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ABSTRACT
Motivation: Due to the importance of considering secondary
structures in aligning functional RNAs, several pairwise sequence–
structure alignment methods have been developed. They use
extended alignment scores that evaluate secondary structure informa-
tion in addition to sequence information. However, two problems for
the multiple alignment step remain. First, how to combine pairwise
sequence–structure alignments into a multiple alignment and second,
how to generate secondary structure information for sequences
whose explicit structural information is missing.
Results: We describe a novel approach for multiple alignment of
RNAs (MARNA) taking into consideration both the primary and the
secondary structures. It is based on pairwise sequence–structure
comparisons of RNAs. From these sequence–structure alignments,
libraries of weighted alignment edges are generated. The weights
reflect the sequential and structural conservation. For sequences
whose secondary structures are missing, the libraries are generated
by sampling low energy conformations. The libraries are then pro-
cessed by the T-Coffee system, which is a consistency based
multiple alignment method. Furthermore, we are able to extract a
consensus-sequence and -structure from a multiple alignment. We
have successfully tested MARNA on several datasets taken from the
Rfam database.
Availability: MARNA can be used online on our webpage
www.bio.inf.uni-jena.de/Software/MARNA/index.html
Contact: backofen@inf.uni-jena.de

INTRODUCTION
In recent years, RNA molecules gained increasing interest since
a huge variety of functions associated with them was found.
Consequently, research on small RNAs has been elected as the
scientific breakthrough of the year 2002 by the readers of the
Science magazine (Couzin, 2002). The function of an RNA-
molecule is mainly determined by its (secondary) structure. It is
assumed that the structure of an RNA is often more conserved
than its sequence (even more than for proteins). Hence, one
cannot use standard multiple sequence alignment techniques like
e.g. Clustal W (Thompson et al., 1994), Dialign (Morgenstern,
1998) or T. Coffee (Notredame et al., 2000) since they completely
neglect structural information.

∗To whom correspondence should be addressed.

Multiple sequence- and structure-based alignments of RNAs can
be divided into two major classes, the probabilistic and the non-
probabilistic approaches. Probabilistic approaches are based on
stochastic context-free grammars (SCFG) and require an initial mul-
tiple alignment as input. The quality of the outputs crucially depends
on this initial alignment. They are used to model RNA-families
and/or to predict a secondary structure via comparative analysis
[e.g. Cove (Eddy and Durbin, 1994), RNACAD (Brown, 1999) and
Pfold (Knudsen and Hein, 2003)]. A non-probabilistic, comparat-
ive approach is e.g. given by RNAlign (Corpet and Michot, 1994)
that performs an alignment between a bank of aligned sequences and
a new sequence.

In this paper, we propose a non-probabilistic approach to align
a set of more than two RNAs with or without known conforma-
tions. The standard approach is to perform direct pairwise alignments
of RNAs using sequence and (secondary) structure information and
to combine the pairwise alignments into a multiple alignment. No
general approach yet exists albeit there is a wealth of approaches
for pairwise alignment of RNAs (see below). The reason is that the
results of the pairwise sequence/structure alignments cannot simply
be aligned in a progressive way (like profiles for sequence align-
ments). To the best of our knowledge, there are only two exceptions,
namely PMcomp/PMmulti (Hofacker et al., 2004) and RNAforester
(Höchsmann et al., 2003). PMcomp aligns RNA base pairing prob-
ability matrices and predicts a common folding structure between
two sequences. PMmulti uses PMcomp in a progressive align-
ment strategy and provides multiple alignments with good qualities.
However, it has a high complexity of O(n6) time and O(n4) space
for the pairwise comparisons. In RNAforester, secondary structures
are interpreted as trees, and a tree-based alignment is applied.

We solved the problem of combining pairwise alignments of RNAs
as follows. First, alignment edges between RNAs reflecting sequence
and structure similarities are generated based on an algorithm
published by Jiang et al. (2002). In a second step, these edges are
collected in a library, which is given as input to the multiple sequence
alignment method T-Coffee (Notredame et al., 2000). Structural
positions that are supported by several pairwise comparisons are
strengthened. Hence, the result comprises sequence and structure
similarities of RNAs albeit the progressive alignment strategy is in
principle not structure-based.

We have used the algorithm of Jiang et al. (2002) since it provides
the greatest scoring flexibility and has moderate complexity. But
any other sequence- and structure-based pairwise alignment method
can also be adapted to our approach. The computational problem of
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pairwise alignment of RNAs was first addressed by Sankoff (1985),
who proposed a dynamic programming algorithm that aligns a set of
RNA sequences while predicting their common fold at the same time.
Subsequently, a variety of pairwise sequence-structure alignment
approaches have been developed. Lenhof et al. (1998) addresses the
problem of optimally aligning a given RNA sequence of unknown
structure to one of known sequence and structure. Local pairwise
RNA-alignments using the same scoring scheme as Jiang et al. (2002)
are considered by Backofen and Will (2004). Beside the above listed
approaches, there are several approaches that work on a tree based
representation of RNAs (see e.g. Jiang et al., 1995; Höchsmann et al.,
2003; Shapiro and Zhang, 1990).

We tested our approach on eukaryotic SECIS-elements on
tRNA-like 3′ UTR elements from Tymovirus/Pomovirus and on the
Hammerhead ribozyme (type III). We compared our MARNA results
with the manual alignments taken from the Rfam database and with
the alignments generated by PMmulti.

METHODS
A sequence S is a word over the alphabet {A, C, G, U}. S[i] denotes the i-th
symbol in S. An arc a is a pair (i, j) ∈ N × N such that i < j . i and j are
called ends of the arc a. A base is called free if it is not involved in any arc. A
secondary structure P is a set of arcs such that no end of an arc appears more
than once in P . Here, we consider secondary structures that are nested, i.e. for
any two base pairs (i1, i2) ∈ P and (j1, j2) ∈ P , we have either independent
base pairs with i2 < j1 or j2 < i1, or nested base-pairs with i1 < j1 < j2 <

i2 or j1 < i1 < i2 < j2. We call the tuple S = (S, P) a sequence-structure.
In the following, all RNAs are specified by their sequences and their known
secondary structures. Unknown structures will be handled in a later section.

We use the gap symbol ‘ ’ to denote an inserted/deleted nucleotide. An
alignment A of two sequence–structures S1 = (S1, P1) and S2 = (S2, P2) is
a subset of [1..|S1|] ∪ { } × [1..|S2|] ∪ { }, where for all pairs (i, j), (i′, j ′) ∈
A holds

(1) i ≤ i′ ⇒ j ≤ j ′

(2) i = i′ �= ⇒ j = j ′ and

(3) j = j ′ �= ⇒ i = i′.
In addition, we require that for every i ∈ [1..|S1|] there is some j with

(i, j) ∈ A, and vice versa for j ∈ [1..|S2|]. The pairs (i, j) ∈ A are called
alignment edges. We say that i ∈ [1..|S1|] is aligned with j if (i, j) ∈ A,
and analogously for j ∈ [1..|S2|]. An alignment edge (i, j) ∈ A is called
realized if neither i = nor j = .

Pairwise alignment scores
The scoring of an alignment A of two sequence-structures S1 = (S1, P1) and
S2 = (S2, P2) is based on the notion of edit operations on bases as well as
on arcs. We briefly recall the edit operations from Jiang et al. (2002), and
present a slightly modified version of their distance-based scoring scheme.

Edit operations on free bases are base match, base mismatch and base
deletion. A base match has cost 0, base mismatch and base deletion have
positive costs. We combine these cost functions into a single cost func-
tion wbase(i, j), where wbase(i, j) = 0 only if S1[i] = S2[j ]. We will feel
free to write either the positions or the nucleotides as arguments in the cost
function whereever necessary.

For arcs, we have a more complex scoring scheme. Consider an arc (i, i′) ∈
P1 such that i is aligned with j and i′ is aligned with j ′. An arc match occurs
if j , j ′ form an arc (j , j ′) ∈ P2, S1[i1] = S2[j1] and S1[i2] = S2[j2]. We
have an arc mismatch if (j , j ′) ∈ P2, but S1[i1] �= S2[j1] or S1[i2] �= S2[j2].
Arc matches have cost 0, whereas arc mismatches have cost wam(i, i′, j , j ′).
On the other hand, if (j , j ′) �∈ P2, then we have an arc deletion with cost
wad(i, i′, j , j ′). Lin et al., subdivided arc deletions into arc breakings, arc
alterings and arc removings. An arc breaking occurs if none of j and j ′

Fig. 1. An alignment of two RNAs with corresponding edit operations on
arcs. Alignment edges between bases are shown as solid lines (realized
edges) and dashed lines (non-realized edges). The thickness of realized edges
corresponds to similarity weights between bases. Non-realized alignment
edges are skipped for the multiple alignment step.

Fig. 2. Independent scoring of both arc ends.

equals the gap symbol . If exactly one of j , j ′ equals , then we have an arc
altering. If both j , j ′ are equal to , then we have an arc removing. The edit
operations on arcs are summarized in Figure 1.

The total score of an alignment is the sum of costs of all applied edit oper-
ations that transform one sequence–structure into the other. The complexity
of finding an alignment with minimal costs is determined by the way arc
deletions are scored. Jiang et al. (2002) presented a dynamic programming
algorithm that solves this problem in O(n2m2) time and O(nm) space under
certain restrictions on the scoring of arc deletions. In effect, this requires the
existence of functions wl

ad(i, j) and wr
ad(i

′, j ′) for the left and right ends,
respectively, such that

wad(i, i
′, j , j ′) = wl

ad(i, j) + wr
ad(i

′, j ′).

In the following, we will not distinguish between left and right ends of an
arc, i.e. we set ∀i, j : wl

ad(i, j) = wr
ad(i, j) = we

ad(i, j), where wad
e(i, j) is

a single function to score both ends of an arc.
The effect of this restriction is that one can evaluate both arc ends in an

alignment independently, which is a necessary prerequisite for the dynamic
programming algorithm. This situation is depicted in Figure 2.

In our approach, we even simplify the scoring scheme further by defining
wad

e(i, j) to be composed of a base match, base mismatch or base deletion
together with a fixed cost for deleting an arc. Hence, we set

wad
e(i, j) = wbase(i, j) + 1

2
wconst

ad ,

where wconst
ad is the cost for deleting one arc.
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Multiple alignment
T-Coffee Once the sequence–structure alignments have been calculated for
all pairs of input sequences, we construct the so-called library. A library for
a pairwise alignment of two sequence–structures consists of the set of all
realized edges together with a weighting of each edge. Then, the libraries
for all pairwise alignments are given to T-Coffee (Notredame et al., 2000) to
build a single multiple alignment.

The T-Coffee system is a consistency based alignment method that
combines local and global information to produce a multiple alignment in
the following manner. First, an extended primary library is produced that
improves all pairwise alignments by taking into consideration how all other
sequences align with the current two RNAs. Edges achieve higher weights
if the bases at the end points of these edges are also aligned with other
sequences. Second, the improved dataset of pairwise alignments is processed
by a progressive alignment strategy. A distance matrix is computed between
all sequences using the improved weights of alignment edges. Subsequently,
the neighbor-joining method (Saitou and Nei, 1987) provides a phylogenetic
tree, which dictates the order of aligning these sequences. Since the initial
libraries were generated from sequence–structure alignments, the resulting
multiple alignment reflects the sequential and structural similarities of RNAs.

Distance and similarity The weights attached to realized edges in the lib-
raries correspond to similarity weights. For that reason, we have to transform
the distances defined in the previous section into similarity values. Smith and
Waterman (1981) solved the problem of transforming distances into similar-
ities for edit operations on bases. We extend this approach to our set of edit
operations. The main observation of Smith and Waterman (1981) is that one
has to consider the number of nucleotides r involved in an edit operation.
We call this number the order of the edit operation. In our case, we have edit
operations with r = 4 (arc match and arc mismatch), r = 2 (base match
and base mismatch) and r = 1 (base deletion). Since we have split the arc
deletion operation into two separate edit operations for the arc ends, we have
an edit operation with r = 2 if the arc end is aligned with a nucleotide, and
an edit operation with r = 1 if the arc end is aligned with .

By enumerating all different edit operations, we can write the distance
score of an alignment A as

dist(A) =
∑

r

∑
k

wr ,kλ
r ,k
A ,

where wr ,k is the cost for the k-th edit operation of order r (for r = 4, 2, 1),
and λ

r ,k
A is the number of times the k-th edit operation of order r is used in

the alignment A. Then we can rewrite the distances wr ,k into similarities sr ,k

as follows:

Theorem 1. Consider a scoring scheme where wr ,k is the cost of the k-th
edit operation of order r . Let AMSP be any fixed value, which is interpreted
as the maximal similarity per nucleotide position we want to achieve. Define
the similarity sr ,k for the k-th edit operation of order r by

sr ,k = r · AMSP − wr ,k .

Then the alignment A which minimizes dist(A) is the alignment that
maximizes sim(A) = ∑

r

∑
k sr ,kλ

r ,k
A , and vice versa.

Proof 1. The optimal alignment for two sequence–structuresS1 = (S1, P1)

and S2 = (S2, P2) under the similarity score is given by

Aopt = argmax
A align. of S1,S2




∑
r ,k

sr ,kλ
r ,k
A




= argmax
A




∑
r ,k

(rAMSP − wr ,k)λ
r ,k
A




= argmax
A


AMSP

∑
r ,k

rλ
r ,k
A −

∑
r ,k

wr ,kλ
r ,k
A




Since any nucleotide position is involved in exactly one edit operation, we
know that

∑
r ,k rλ

r ,k
A is the total number of nucleotide position involved in

edit operations. Hence,
∑

r ,k rλ
r ,k
A = |S1| + |S2|. Thus,

Aopt = argmax
A


AMSP (|S1| + |S2|) −

∑
r ,k

wr ,kλ
r ,k
A




= argmax
A


−

∑
r ,k

wr ,kλ
r ,k
A


 = argmin

A




∑
r ,k

wr ,kλ
r ,k
A


 .

Thus, one has only to choose the maximal similarity per position AMSP

to transform the distance score into a similarity score without changing the
global optimal alignment. Albeit it does not change the global optimal align-
ment, it is important for the T-Coffee system since only the realized edges are
considered when combining the pairwise alignments into a multiple align-
ment. This implies that alignment edges containing a gap have a weight of 0.
To achieve a good approximation to this, we set

AMSP = max
r ,k

{
wr ,k

r

}
.

The above theorem can also be extended to vary the contribution from struc-
tural and sequential positions for the generation of the multiple alignment.
Obviously, the distance score is flexible enough to strengthen either struc-
tural or sequential positions. Structural positions are strengthened by rising
the constant cost for arc deletion (i.e. wconst

ad ). But this is somewhat lost if we
have the same maximal similarity for structural and sequential positions. This
leads to the following modification of the theorem. We say that that a position
i in the sequence–structure S = (S, P) is a structural position if there is an i′
with (i, i′) ∈ P or (i′, i) ∈ P . The position i is defined to be sequential other-
wise. The order of an edit operation is now defined by two values rstr and rseq,
which are the numbers of structural and sequential positions in the edit oper-

ation, respectively. For an alignment A the value λ
rstr ,rseq ,k
A denotes again the

number of times the k-th edit operation of order rstr , rseq is used in A. Then we

can write the distance score of A as dist(A) = ∑
rstr ,rseq ,k wrstr ,rseq ,kλ

rstr ,rseq ,k
A .

Theorem 2. Let wrstr ,rseq ,k be the cost of the k-th edit operation of order
rstr , rseq . Let AMSP

str be the maximal similarity for structural positions, and let
AMSP

seq be analogously defined for sequential positions. Define the similarity
for the k-th edit operation of order rstr , rseq by

srstr ,rseq ,k = rstr · AMSP
str + rseq · AMSP

seq − wrstr ,rseq ,k .

Then the alignment A which minimizes dist(A) is the alignment that maxim-

izes the similarity sim(A) = ∑
rstr ,rseq ,k s

rstr ,rseq ,k
A λ

rstr ,rseq ,k
A , and vice versa.

The resulting scoring scheme is depicted in Table 1. As discussed above
for AMSP, a good choice for AMSP

str (resp. AMSP
seq ) is to use the maximal cost for

edit operations involving only structural (resp. sequential) positions. Another
possibility is to choose AMSP

str such that the maximal weight for a single
edge (namely 2AMSP

str ) equals the maximal value allowed in T-Coffee. This
is a reasonable choice if there is a high confidence in the structures selected
for the sequences, and one wants to ensure that the structural positions are
aligned. Note that in the current implementation of MARNA, we use the same
values for AMSP

seq and AMSP
str .

Combining several structures
The previously described approach uses one given structure for each
sequence, which could be for example an experimentally confirmed structure.
Usually, the structure is not known and has to be computed by secondary struc-
ture prediction programs like Mfold (Zuker, 1994) or RNAfold (Hofacker,
2003). Here, we are confronted with the problem that very often the real
motif is not found in the minimum free energy structure, but in some
sub-optimal structures.

A better strategy is to assign several structures to each sequence cover-
ing different possible folds of the sequence. To generate an ensemble of
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Table 1. Edit operations on arcs together with the associated distances and their similarity values given to the T-Coffee system

Edit-Op Name Distance Similarity

Arc match 0 4 · AMSP
str

Arc mismatch wam(A, U, G, C) 4 · AMSP
str − wam(A, U, G, C)

Arc breaking
Arc altering

(realized edge)
wbase(A, G) + 1

2 wconst
ad AMSP

str + AMSP
seq − wbase(A, G) − 1

2 wconst
ad

Arc breaking
Arc altering

(realized edge, two arcs)
wbase(A, G) + wconst

ad 2 · AMSP − wbase(A, G) − wconst
ad

Arc breaking
Arc removing

(non-realized edge)
wbase(A, ) + 1

2 wconst
ad no realized edge

Note that for arc-match and arc-mismatch, we assign half of the total similarity value to each alignment edge when building the library.

low energy structures, we have used the stochastic backtracking version of
RNAsubopt (Vienna RNA package) as well as RNAshapes (Giegerich et al.,
2004). The latter avoids the production of a large number of similar structures.
The result is a usually small set of different structures ES = {P 1

S . . . P
nS
S } for a

sequence S. In the following, we call ES the ensemble of the sequence S. Since
the structuresP k

S inES occur with different frequencies in the low energy spec-
trum, they have to be weighted. The weight for each structure is given by the
conditional probability Pr(P k

S |ES) of seeing this structure under the condition
that only structures of the ensemble ES are considered. Thus, we have

Pr(P k
S |ES) = Prb[P k

S ]∑
1≤l≤n

Prb[P l
S ] , (1)

where Prb[P l
S ] is the Boltzmann probability that S forms the structure P l

S .
Since RNAshapes often returns structures with similar energies, we approx-
imate Pr(P k

S |ES) by the uniform distribution in our current implementation
of MARNA, thus avoiding the calculation of the Boltzmann probabilities.

Next, we have to use the different structures to form a single library for a
pair of sequences. So let S1 and S2 be two sequences. Assume that we have
selected n1 structures for the first sequence and n2 structures for the second
one. In this setting, n1 = 1 (resp. n2 = 1) means that we have a unique
known structure for S1 (resp. S2). Thus, we are able to mix sequences having
known structures with sequences where we do not know the structures. Let
ES1 = {P 1

S1
. . . P

n1
S1

} and ES2 = {P 1
S2

. . . P
n2
S2

} be the ensembles of structures
selected for sequences S1 and S2, respectively. Then we perform n1 × n2

sequence–structure alignments for (S1, P k
S1

) and (S2, P l
S2

) (1 ≤ k ≤ n1,
1 ≤ l ≤ n2). All realized edges from these alignments are then collected into
a single library. For edges that are common to several alignments, the weights
are summed up. In order to achieve weights that are consistent with other
libraries, the combined similarity values of the realized edges are normalized
by multiplying them by Pr(P k

S1
| ES1 ) · Pr(P l

S2
| ES2 ).

Consensus structure
Once we have computed the final alignment, we are ready to calculate a
consensus structure from this alignment. The standard approach is to estimate

possibly conserved bonds by means of the mutual information content
[e.g. Luck et al. (1999), Gutell and Woese (1990), Chiu and Kolodziejczak
(1991) and Gutell et al. (1992)] between all columns i and j in a given
alignment. The keynote is that if there is not very much sequence conserva-
tion in these columns, but the columns show a high correlation measured by
the mutual information content, then this must be due to a conserved bond.
Hofacker et al. (2002) extended this approach by considering the probabilities
of forming these base-pairs.

In our case, the situation is different since we explicitly use structure
information for the calculation of the alignment. Hence, the calculation of
the consensus structure should be based on these given structures.

To exemplify the basic idea, suppose that exactly one structure per sequence
is given. Thus, each structure must then be interpreted as the ‘real’ known
structure. A conserved base pair between two columns in the alignment is
found if the majority of sequences have a base pair at the corresponding
sequence positions. The remaining problem is that the resulting set of con-
served base pairs alone does not form a nested secondary structure and is thus
not a valid consensus structure. This is a problem common to all approaches
for calculating a consensus structure. The usual solution is to calculate a
secondary structure that maximizes base pair conservation. So let c, c′ be
two columns with 1 ≤ c < c′ ≤ m, where m is the number of columns
of the multiple alignment. Furthermore, let bp_cons(c, c′) be the number of
sequences that have a base pair between the corresponding sequence pos-
itions. The consensus structure is then defined to be a secondary structure
P ⊆ [1..m] × [1..m] such that∑

(c,c′)∈P

bp_cons(c, c′)

is maximized. This can be calculated using a variant of the Nussinov
algorithm (Nussinov et al., 1978). For this purpose, we define a matrix (Ni,j )

with 1 ≤ i, j ≤ m, where

Ni,j = max
P

∑
(c, c′) ∈ P

i ≤ c < c′ ≤ j

bp_cons(c, c′)
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is the maximal base pair conservation for all columns between i and j . The
corresponding recursion equation for this matrix is

Ni,j = max




Ni+1,j ,
Ni,j−1,

Ni+1,j−1 + bp_cons(i, j),

maxi<k<j

{
Ni,i+k + Ni+k+1,j

}




.

It is a dynamic programming approach, where the traceback reports the
consensus structure of the alignment.

Finally, we have again to consider the case where we are given structure
ensembles for some (or all) sequences. The overall structure of the approach
is the same, only the definition of conserved base pairs has to be adapted,
i.e. the definition of bp_cons(c, c′). If we have several structures for one
sequence, then the probability of seeing a particular base pair depends on the
probabilities of the structures that contain this base pair. Hence, we can only
calculate the expected number of occurrences of base pairs for two columns
c and c′. Thus, we redefine bp_cons(c, c′) as follows. Consider a multiple
alignment of K sequences. For each sequence Sk , let Ek be the ensemble of
structures calculated for Sk . For each column c, let ikc be either the position
that corresponds to column c in sequence Sk (if aligned), or otherwise.
Furthermore, let δP (c, c′) be the index function of P , i.e. δP (c, c′) is 1 if
(c, c′) ∈ P , and 0 otherwise. Then

bp_cons(c, c′) =
K∑

k=1

∑
P∈Ek

δP

(
ikc , ikc′

) · Pr
[
P | ESk

]
,

where Pr[P | ESk
] is defined as given in Equation (1).

Complexity
Here, we assume that all sequences have nearly the same length L and that
we generate an ensemble of E structures for each sequence. Note that by
using RNAshapes, E is typically small (up to three sequences). The running
time of one pairwise alignment is O(E2L4). We have to make N(N − 1)/2
comparisons in a set of N RNAs. Therefore, the pairwise comparison step
needs O(E2N2L4) computation time. The most time consuming part of the
multiple alignment step consists of building the extended library, which takes
O(N3L2) steps in the worst case (Notredame et al., 2000). Altogether, the
dominating alignment complexity is given by

O(E2N2L4) + O(N3L2)

APPLICATION
Our algorithmic approach of multiple alignment of RNAs can be
used online at our MARNA server. The maximal sequence length of
one RNA is restricted to 500 bases. The maximal number of RNAs
depends on the sequence lengths. The sum of all sequence lengths
is restricted to 10 000 bases. MARNA is capable of aligning RNA
sequences with known as well as unknown secondary structures.
In the latter case, the user can choose whether to assign for every
sequence a known structure or an ensemble of several structures
automatically generated by RNAshapes or by stochastic backtracking
(as part of RNAsubopt, implemented in the Vienna RNA Package).

We have tested MARNA on three datasets from the Rfam database
(Griffiths-Jones et al., 2003). We compared the alignments as well
as the consensus structures given from the Rfam database with the
output of the two different alignment tools T-Coffee and PMmulti.
The manual alignment and the consensus structure from the Rfam
database serve as the reference. For MARNA and PMmulti, we have
compared the consensus structures as proposed by the programs. If
RNAalifold (Hofacker et al., 2002) yielded a better consensus struc-
ture, we have also displayed this one. For T-Coffee, we have used
RNAalifold (Hofacker et al., 2002) to predict the consensus structure.

The first dataset consists of seven randomly chosen eukaryotic
SECIS-elements (selenocysteine insertion sequence, Rfam accession
number RF00031). SECIS-elements are necessary for the incorpora-
tion of selenocysteine into a protein sequence directed by an in-frame
UGA codon (usually a stop codon) within the coding region of the
mRNA. Selenoprotein mRNAs contain a conserved secondary struc-
ture in the 3′ UTR that is required for the distinction of UGA stop
from UGA selenocysteine. The sequences are ∼60 nt in length and
adopt a hairpin structure that is sufficiently well-defined and con-
served, but the primary sequences differ. This dataset is especially
hard for sequence–structure alignment programs since it contains
four non-standard base pairs (U–U, G–A, A–G, C–U) in the lower
part of the stem.

The manual alignment was made from 25 SECIS-elements out of a
total set of currently 65 SECIS-elements. We have chosen 7 out of the
25 sequences randomly. The manual alignment is shown in Figure 3
and serve as the ‘true’ alignment. An alignment with T-Coffee reveals
some nucleotide similarities among sequences, as expected, but are
not suited for the prediction of a consensus structure. Here, MARNA
detects the long stem structure with the characteristic bulged A’s in
the upper loop (Lambert et al., 2002). For this test case, we used the
predicted minimum free energy (mfe) structure for each sequence.

We also aligned all the 65 SECIS-elements using MARNA with
mfe structures and with ensembles calculated by RNAshapes and by
stochastic backtracking (as part of RNAsubopt, Vienna RNA Pack-
age). We have compared these results with the results of PMmulti.
The results are summarized in Table 2.

The second dataset consists of 22 tRNA-like structures, found in
the 3′ UTR of Tymoviruses and Pomoviruses. They were also taken
from the Rfam database. The family is thought to be involved in
the initiation of minus-strand synthesis and the disruption of the
pseudoknot gives rise to a 50% drop in transcription efficiency.
MARNA (both with mfe structures as well as with structure
ensembles) is able to detect the four stems as well as the single
G between the first and second stem. For PMmulti, the four stems
are detected when using RNAalifold in addition (Fig. 4).

Finally, we have used the objective function given by Bali Base
benchmark program (Thompson et al., 1999) to compare all gener-
ated alignments, again taking the Rfam alignments as a reference.
The benchmark program returns two scores, namely SP (sum of
pairs) and TC (total columns). SP measures the ratio of the number
of correctly aligned pairs, whereas TC measures the number of cor-
rectly aligned columns. Since conservation of columns is different
in sequence alignments and sequence–structure alignments, we have
used only the SP-score. The results are summarized in Table 2.

DISCUSSION
We have presented a multiple alignment method for RNAs con-
sidering both the primary sequences and the secondary structures.
It generates pairwise sequence–structure alignments and combines
them using T-Coffee. Hence, MARNA is not only a structure
alignment tool, but also considers sequence similarities. The main
advantage is to set individual parameter values capable of weight-
ing either sequence or structure properties. Concerning structures,
one can use either user-defined structures, or let MARNA predict an
ensemble of low energy structures.

MARNA can be tested online on our website. Although a pairwise
comparison needs time complexity of O(n2m2) for two RNAs of
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Fig. 3. Comparison of multiple alignments and consensus structure predictions of seven randomly chosen SECIS-elements taken from the Rfam database.
(a) The restriction of the manual alignment in Rfam to the seven sequences. The consensus structure is proposed by Rfam, i.e. generated of all 65 SECIS
elements. (b) The T-Coffee alignment is based on nucleotide similarities and thus disregards structural conformations. It is not surprising that the consensus
structure contains no base-pairing interactions. (c) PMmulti detects some bonds, but does not identify the hairpin. (d) MARNA finds the hairpin-like structure
as well as the buldged A’s in the upper loop of the motif (indicated by a red arrow), which are required for the SECIS-element.

lengths n and m, and thus limits the input sequence lengths to 500
bases, MARNA has been tested successfully on many RNAs like
tRNAs, rRNAs and ncRNAs.

This paper is based on a previous version published in the German
Conference of Bioinformatics (Siebert and Backofen, 2003). It has

been extended in several ways. We have added the use of structure
ensembles and provided a formal description for the calculation of
the alignment weights. Furthermore, we added the calculation of a
consensus structure and compared our results with PMmulti using
the Balibase benchmark test.
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Fig. 4. Consensus structure predictions for 22 tRNA-like structures, found in Tymovirus and Pomovirus. (a) The consensus structure of the manual alignment
contains four distinct stems. (b) The proposed structure of PMmulti detects two of the four stems. (c) An improvement of the structure prediction applied to
the same computed alignment can be achieved by RNAalifold (part of the Vienna RNA package). (d and e) MARNA is able to detect all four stems in case of
assigning the mfe structure as well as the shape structure to each sequence. Both consensus structures are very close to the Rfam consensus structure.

Table 2. Evaluation of MARNA and PMmulti alignments using the SP-score
of the Bali Base benchmark program

Sequences RFam MARNA MARNA MARNA PMmulti
Accession-No. (mfe) (shapes) (ens)

SECIS-elements
(7 rand.)

RF00031 0.327 0.351 0.545 0.286

SECIS-elements
(all 65)

RF00031 0.463 0.487 0.447 0.162

Tymovirus/
Pomovirus

RF00233 0.715 0.782 0.837 0.730

Hammerhead RF00008 0.785 0.811 0.742 0.696a

The first and third dataset have been already analyzed in Figures 3 and 4. Addition-
ally, we compared the whole dataset of the 65 SECIS-elements and the Hammerhead
ribozymes (type III). MARNA has been tested in different combinations, namely with
mfe structures and structure ensembles generated by RNAshapes and by the stochastic
backtracking of RNAsubopt (using three structures per sequence). Values in the table
indicate the similarity to the reference manual alignment. They vary between 0 and
1. The maximum value for each test set is highlighted. They are reached by MARNA
alignment with shape and ensemble structures.
aNote that for the Hammerhead set, PMmulti aligned only 78 of the 85 sequences.
Here, the reference alignment is the subalignment of Rfam corresponding to these
78 sequences.
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