nt words) fre-
quency in exons and intron flanks is different for alterna-
tive and constitutive exons. We found that the frequency
of di- and trimers in exons is often much more discrimi-
native than the intronic di- and trimer frequencies. This
suggests that splice regulatory elements governing exon
skipping are more common in alternative exons than in
introns flanking them.

Apart from introducing novel features, we also used fea-
tures derived from known features. These combinations
were often more informative than the individual features.
For example, the ratios of intron lengths to exon length
were more informative than the lengths themselves. The
ratio of the length of the downstream intron to the exon
length was an especially useful feature, suggesting that
exon skipping may occur when the spliceosome finds it
difficult to accurately "spot" an exon upstream of a rela-
tively much longer intron.

Splice site strength, first used by [10], was also found be a
discriminative feature, with alternative exons having both
weaker 3'ss as well as 5'ss than constitutive exons (median
scores 7.86 vs. 8.76 and 8 vs. 8.68, respectively).

Most informative features
Next we asked which were the most informative features
using the information gain, a well established measure in
machine learning. Information gain is the reduction in
the entropy of the class variable, given the feature. While
information gain is a good measure of the quality of fea-
tures, it tends to prefer features with a large number of
possible values [38]. A measure which avoid this is the
information gain ratio, which divides the information by
the information of the feature itself, thus penalizing fea-
tures with a high inherent information. The top ten fea-
tures according to the information gain and the
information gain ratio criteria are given in Table 2. Two
features, exon identity and length of best alignment in the
upstream intron flank, appear in both lists.

Table 3 shows the top ten combination features according
to the information gain criterion. Seven of these are more
informative than any of the features that were combined
to obtain these features, while the other three (the ratio of
the intron lengths and the exon length, and the sum of the
number of the two types of PTB binding sites) are more
Page 7 of 14
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informative than one of the two features, but less than the
other. Not surprisingly, the combinations of conservation
related features have a very high information gain (top
four).

Table 4 shows the ten most informative trimers in the
exon and in the intronic flanks according to information
gain. Note that the trimers in the exon have a higher infor-
mation gain, a trend which is also true when looking at all
possible 64 trimers in the exon and the intronic flanks.
This disagrees with the conclusion of the previous study
[8], which used a different feature ranking criterion.

A Bayesian network with an optimized set of 34 features
All three methods of feature selection available in the
BioBayesNet framework were used to arrive at an opti-
mized subset of 34 features. A performance of TP0.5 = 61%
(65%, 61%, and 56% for the 3-fold cross-validation), and
AUC = 0.94 (0.94, 0.94 and 0.94) was achieved using the
same subset of 34 features with each fold. The BN learned
on the entire dataset with the same features, with 34
nodes and 33 edges, can be seen in Fig. 2. We would like
to point out some interesting edges in this network which

confirm and may extend our biological knowledge of the
splicing process:

- "length of the best local alignment of the upstream intron
flank and its mouse ortholog" (node 3) and "density of intronic
splice regulatory elements (ISREs) enriched in introns flanking
AS exons, in the upstream intron flank" (node 18): Since
alternative conserved exons (ACE) tend to have longer
conserved regions and a higher density of ISREs in their
intron flanks, this is a biologically meaningful depend-
ence.

- "ratio of the lengths of the downstream intron and the exon"
(node 5) and "sum of the MAXENTSCAN scores of the 3' and
5' splice sites" (node 12): ACEs tend to have high ratios of
intron to exon lengths, and weak splice sites, when com-
pared to constitutive exons [10].

- "density of single-stranded ESEs" (node 16) and "density of
TCTT in exon" (node 20): ACEs are enriched in exons with
multiple occurrences of TCTT, which is a binding site of
the splice-repressor, PTB [36], and tend to have a lower

Table 2: Top features according to information gain and information gain ratio (excluding combination features)

Rank Feature Information Gain Feature Information Gain Ratio

1 Length of best alignment in the upstream 
intron flank

0.169 Abundance of GA in exon 0.172

2 Upstream intron flank conservation 0.169 Density of single stranded ESEs in exon 0.151
3 Identity of best alignment in the upstream 

intron flank
0.142 Exon identity 0.128

4 Downstream intron flank conservation 0.138 Average of positive NI scores in exon 0.118
5 Length of best alignment in the 

downstream intron flank
0.138 Length of best alignment in the upstream 

intron flank
0.117

6 Exon identity 0.120 Density of AC in exon 0.115
7 Identity of best alignment in the 

downstream intron flank
0.088 Average of negative NI scores in exon 0.112

8 Exon length 0.080 Density of CT in exon 0.111
9 Matches in 12-mer near 3'ss 0.066 ESE density in exon 0.104
10 Symmetry 0.042 Length of best alignment in the upstream 

intron flank
0.103

Table 3: Top combination features according to information gain

Rank Feature Information Gain

1 Product of identities of exon and both intron flanks 0.208
2 Product of identity of both intron flanks 0.196
3 Product of identities of exon and upstream intron flank 0.181
4 Product of identities of exon and downstream intron flank 0.153
5 Ratio of the downstream intron length to exon length 0.051
6 Ratio of ESE density to ESS density 0.029
7 Sum of splice site scores 0.023
8 Ratio of the upstream intron length to exon length 0.022
9 Ratio of trusted ESE density to trusted ESS density 0.010
10 Density of putative PTB binding sites in exon 0.008
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density of single-stranded ESEs when compared to consti-
tutive exons.

- "MAXENTSCAN score of the 5'ss" (node 11) and nodes rep-
resenting positions in the 5'ss region (nodes 8 and 9): The
node representing the strength of the 5'ss has an edge to
the node representing the binary variable "Gat5SSplus4",
which indicates whether the nucleotide at the position +4
is a G or not, and this node has an edge to the node repre-
senting the variable for a T at position +4. Both of these
nucleotides are different from the splice site consensus at
their respective positions, and thus contribute to lowering
the splice site score. Furthermore, it is also known that
there are dependencies among the 5'ss positions [50].

- "density of intronic splice regulatory elements (ISREs)
enriched in intronic flanks of AS exons, in the upstream intron
flank" (node 18) and "Abundance of CGG in the exon" (node
29): ISREs which are enriched in the flanks of alternative
exons tend to be CG-rich [30], so the link to CGG motifs
in the exon might indicate a subclass of alternative exons
found in CG-rich regions.

- "abundance of CCA in the exon" (node 28) and "average of
negative NI scores in exon" (node 13): These nodes corre-
spond to features representing the density of the trimer
CCA in the exon, and the average NI score of all hexamers
with negative NI scores, i.e. ESS-like tendencies. The CCA
motif is ~35-fold less frequent in ESSs than ESEs (occurs
in 71 of 979 ESEs and only 1 of 496 ESSs), so the BN cap-
tures the association of CCA abundance with the average
of negative NI scores.

- "abundance of CGG and GCA in the exon" (nodes 29 and
31) and "ratio of ESEs to ESSs in the exon" (node 18): These
nodes represent the density of the trimers CGG and GCA
in the exon, and the ratio of "trusted" ESEs and ESSs
(scores of 1 and -1, respectively). The motif CGG occurs in
7.5% (50 of 666) of the trusted ESEs, but in only 1% (4 of
386) of the trusted ESSs. Similarly, the motif CGG occurs
in 10.5% (70 of 666) of the trusted ESEs, but in only 2.1%

(8 of 386) of the trusted ESSs. Thus there is a correlation
between the abundance of the motifs CGG and GCA in
the exon, and the ratio of ESEs to ESSs.

Some of the other edges can be explained in a trivial man-
ner, for instance those involving the density of overlap-
ping motifs (e.g. nodes 28 and 21, and 28 and 34). We
note that one must be careful in interpreting the edges, as
not all of them may lend themselves to meaningful bio-
logical interpretation. While not all edges can be inter-
preted with biological knowledge, they definitely help in
our classification since a classifier omitting all edges
(naïve Bayes) performs worse [8].

Comparison of 2-fold, 3-fold, 5-fold, and 10-fold cross-
validation
We used 3-fold cross-validation in order to compare our
results to [8], who did the same. However, since it is com-
mon in machine learning to use 2-fold, 5-fold, 10-fold, or
"leave one out" (LOO) cross-validation, we compared the
performance of these different approaches on the dataset
D1, using the WEKA package [38], and the optimized set
of 34 features described above. The results for the 2/3/5/
10/LOO cross-validations were: TP0.5 = 57%/60%/57%/
58%/59%, and AUC = 0.95/0.95/0.95/0.95/0.95.

Performance using the same features as the SVM
To assess the factors behind the improved performance of
BNs, we used the same 228 features as reported in [8], and
obtained the same overall quality of prediction (AUC =
0.93) and slightly improved TP0.5 (51% vs. 50%). This
indicates that accurate classification of conserved exon
skipping depends more on the features used rather than
the choice of classifier.

Performance of Bayesian networks on a second dataset
Next, we tested our approach on a different dataset of con-
served exon skipping events, the ACESCAN training set
[10] henceforth called dataset D2, which comprises 5,069
constitutive and 241 alternative exons. Using the basic set
of 228 features [8], the BN achieved values of TP0.5 = 52%,

Table 4: Top trimers in the exon and intron flanks according to information gain

Rank Exon Trimer Information Gain Intron Trimer Information Gain

1 TCC 0.034 upstream TTC 0.016
2 ATG 0.031 downstream AGG 0.014
3 CCT 0.029 downstream GAG 0.012
4 TCG 0.028 upstream TTT 0.012
5 CAT 0.028 upstream TCT 0.012
6 AAG 0.027 downstream GGA 0.012
7 GTA 0.027 downstream TTT 0.011
8 GAC 0.026 upstream GAG 0.011
9 GAT 0.026 upstream AGG 0.011
10 CAA 0.026 upstream CAG 0.009
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34-feature Bayesian networkFigure 2
34-feature Bayesian network. Note that BN in fact has 35 nodes. The class node, which has an edge to all other nodes and 
makes the actual number of edges 67, is omitted for ease of visualization. Thus, this is just the augmenting tree in the TAN clas-
sifier. The features associated with the nodes are as follows: 1: 1 if exon length is divisible by 3, otherwise 0. 2: Length of the 
best alignment in the 3' 100 nt intronic region. 3: Length of the best alignment in the 5' 100 nt intronic region.4: Percent iden-
tity of the best alignment in the 5' 100 nt intronic region. 5: Length of the 5' intron. 6: Ratio of the lengths of the 3' intron and 
the exon. 7: Product of the identities of the exon and both 100-nt intronic flanks with their mouse orthologs. 8: 1 if G at +4 of 
the 5'ss, otherwise 0. 9: T at +4, 10: A at +6; 11: MAXENTSCAN score of the 5'ss. 12: Sum of the MAXENTSCAN scores of 
the 3' and 5'ss. 13: Average of the NI scores of all the hexamers with a negative NI score. 14: Variance of the NI scores of all 
the hexamers with a "strong" (≥ 0.8 or ≤ -0.8) score.   15: Average of the NI scores of all the hexamers with a "strong" (≤ -0.8) 
negative score. 16: Density of single-stranded (PU value ≥ 0.6), "trusted" ESEs (NI score = 1). 17: Ratio of the number of 
"trusted" ESEs (NI score = 1) to the number of ESSs (NI score = -1). 18: Density of ISREs enriched in the flanks of AS exons, in 
the 5'intron flank. 19: Density of single-stranded (PU value ≥ 0.6), intronic splice regulatory elements (ISREs) enriched in the 
flanks of AS exons, in the 5'intron flank. 20: PTB-binding site TCTT density in the exon. Dimer density in the exon:21:CC, 22: 
GA; 23: Dimer GA density in the 3' intron flank; Trimer density in the exon: 24: AAG, 25: AGG, 26: ATG, 27: CAA, 28:CCA, 
29: CGG, 30: CTC, 31: GCA, 32: GGT, 33: TAG, 34: TCC.
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and AUC = 0.92. After incorporating the novel features,
and performing feature selection as described above, the
best performance achieved on D2 was: TP0.5 = 59%, and
AUC = 0.93 (Figure 1).

Thus, we achieve a good performance, similar to that on
D1, on the dataset D2 as well. However, the number of
discriminative features is smaller than for D1. This trend
continues with the addition of novel features – of all the
365 features, typically 110–130 are discriminative on a 2/
3 split of D1, whereas only 65–80 are discriminative on a
2/3 split of D2. A possible reason for this could be the dif-
ferent criteria used in the construction of the two datasets,
resulting in possibly different extents of corruption of the
sets of constitutive exons by alternative exons, because the
dataset D1 requires 4 identical ESTs for an exon to be con-
sidered constitutive, whereas the dataset D2 does not. Fur-
thermore, D1 has more exaggerated differences among the
two classes for several features – for example, while 74%
of alternative exons preserve the reading frame compared
to 37% of the constitutive exons, the corresponding num-
bers for D2 are 67% and 39%. Thus, the subset of con-
served exon skipping events in D1 seems to be
characterized by more strongly discriminative features.

Cross-validation by training and testing on the two 
independently constructed datasets
It is usual in machine learning to divide the available data
into training and testing partitions, and optimize the clas-
sification using these. It is then assumed that similar per-
formance can be achieved on other datasets of a similar
nature. However, given that there are often differences in
the way independent datasets are prepared by different
groups of scientists, it may be optimistic to presume this.
We suggest that testing on an independent dataset is likely
to give a better indication of the level of performance that
can be expected when scaling to a genome-wide predic-
tion. To use D1 and D2 for this purpose, we removed from
D1 the exons already present in D2 – leaving 201 alterna-
tive and 1,654 constitutive exons in D1. To minimize any
biases introduced by different ratios of the numbers of
samples in each class, we then randomly sampled consti-
tutive exons from D2 to have the same ratio (8.23:1) of
constitutive to alternative exons, leaving 241 alternative
and 1,984 constitutive exons in D2. We then used the
optimal feature subsets obtained on D1 and D2 earlier to
train BNs on the respective entire datasets. When we used
the BN trained on D1 to test D2, the performance
achieved was TP0.5 = 27%, and AUC = 0.88. The corre-
sponding performance achieved with training on D2 and
testing on D1 was TP0.5 = 26%, and AUC = 0.91. While an
AUC value of 0.91 (or even 0.88) indicates good overall
classification, this is less than the 0.94 achieved when
tested on unseen data from the same source. The effect on
TP0.5 is quite dramatic. We think that these figures might

be a more accurate estimate of what to expect when a clas-
sifier is used to classify independently produced data. Per-
formance will tend to be (at least) slightly worse on
independently produced data than on unseen data from
the same source, something which is true of all classifiers
in general.

Assessing over-fitting
To assess whether our increased performance is due to
over-fitting, we randomly permutated the labels 'alterna-
tive' and 'constitutive' between the data points and
trained the BN on the relabelled datasets D1 and D2. In
case of overfitting, we would still expect a good perform-
ance, while the AUC value of a random classifier should
be close to 0.5 [38].

After relabelling, most features are no longer discrimina-
tive. In fact, only 29 features remained discriminative, and
these were the same for both datasets – symmetry, and the
28 features describing the positional biases in the 5'ss
region. The AUC achieved was 0.51 on dataset D1, and
0.49 on D2. This shows that our approach has no prob-
lems with over-fitting.

To further rule out overfitting, we used a random three
way split: 60% of the data for training, 20% for validation
and optimization, and 20% for testing. We obtained TP0.5
= 63% and AUC = 0.94 on the validation set; using the
same set of features, the performance on the test set was
TP0.5 = 59% and AUC = 0.95. Using this "train-validate-
test" approach on D2, we obtained TP0.5 = 58% and AUC
= 0.94 on the validation set, and TP0.5 = 60% and AUC =
0.93 on the test set. Since the performance on both data-
sets is very similar to the performance achieved using our
three-stage feature selection approach, we conclude that
the improvement is not mainly due to manual feature
selection. However, manual selection is not ideal, and an
automated feature selection algorithm designed to opti-
mize performance in the low false-positive region would
be more satisfying. This is one of the possible future direc-
tions of work.

As a first approach to entirely automated feature selection,
we performed the following experiment: we randomly
chose 75% of D1 for training, and 25% for testing. Feature
selection was done using only the training part, and the
test part was touched only once at the very end of the pro-
cedure. The feature selection was as follows: starting with
the full set of features, we iteratively discarded one feature
at a time, and performed 10-fold cross-validated classifi-
cation using a BN (TAN) with the remaining features. Fea-
tures were discarded in order of increasing information
gain, that is, the least informative features were discarded
first. We re-inserted a feature only if at least one of TP0.5 or
AUC decreased as a result of omitting it. This was done
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only in one pass, and features once discarded, were not
considered again. This is clearly not an optimal strategy,
and leads to bigger feature subsets than the approach used
before, but still yields good results. Using the subset of 50
features thus obtained on D1 led to performance of TP0.5
= 54% and AUC = 0.94 on the training set, and TP0.5 =
57% and AUC = 0.91 on the test set. On D2, this approach
yielded a subset of 35 features and a performance of TP0.5
= 56% and AUC = 0.92 on the training set, and TP0.5 =
52% and AUC = 0.94 on the test set. Thus, we can also
obtain good performance on unseen data using a feature
selection strategy which, though suboptimal, is easy to
automate.

Moreover, we also used the feature sets obtained in the
"train-validate-test" setting with a naïve Bayes classifier
(NBC) and obtained TP0.5 = 47% and AUC = 0.93 for a 10-
fold cross validation on D1, and TP0.5 = 43% and AUC =
0.92 for a 10-fold cross validation on D2, which are both
better than the performance using NBC reported in [8]
(TP0.5 = 37% and AUC = 0.89). Compared to the BNs,
NBCs achieve a higher sensitivity but lower specificity.
This indicates that the novel features help in improving
classification performance, and similar improvements
should be possible using other classifiers like SVMs, Neu-
ral networks and so on.

False positives with high posterior probability are likely 
true alternative exons
Next, we carefully looked at exons that are labelled consti-
tutive but obtained a high posterior probability of being
alternative exons from the BN. Since they seemed to be
more similar to ACEs than to other constitutive exons, we
hypothesized that newer EST/cDNA data provides evi-
dence for exon skipping, or any other kind of alternative
splicing at these exons. Out of 1,753 exons in D1 that
were labelled constitutive, 14 were assigned a P(ACE) –
posterior probability of being an ACE – of 0.7 or more. A
detailed inspection using the UCSC genome browser [22]
revealed that seven have EST and/or mRNA evidence of
alternative splicing in at least one of human and mouse
(six of these seven are cassette exons) and that two of them
are alternatively skipped in both species, that is, have evi-
dence of being ACEs. Of the remaining seven exons, one
has evidence of being a cassette exon in orangutan (Addi-
tional file 1).

The results on D2 are even more impressive – there are 15
exons labelled constitutive and with P(ACE) ≥ 0.7, of
which 13 have evidence of exon skipping or another alter-
native splicing event (seven are cassette exons in at least
one of human and mouse; five are ACEs; Additional file 1).

Thus, most FP predictions with high posterior probabili-
ties of being cassette exons in both D1 and D2 datasets are
actually alternative despite being labelled constitutive at

the time the datasets were prepared. This further demon-
strates the good performance of the BN.

Predicting exon skipping without using conservation based 
features
While conservation based features have proved to be the
most discriminative, it is desirable to be able to predict
alternative splice events using only features that are avail-
able to the spliceosome. The performance on this test is
also indicative of our understanding of the process of
exon skipping. Hence, we should also aim to predict splic-
ing using only information available from a single
genome. We predicted exon skipping omitting all conser-
vation based features – the best performance achieved was
TP0.5 = 29%, and AUC = 0.86 on dataset D1 and TP0.5 =
26%, and AUC = 0.88 on dataset D2.

While this performance is noticeably poorer than that
achieved using conservation based features, we would like
to note that the datasets D1 and D2 consist of exons that
are either constitutively spliced in both human and
mouse, or cassette exons in both. Thus, we are still distin-
guishing only between conserved constitutive splicing
and conserved exon skipping, leaving out cases of species-
specific splicing, as well as of alternative splicing of spe-
cies-specific exons, which form the majority of alternative
exons [51].

Conclusion
Using Bayesian networks (BNs) and several novel features
that emerged from recent studies of alternative splicing,
we have achieved considerably improved classification of
conserved cassette exons. We were able to improve the
performance described in [8] due to the incorporation of
novel features. To the best of our knowledge, this is the
first time that features involving secondary structure and
intronic splice regulatory elements have been employed
for distinguishing alternative exons from constitutive
ones. We also compared our performance on two datasets,
and showed that the BN is able to produce accurate classi-
fication on both. However, it is worth noting that these
datasets differ with respect to discriminative properties.

One direction of future work would be to consolidate var-
ious datasets of constitutive and alternative exons, and
compile sets of features, which are discriminative over
each of them, and the intersection of these sets, which is
discriminative over all datasets. Another interesting line to
pursue is to predict other kinds of alternative splicing.
Here, we focused on exon skipping, which is the most
prevalent form of alternative splicing in human and
higher vertebrates. However, other major forms of alterna-
tive splicing such as alternative donor and acceptor sites
[52-54] are also of biological importance, and it would be
worthwhile to develop similarly accurate classifiers for
these events.
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Ideally, we should be able to predict splicing outcomes
without conservation based information, as the informa-
tion required by the spliceosome is present in the given
genome. We report our performance at this task, while it
is a promising beginning, clearly there is much work to be
done. It should be noted that we have ignored two prom-
inent subclasses of alternative exons – namely ortholo-
gous exons which are alternatively spliced in a species-
specific manner, and species-specific exons which are
alternatively spliced. Both these classes are potentially
quite important: as up to 50% of all human alternative
exons may be human-specific, and up to 60% of all con-
served exons which are alternatively spliced may be alter-
native in a species-specific manner [51]. Classifiers for
these tasks are yet to be developed.
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