
ARTICLE

A pan-cancer analysis of synonymous mutations
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Matthias Groß5, Rolf Backofen 4,7 & Sven Diederichs 1,2,3,5,6

Synonymous mutations have been viewed as silent mutations, since they only affect the DNA

and mRNA, but not the amino acid sequence of the resulting protein. Nonetheless, recent

studies suggest their significant impact on splicing, RNA stability, RNA folding, translation or

co-translational protein folding. Hence, we compile 659194 synonymous mutations found in

human cancer and characterize their properties. We provide the user-friendly, comprehen-

sive resource for synonymous mutations in cancer, SynMICdb (http://SynMICdb.dkfz.de),

which also contains orthogonal information about gene annotation, recurrence, mutation

loads, cancer association, conservation, alternative events, impact on mRNA structure and a

SynMICdb score. Notably, synonymous and missense mutations are depleted at the 5'-end of

the coding sequence as well as at the ends of internal exons independent of mutational

signatures. For patient-derived synonymous mutations in the oncogene KRAS, we indicate

that single point mutations can have a relevant impact on expression as well as on mRNA

secondary structure.
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According to GLOBOCAN, cancer is a main cause of
morbidity and mortality worldwide with 14.1 million new
cases and 8.2 million deaths in 20121. Cancer genomics

studies with vast collaborative efforts by The Cancer Genome
Atlas (TCGA)2 and the International Cancer Genome Con-
sortium (ICGC)3,4 have identified numerous mutations in cancer,
but information on their pathological relevance is often lacking.
As an important resource for cancer genome information, the
Catalogue of Somatic Mutations in Cancer (COSMIC) aims at
annotating all somatic mutations in human cancer5,6. COSMIC
contains mutations that are manually annotated for individual
genes from publications, as well as datasets derived from large-
scale whole genome sequencing.

Chromosomal losses and gains or missense and nonsense point
mutations altering tumor suppressor genes and oncogenes are
widely studied7. However, also genetic changes leaving the pro-
tein sequence intact can significantly impact cancer genes8, e.g.,
by affecting the translation, RNA structure or stability of the
mutated transcript.

Synonymous mutations do not alter the amino acid encoded by
the affected codon due to the degeneracy of the genetic code, but
change the DNA and RNA sequence. They were viewed as silent
mutations and were hence mostly overlooked in cancer genetics.
Early studies assumed that these were not under selective pres-
sure9, but later studies found synonymous mutations to be subject
to natural selection in different species10–12.

Synonymous mutations play a role in many human diseases13 and
can correlate with the clinical outcome or therapy response14–16. In
cancer, synonymous mutations are estimated to represent 6–8% of all
driver mutations occurring due to single nucleotide substitutions17.
Synonymous substitutions are enriched in oncogenes but no evidence
for selection is found in tumor suppressor genes (except TP53)17.

In contrast to their perception as silent mutations, synonymous
mutations can change protein levels or protein conformation by
altering splicing regulatory sites, mRNA stability, miRNA binding
sites or translation efficiency13. Synonymous mutations in TP53,
BRCA1, BRCA2 and APC lead to exon skipping and change in
protein structure by creation or inactivation of a splice site18–21. A
synonymous substitution increases the mRNA stability of
BCL2L12 due to the loss of a miRNA target site22. Synonymous
mutations can alter the secondary structure of an mRNA affecting
its stability or translation23,24. However, no changes in RNA
secondary structures of cancer genes have been proven so far.
Synonymous mutations can change the translational speed by
creating ribosomal pause sites affecting the cotranslational protein
folding25. A synonymous mutation in MDR1 introduces a rare
codon slowing down translation and allowing cotranslational
folding altering its substrate specificity26. Synonymous codons in
gamma-B-crystallin modulate translation and cotranslational
folding27. Lastly, a synonymous mutation in p53 prevents the
phosphorylation of its nascent peptide chain28.

Here, we provide and analyze a comprehensive resource of
659,194 synonymous mutations in human cancer, SynMICdb,
which contains information on and allows specific searches for their
frequency, tumor distribution, evolutionary conservation, position
in the coding region, association with alternative events, as well as
their impact on the mRNA secondary structure. It enables
researchers to comprehensively study synonymous mutations in
their gene or tumor entity of interest. We additionally provide
experimental evidence for the impact of synonymous mutations on
the expression and the secondary structure of the oncogene KRAS.

Results
Properties of synonymous mutations in cancer. To gain a
comprehensive dataset of synonymous mutations, we examined

3.88 million mutations identified in whole genome sequencing
studies of tumor tissues and cell lines in a pan-cancer analysis
including but not limited to TCGA and ICGC data as deposited
in COSMIC. After curation of the dataset for duplicates and
annotation errors29, 2.81 million mutations remained in 20,414
human genes of 18,028 samples from 88 different tumor entities.
In this dataset, we found 659,194 synonymous mutations . Hence,
synonymous mutations were the second most frequent type of
point mutation (23.4%) after missense mutations (64.1%), but
more frequently listed than nonsense mutations, deletions or
insertions (4.3%, 3.2%, 1.4%) (Fig. 1a, Supplementary Data 1).
While the latter were widely characterized as tumor-causing,
synonymous mutations have hardly been studied.

The 659,194 synonymous mutations mapped to 19,916 genes
derived from 13,935 tumor samples after data curation
(Supplementary Data 2). To integrate orthogonal datasets, we
added numerous characteristics to enable easy and focused
searches. Based on this platform, we compared synonymous (syn)
and missense (mis) mutations and found striking parallels but
also differences.

Our data collection revealed that known cancer genes from the
Cancer Gene Census (2.8% of all genes)30 were enriched in
synonymous, as well as in missense mutations (3.9% vs. 4.9%)
(Fig. 1b). In turn, more than 95% of both types of mutations were
found in genes not yet associated with cancer leaving room for
discoveries. Somatic synonymous and missense mutation catalogs
contained a similar fraction of known Single Nucleotide
Polymorphisms (SNPs, 8.1% vs. 8.3%).

176594 synonymous mutations were found recurrently across
all tumor entities—similar to the recurrence fraction of missense
mutations (26.8% vs. 29.1%, Fig. 1c). The most frequent
synonymous mutation was found 63 times (NCOA6 c.807 G >
A), while the most frequent synonymous mutation never listed as
SNP was found 45 times in the tumor suppressor CHEK2 c.1176
G > T. At the gene level, the large gene TTN was found most often
with 2253 cancer samples, while normalized for gene length,
KCNJ12 was found most often with 278 occurrences. Importantly,
the frequency of a mutation negatively correlated with the
mutation load, i.e., the total number of mutations found in a
tumor. Thus, highly recurrent synonymous mutations were more
likely found in tumors with overall lower mutation rates
potentially indicating a higher specificity (Fig. 1d). Similarly,
highly recurrent synonymous mutations were enriched in known
cancer genes (Fig. 1e).

Next, we added a conservation score as it may reflect functional
relevance or localization in a regulatory motif. We found more
than 40% of the synonymous mutations affecting highly
conserved nucleotides (PhastCons score > 0.9), while missense
mutations were even more frequently affecting highly conserved
residues (67%) (Supplementary Fig. 1a).

The nucleotide changes leading to synonymous mutations were
highly similar to missense mutations with C > T/G > A changes
accounting for 67% (Supplementary Fig. 1b). This mirrors the
known mutation bias of CGC Mutation Signature 1, which is
prevalently found across all tumor entities31. Based on this
mutation bias, we normalized the frequency of each mutation to
its signature-based probability, i.e., we multiplied the frequency
with (1-probability from signature) to generate the signature-
normalized frequency (Fig. 1f).

In contrast to their similarity regarding nucleotide changes, the
distribution of synonymous and missense mutations differed on
the amino acid level. When correcting for the number of codons
for each amino acid and the total number of mutations, we found
that missense mutations were enriched in codons for charged
amino acids like glutamic acid (E), whereas synonymous
mutations were enriched for hydrophobic amino acids like
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phenylalanine (F) (Supplementary Fig. 1c). An independent
approach excluded that these differences were due to mutation
bias: for each codon, we combined its total number in the human
transcriptome with the mutation signature resulting in a number
of expected synonymous mutations aggregated to the amino acid
level (Supplementary Fig. 1d). The comparison of the expected
number of synonymous mutations to the actual number found in
cancer revealed striking differences (Supplementary Fig. 1e) and
independently validated the enrichment of synonymous muta-
tions in phenylalanine codons and their depletion in glutamic
acid codons. Thus, synonymous mutations were not randomly
distributed across the encoded amino acids.

Furthermore, 5616 synonymous mutations mapped to clini-
cally relevant variants from ClinVar32. ClinVar mostly comprises
hereditary diseases and only few associations with tumors, but
nonetheless 470 synonymous mutations were associated with
tumors in ClinVar (Supplementary Data 3).

Next, we analyzed the distribution of mutations across the
coding region of the gene. Synonymous and missense mutations
were depleted in the first 10% of the coding sequence (Fig. 2a).
Also, a significant depletion was observed in the first codons up to
codon 50 with the strongest decrease in the first ten codons
(Supplementary Fig. 2a).

Synonymous and missense mutations showed a similar
distribution regarding their appearance in first, internal and last
exons of the transcript or in monoexonic transcripts (Supple-
mentary Fig. 2b). Within internal exons, synonymous mutations
were evenly distributed with a notable depletion towards the

exon-intron boundaries with a similar distribution pattern for
missense mutations (Fig. 2b).

To exclude that the depletions of synonymous mutations
towards the 5'-end of the coding sequence or both ends of
internal exons were due to a mutation bias, we repeated the
analysis for each nucleotide change separately and found the
same depletion for four to six out of six types, respectively
(Fig. 2c, d), indicating that these are not restricted to individual
nucleotide changes.

We mapped synonymous and missense mutations to exons
affected by events like alternative splicing or alternative promoter
usage. In total, 133,320 combinations of synonymous mutations
and alternative events were found with 58.7% representing
cassette exons. These associations between synonymous muta-
tions and alternative events may help to generate hypotheses for
their potential impact (Supplementary Fig. 2c). Again, missense
mutations showed a similar distribution.

To further characterize the impact of synonymous mutations
on alternative splicing, we analyzed all wildtype and synonymous
mutant sequences for the gain or loss of exonic splicing regulatory
motifs. We derived exonic splicing enhancer (ESE) and exonic
splicing silencer (ESS) motifs from two independent sources:
RegRNA2.033 and SpliceAidF34. We selected human exonic
motifs and curated these sets for duplicate sequences and
concatenated the information for each duplicate motif resulting
in 76 motifs from RegRNA2.0 and 111 motifs from SpliceAidF
(Supplementary Data 4). Searching for gains or losses of exonic
splicing regulatory sites revealed that 26.8% of synonymous
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Fig. 1 Properties of synonymous mutations in cancer. a Synonymous mutations are the second most frequent class of point mutations in cancer.
b Synonymous mutations (Syn Mut) and missense mutations (Mis Mut) are enriched in cancer-associated genes compared with the proportion of
annotated cancer genes among all human coding genes (All Genes). c Synonymous mutations (Syn Mut) display a similar recurrence pattern as missense
mutations (Mis Mut) with more than 25% of mutations found recurrently in more than one sample. d The violin plot depicts the distribution of the
mutation loads of the samples associated with different frequencies of the synonymous mutations with the median indicated by a dot. e The fraction of
synonymous mutations in known cancer-associated genes increases for highly recurrent synonymous mutations. f The frequency of synonymous
mutations (Syn Mut) and missense mutations (Mis Mut) are normalized to a mutation signature to account for the mutation bias in cancer cells
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mutations caused a change in at least one predicted ESE or ESS
motif (Supplementary Data 5). This table also lists the distance of
the synonymous mutation to the closest exon boundary, which
may also predict an impact on splicing. The individual changes
for each synonymous mutation and each motif are listed for
RegRNA2.0 (Supplementary Data 6) and SpliceAidF (Supple-
mentary Data 7).

To rank synonymous mutations for their likelihood to have a
functional impact, we developed the SynMICdb Score. This score
is based on nine different parameters (Fig. 3a): the frequency of
the mutation in cancer corrected for mutational bias; the
mutation load of the samples affected by this mutation with the
rationale that lower mutation loads may indicate a higher
specificity of the mutation; the evolutionary conservation; the
annotation as a known cancer gene or as a single nucleotide
polymorphism (SNP); the FATHMM-MKL and CADD scores35;
and the predicted impact on RNA secondary structure. Most
score parameters were independent of each other (Supplementary
Fig. 3a). To characterize the score, we analyzed the score
distribution for mutations in known cancer genes (while of course
excluding the parameter “Cancer Gene” from the score).

Mutations in cancer genes were clearly associated with higher
scores compared with mutations in non-cancer genes (Fig. 3b).
To analyze the impact of each parameter on the overall score, we
used a leave-one-out approach and calculated the score for each
mutation with leaving out one of the parameters. The complete
SynMICdb score, as well as all leave-one-out scores correlated
well with each other (Supplementary Fig. 3b). We then compared
the ranking of the top 10% according to the complete SynMICdb
score in each of these leave-one-out scores. For all leave-one-out
scores, the large majority of the top-ranked mutations remained
in the top 10% depicting the balance of the different parameters
in the score (Supplementary Fig. 3c). This analysis showed that
the signature-normalized frequency, the mutation load and the
known cancer gene annotation had the largest impact on the
score, which was also desired. On the other hand, all individual
factors contributed to the score and altered the ranking.

The distribution of the SynMICdb score allowed ranking
synonymous mutations (Supplementary Fig. 3d). The score-
ranged from −4 to+ 12 and high numbers indicated
a higher likelihood of a functional impact with the
followingdistribution: score > 0.89= top 50%, score > 2.70= top
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10%, score > 4.38= top 1%, score > 5.83= top 0.1%, score >
8.08= top 0.01%, i.e., a SynMICdb score of above 4.38 indicates
that the synonymous mutation is among the top 1% in this study.

Along the coding sequence, the score was significantly higher
at the 5'-end (Fig. 3c). Hence, synonymous mutations were less
frequent in this region (Fig. 2a) but with a higher predicted

impact. The 5'-terminal synonymous mutations had a signifi-
cantly higher CADD score, conservation and predicted structural
impact and a lower mutational burden (Supplementary Fig. 3e).

Within internal exons, the score was significantly higher
towards both ends of the exon (Fig. 3d), the regions in which
mutations were depleted (Fig. 2b). These outer regions of internal
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exons showed a significantly higher degree of evolutionary
conservation (Supplementary Fig. 3f).

Cassette exons, exons known to be subject to alternative
splicing, also showed a significant enrichment of cancer genes,
of the SynMICdb score, of the conservation and of the signature-
normalized frequency (Fig. 3e). Out of 208 silent mutations
recently linked to splicing alterations36, we found 46 in
SynMICdb (Supplementary Data 8). These had a significantly
higher SynMICdb score (average 1.7 vs. 0.9, p= 6 × 10−6 t-test)
and decreased mutation load (average 530 vs. 2167, p= 1 × 10−26

t-test) compared with all.
SynMICdb combined data from 333 different studies, but we

also analyzed individual studies. We confirmed a relevant study
bias regarding the number of synonymous mutations reported
per tumor which was likely due to different mapping and
annotation protocols. Notably, the SynMICdb score in part
controlled for this bias (although this parameter itself was not
part of the score) since studies with very high mutation counts
resulted on average in lower SynMICdb scores (Supplementary
Fig. 4a). When selecting the ten largest studies incorporated into
SynMICdb, eight out of ten studies showed the same depletion of
synonymous mutations towards the 5'-end of the coding sequence
(Supplementary Fig. 4b) as the entire dataset (Fig. 2a). Moreover,
all ten out of ten individual studies showed lower rates of
synonymous mutations towards both ends of the internal exons
(Supplementary Fig. 4c) recapitulating the finding from all
synonymous mutations (Fig. 2b). As for the entire dataset (Fig. 3c,
d), the SynMICdb scores were increased towards the 5'-end of the
coding sequence in seven out of ten studies (Supplementary
Fig. 4d), as well as towards both ends of internal exons in all ten
or nine out of ten studies, respectively (Supplementary Fig. 4e).

SynMICdb: a database for synonymous mutations in cancer.
We made this comprehensive dataset available to the scientific
community in a user-friendly database, the SYNonymous
Mutations In Cancer database or SynMICdb (http://SynMICdb.
dkfz.de) (Fig. 4).

The mutation signature-normalized frequency, evolutionary
conservation, SNPs, position in the coding sequence, association
with alternative events, predicted impact on secondary structure,
average mutation load of the affected samples and SynMICdb
score were integrated for each synonymous mutation. Links to
gene card information, alias names and information from Cancer

Gene Census were added to the database. Alias names or a filter
for Cancer Gene Census genes can be used for searching.
Researchers can also specifically select mutations based on their
localization within the coding sequence. Using Advanced Search,
all these features can be searched or sorted for without prior
knowledge of bioinformatics or analysis of large datasets. A
detailed user guide is provided (Supplementary Note 1).

RNA structure prediction. Synonymous codon changes have
been implicated in altering mRNA structure. Structural changes
in the mRNA can affect its stability and translation efficiency37.
In a long-term evolution experiment in bacteria, mutations which
disrupted the mRNA secondary structure were evolutionary
negatively selected against38. Synonymous mutations in the
human DRD2 gene altered mRNA folding decreasing its stability
and translation23. Stable mRNA pseudoknot structures cause
translational pausing39 and regulate translation speed which
impacts cotranslational protein folding and interaction with cel-
lular components40,41. Comparing mRNA folding energy with
protein structures indicates that local mRNA structures influence
protein folding42.

To add another layer of orthogonal data, we used two different
algorithms to predict changes in the RNA structure induced by
the 659,194 synonymous mutations: remuRNA43 (score reflecting
relative entropy) and RNAsnp44 (p-value reflecting significance of
local structure base-pairing distance). The resulting rankings of
the two structure prediction algorithms were highly correlated for
different context sizes (−/+100 nt vs. −/+200 nt) (Fig. 5a).
Importantly, the ranking of the predicted structural changes was
independent of the window size considered for structure
prediction (Fig. 5b), since the interval regions with the largest
structural changes were localized in the proximity of the mutation
and the majority did not extend beyond the minimum interval
size of 50 nt (Fig. 5c).

Comparing the structural impact along the coding sequence
revealed an increased fraction of structurally relevant mutations
towards the 5'-terminus (Fig. 5d, e). This correlated well with the
anticipated higher structuredness of the start codon proximal
sites. Hence, while the first codons of the mRNA were depleted in
synonymous mutations (Fig. 2a, c), the occurring mutations
showed a higher likelihood to alter the structure. The GC-content
normalization of the empirical p-value calculations balanced this
effect, but did not abolish it (Fig. 5d, right panel). Synonymous

Point mutations
in cancer

Gene information

Mutation load

Cancer gene annotation

Alternative events

Evolutionary
conservation

Mutation positions

Tumor entity & histology

RNA secondary structure

SynMICdb score

Manual curation

Synonymous mutations
in cancer

Whole genome sequences
in COSMIC v76

3.9 million mutations

2.8 million mutations

659,194 synonymous mutations
13,935 tumor samples

88 tumor entities

Fig. 4 SynMICdb. The Synonymous Mutations in Cancer database provides easy access to 659194 somatic synonymous mutations found in human cancer
combined with information about their gene annotation, recurrence, signature-normalized frequency, mutation load, affected tumor entities, evolutionary
conservation, structural impact, association with alternative events and the SynMICdb score found at http://SynMICdb.dkfz.de
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mutations towards the start of the coding sequence were
embedded (−/+100 nt) in a slightly higher GC-content and
formed more stable structures with lower free energy (Fig. 5f).
This could be partly due to a portion of the 5'-UTR present in the
window for mutations close to the 5'-end. However, for mutations
after nucleotide 100, the context window was fully located within
the coding region and still showed the same trend, which was in
accordance with previous experimental studies45.

At the nucleotide level, all transversions involving a G showed
the largest structural impact while C > T transitions had the

smallest impact likely due to the maintained ability to base-pair
with G (Supplementary Fig. 5).

Notably, the predicted impact on RNA structure was negatively
correlated with mutation load, i.e., synonymous mutations found
in samples with overall fewer mutations had a higher impact on
RNA structure (Fig. 5g).

Structural impact of KRAS c.30A > C synonymous mutation.
Next, we analyzed the dataset of predicted RNA changes for the
recurrent synonymous mutations with the most likely structural
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impact. We selected the mutation KRAS c.30A > C since its
SynMICdb score ranked it in the 99.9th percentile and for the
structural impact, RNAsnp ranked it in the 99th percentile and
remuRNA in the 87th percentile, hence standing out among the
cancer gene-associated synonymous mutations. Notably, this
mutation was found in the 5'-terminal region which was generally
depleted in synonymous mutations (Fig. 2a, c) but with a higher
probability of structure-changing mutations (Fig. 5d, e).

The RAS family of oncogenes consists of HRAS, NRAS, and
KRAS in mammals which encode small GTPases46. Around 30%
of human tumors have mutations in RAS genes that lead to
constitutive activation of RAS due to the inhibition of GTP
hydrolysis47. KRAS is one of the most frequently mutated
oncogenes48. Mutant KRAS expression promotes oncogenic
transformation and downregulation of mutant KRAS leads to
tumor regression49. Interestingly, mutant KRAS proteins can
dimerize with wildtype KRAS, hence, wildtype KRAS expression
significantly affects the activity of mutant KRAS and e.g., MEK
inhibitor sensitivity50.

First, we tested the impact of the synonymous mutation
c.30 A > C on exogenous KRAS protein expression and found a
small, but significant increase (Fig. 6a). The base-pairing
probabilities were calculated by the ViennaRNA RNAfold51 for
the wildtype and c.30 A > C mutant (Fig. 6b, Supplementary
Fig. 6). We identified five regions with apparent changes in base-
pairing probability: regions 1, 2 and 5 were predicted by
RNAplfold to have increased accessibility in the wildtype
sequence, while regions 3 and 4 were predicted to show higher
accessibility in the mutant sequence (Fig. 6c).

To verify, whether the RNA structure predictions would reflect
structural changes, we performed SHAPE (Selective 2'-Hydroxyl
Acylation analyzed by Primer Extension) experiments to
determine the secondary structure of the wildtype and mutant
RNAs52,53. The c.30 A > C mutation affected secondary structure
locally, since the structural changes of a 201 nt context and the 74
nt SHAPE product (see below) were in good agreement. Notably,
the accessibility patterns determined by SHAPE reflecting the
base-pairing status (Fig. 6d, Supplementary Fig. 7) matched the in
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silico accessibility predictions (Fig. 6e). We found stronger signals
indicating higher accessibility in regions 1, 2 and 5 for the
wildtype sequence while the signal in region 4 was much stronger
for the mutant sequence. In region 3 with the lowest and shortest
predicted difference in accessibility, the difference was less
prominent. These SHAPE results were in accordance with two
minimum free energy RNA structures for the wildtype and
mutant KRAS sequences as predicted by RNAfold (Fig. 6f).

In summary, SHAPE unraveled structural differences for KRAS
c.30 A > C around the mutation site as predicted by RNA
structure analysis in silico. Hence, for this example, the structural
prediction proved to be useful to identify a synonymous mutation
which affected the secondary structure of the mRNA.

Synonymous mutations of KRAS codon 12 affect its expression.
To determine whether cancer-derived single synonymous muta-
tions may have a detectable impact on the expression of known
cancer genes, we again selected the oncogene KRAS. Previously, a
combination of 130 artificially induced synonymous mutations
for the optimization of rare codons had been shown to enhance
KRAS expression54. In SynMICdb, we identified several recurrent
synonymous mutations in KRAS clustered at the codons 12 and
13 which are more often affected by oncogenic missense muta-
tions. For codons 12 and 13, we found all three possible muta-
tions of the last nucleotide in different tumor entities with several
among the top 0.1% in the SynMICdb score (Fig. 7a). Frequencies
are provided for the COSMIC database containing all deposited
sequences, as well as for SynMICdb containing only mutations
found in whole genome sequencing studies (Fig. 7a). For the large
majority of these cases (76%), no second mutation in codons 12
or 13 was detected making the synonymous mutation the only
mutation in these codons in the respective tumors. For the
remaining samples, it remained uncertain whether additional
missense mutations localized to the other allele or whether they
affected the same allele and hence would be misannotated.
Notably, 86% of the KRAS codon 12 mutations in COSMIC (12
out of 14) were found in typically KRAS-driven cancers like
pancreatic, colon and lung cancer. We tested the impact of these
patient-derived KRAS mutations on RNA and protein expression
in two independent cell lines. Since overactivation of the KRAS
pathway increases overall gene expression55, we intentionally
decided to use a C-terminal V5-tag. C-terminal tags block the
membrane association of KRAS and inactivate it allowing us to
study the expression but to abolish the activity of the exogenous
KRAS. Moreover, this approach allowed specifically detecting the
tagged exogenous wildtype or mutant KRAS. Lastly, an N-
terminal tag may have masked regulatory events during transla-
tion initiation since the mutations were close to the start codon.
Several synonymous mutations had a significant effect on KRAS
expression with c.36 T > C (G12G, SynMICdb score 99.9th per-
centile) most strongly inducing KRAS mRNA and protein
expression (Fig. 7b–d). This was reproducible in HeLa cells
(Supplementary Fig. 8a). In turn, the mutation C.36 T > G
(G12G) had the opposite effect and significantly decreased KRAS
protein expression (Fig. 7b). Notably, synonymous mutations in
codon 13 (G13G) showed the same effect with lowest expression
for the GGG codon (Supplementary Fig. 8b–e). Given that
increased KRAS activity or the loss of wildtype KRAS as dimer-
ization partner for mutant KRAS proteins could impact onco-
genicity50, both effects could be of interest for future studies. We
also tested missense mutations of these codons and found an
effect on gene expression supporting the hypothesis that also
missense point mutations may have effects beyond the change of
the amino acid. In summary, the example of patient-derived,
recurrent somatic synonymous mutations in codon 12 of KRAS

documents the potential impact of synonymous mutations on
cancer protein expression.

Discussion
SynMICdb offers a comprehensive, curated, pan-cancer resource
to foster research on synonymous mutations. Our analyses pro-
vide insights into the characteristics of this second most abun-
dant, but under-researched class of point mutations in cancer.
The similarities between synonymous and missense mutations
e.g., regarding recurrence or distribution or co-localization with
alternative events make it likely that at least some synonymous
mutations have a similar impact on tumorigenesis as missense
mutations. In turn, missense mutations might share functional
mechanisms with synonymous mutations and act beyond the
alteration of the amino acid sequence of the encoded protein.
Important information on the signature-normalized frequency,
mutation load, cancer gene association, evolutionary conserva-
tion, predicted structural impact and a sortable SynMICdb score
are also provided. The SynMICdb score integrates nine relevant
parameters and is enriched for synonymous mutations in cancer
genes, as well as for examples recently linked to a function in
splicing36 or located in cassette exons. In this study, the mutation
bias has only been corrected for using mutation signature 131.
While this is the most widely applicable signature across tumors
and cancer entities and recapitulates the nucleotide change dis-
tribution of the synonymous mutation dataset, additional sig-
natures may be relevant in individual tumor entities. Another
relevant bias known in comparative cancer genetics is an anno-
tation and reporting bias between different studies, which is
evident from differing numbers of synonymous mutations per
sample even for the same tumor entity.

Our analyses provide or corroborate a number of arguments in
favor of selection and functional relevance of synonymous
mutations: synonymous mutations are enriched in known cancer
genes, their frequency negatively correlates with the mutation
load pointing towards a selective pressure resulting in highly
recurrent synonymous mutations, they are non-randomly dis-
tributed along the coding sequence and within internal exons and
differentially affect codons for specific amino acids.

One of the most surprising findings is the significant depletion
of synonymous and missense mutations at the 5'-end of the
coding region. This difference is largely independent of the
nucleotide change and hence not due to mutational bias. It might
be linked to a higher selective pressure against mutations in this
region due to a bigger impact of synonymous mutations during
the ramping phase of translation initiation or a larger effect of
missense mutations on N-terminal signal sequences. If this
finding, however, would reflect selective pressure, this would
indicate that the majority of the synonymous and missense
mutations—even if found only once—would be under selective
pressure. It remains an open question how the mutation rate is
coupled to the upper end of the coding sequence for such a large
number of mutations. Interestingly, the 5'-terminal synonymous
mutations showed significantly higher SynMICdb scores—par-
tially due to a higher conservation and predicted structural
impact—pointing towards their potential functional relevance as
documented for several mutations in the KRAS oncogene. The
depletion and higher scores towards the 5'-end of the coding
sequence have been reproduced in the ten largest individual
studies of the dataset.

Synonymous mutations had previously been associated pre-
dominantly with splicing regulation12,17,36. In our data, multiple
findings can be linked to a functional impact on splicing: on the
one hand, synonymous mutations are slightly less frequently
found in cassette exons than missense mutations and they are
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depleted towards the boundaries of internal exons (where e.g.,
exonic splicing silencers would be located56). On the other hand,
the SynMICdb score is significantly higher for synonymous
mutations in cassette exons or close to the ends of the internal
exons—partially due to higher conservation of these regions.

These findings of depletion of synonymous mutation towards
the ends of internal exons and their higher scores are independent
of the nucleotide change and hence not due to mutational bias
and have been reproduced in the ten largest individual studies
incorporated into the dataset. For the depletion towards the exon
ends, our study corroborates a previous observation57. Also, the
synonymous mutations recently linked to splicing36 show sig-
nificantly increased SynMICdb scores. Lastly, synonymous
mutations in cassette exons do not only have a higher SynMICdb
score, but are also significantly enriched in cancer genes and have
a higher evolutionary conservation and signature-normalized
frequency. In the future, all these parameters provided in the
SynMICdb could guide the discovery of splicing-regulating
synonymous mutations in cancer. Furthermore, we provide the
distance to the closest exon-exon boundary and we have searched

for the gain or loss of splicing regulatory ESE or ESS motifs due to
synonymous mutations (Supplementary Data 4–7). However, the
sequence motifs defining ESEs and ESSs are not unanimously
characterized (as e.g., indicated by little overlap between motifs
from two sources33,34 or by assignment of the same sequence
motif as ESE and ESS34). Other factors like the RNA secondary
structure, the distance to the exon boundary or the surrounding
sequence will also impact the function of a motif as ESE or
ESS58,59.

Our studies on structure and expression affected by patient-
derived synonymous mutations in the oncogene KRAS46–50 prove
that single point mutations may have a relevant impact on mRNA
and protein expression, as well as on the mRNA structure. This
structural change results only in a minor expression change in
our experimental setting, which may nonetheless be impactful on
translation initiation when combined with the endogenous 5'UTR
in future studies. A previous study had artificially mutated
130 rare codons of KRAS and found an induction of KRAS
expression by this codon optimization in good accordance with
our results on c.36 T > C, while our data is based on a single and
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Fig. 7 Synonymous mutations in KRAS codon 12 impact its expression. a Left: Schematic representation of the cancer-derived KRAS mutations analyzed in
this study. Right: KRAS synonymous mutation counts in COSMIC database v82 and in SynMICdb. b HEK293 cells were transfected with the indicated
KRAS-V5 mutants. Top: Expression of the constructs was evaluated by Western blotting using V5 and ACTB antibodies. A representative experiment is
shown. Bottom: Quantification of the Western blot signals obtained as in top panel. V5 signals were normalized to ACTB signals. c Measurement of KRAS-
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patient-derived mutation54. Strikingly, these synonymous muta-
tions in KRAS frequently occur in the same codons which are
known to be affected by missense mutations. Wildtype KRAS
gene amplification and overexpression have also been described
as inducers of cell proliferation60, metastasis61 and mechanisms
of cancer drug resistance to targeted therapeutics62,63. Since an
increased or decreased wildtype KRAS expression could affect
tumorigenesis via increased KRAS activity or via decreased
wildtype-mutant dimerization50, respectively, synonymous
mutations with either effect could be of interest.

SynMICdb holds data from 88 different tumor entities, hence
the results represent global patterns and are likely not attributable
to only individual tumor entities. In contrast, it cannot be
excluded that individual tumor entities may show different
patterns.

In summary, our analysis points towards a functional impact of
at least a subset of synonymous mutations and offers a compre-
hensive database enabling researchers without prior knowledge of
bioinformatics to find synonymous mutations in their gene or
tumor entity of interest and filter them by multiple relevant
parameters for functional studies.

Methods
Curation of synonymous mutations. The full dataset of mutations listed in the
Catalog Of Somatic Mutations In Cancer (COSMIC)5,6 v76 derived from whole
genome sequencing studies was downloaded comprising 3,881,643 mutations. Only
whole genome studies were selected to avoid any biases due to targeted sequencing
of individual genes and to allow a quantitative comparison between different genes.
The dataset was curated for the erroneous use of the standard genetic code for
mitochondrial genes29 and non-synonymous mutations misclassified as synon-
ymous mutations (Supplementary Data 2). In COSMIC, the same mutation in the
same patient sample can be mapped to multiple transcripts of the same gene
introducing a bias when quantitatively comparing genes. Hence, duplicate entries
of the same mutation in the same patient sample were removed. This curation
yielded 2,812,417 mutations including 659,194 synonymous mutations (Fig. 1a,
Supplementary Data 1).

To facilitate the search for organ-specific or tumor type-specific synonymous
mutations, the annotated tumors were categorized into three tiers with Organ
System-Site-Histology, e.g., Respiratory System-Lung-Adenocarcinoma.

Analysis of synonymous mutations. Statistics on the dataset were calculated
using the Galaxy platform Freiburg64 and Excel.

Frequency and recurrence were calculated based on the Mutation ID for
synonymous and missense mutations with a recurrent mutation defined as
occurring more than once. To calculate the signature-normalized frequency of each
mutation, the cancer-associated mutation signature 131 was used, which was the
only signature found in all tumor entities and with a high prevalence. The mutation
frequency was normalized by multiplying it with (1-probability of the respective
nucleotide change), i.e., reducing the frequency for abundant nucleotide changes
like C > T and G > A due to the mutation bias in cancer.

The gene names were merged with information from the Cancer Gene Census30

v76 to classify the affected genes as related to cancer.
The mutation load, i.e., the mutation burden or the total number of mutations

in a given sample, was calculated by counting the total number of mutations listed
in COSMIC since all included samples were sequenced genome-wide.

Known single nucleotide polymorphisms (SNPs) were counted as annotated
from COSMIC.

For the distribution of nucleotide changes, reciprocal mutations (reverse
complementary changes on either genomic strand) were combined into one group
resulting in six mutation groups.

For the distribution of amino acids encoded by the affected codons, the number
of mutations was calculated for each amino acid and then normalized for the
number of codons per amino acid according to the standard genetic code. For the
comparison between synonymous and missense mutations, the data was also
normalized to the total number of mutations in the respective class. As second,
independent approach, the frequency of each codon in the human genome was
multiplied with the likelihood for a synonymous mutation based on the mutation
bias indicated by mutation signature 1 and compared with the number of
synonymous mutations experimentally found in cancer for each amino acid.

For the location of the mutation within the coding region, two different
approaches were used: first, the distribution of the mutations relative to the length
of the entire coding region was calculated for all genes (Fig. 2a). In addition, only
coding sequences with more than 200 codons were selected and then the
distribution of the mutations within the first 200 codons was calculated
(Supplementary Fig. 2c). To assess these results with regard to a potential mutation

bias, this analysis was repeated separately for all six possible types of nucleotide
changes (Fig. 2c).

For the location of the mutation within the exons, exon definitions were
downloaded from the UCSC Table Browser, GRCh38, All Gencode v24,
Comprehensive dataset. To assess these results with regard to a potential mutation
bias, this analysis was repeated separately for all six possible types of nucleotide
changes (Fig. 2d).

In addition, alternative events for each exon like cassette exons of alternative
splicing were merged with our dataset based on the UCSC Table Browser,
GRCH38, UCSC Alt Events, knownAlt. The track is described by UCSC as follows:

Alternate Promoter (altPromoter)-Transcription starts at multiple places. The
altPromoter extends from 100 bases before to 50 bases after transcription start.
Alternate Finish Site (altFinish)-Transcription ends at multiple places.
Cassette Exon (cassetteExon)-Exon is present in some transcripts but not
others. These are found by looking for exons that overlap an intron in the same
transcript.
Retained Intron (retainedIntron)-Introns are spliced out in some transcripts but
not others. In some cases, particularly when the intron is near the 3' end, this
can reflect an incompletely processed transcript rather than a true alt-
splicing event.
Overlapping Exon (bleedingExon)-Initial or terminal exons overlap in an intron
in another transcript. These often are associated with incompletely processed
transcripts.
Alternate 3' End (altThreePrime)-Variations on the 3' end of an intron.
Alternate 5' End (altFivePrime)-Variations on the 5' end of an intron.
Intron Ends have AT/AC (atacIntron)-An intron with AT/AC ends rather than
the usual GT/AG. These are associated with the minor spliceosome.
Strange Intron Ends (strangeSplice)-An intron with ends that are not GT/AG,
GC/AG, or AT/AC. These are usually artifacts of some sort due to sequencing
error or polymorphism.

For the evolutionary conservation, the dataset was merged with the PhastCons
scores for 100 vertebrate species derived from the UCSC Table Browser GRCh38.

FATHMM-MKL and CADD scores were extracted using SNPnexus
webserver35.

We integrated our dataset with the data available from ClinVar, an archive of
relationships between human variations and phenotypes with supporting
evidence65, available through the UCSC Table Browser GRCh38. Matches were
only counted if genomic position, as well as nucleotide change were identical.
ClinVar mostly contains information about hereditary diseases. To specifically
identify cancer-related phenotypes, the entries containing the word “cancer” or
“tumor” in the field “phenotypeList” were selected.

For the analysis of splicing regulatory sites, the wildtype sequences were
retrieved with 100 nt upstream and 100 nt downstream of the affected nucleotide
(or to the boundary of the transcript if shorter). Catalogs of splicing regulatory site
motifs (ESE: exonic splicing enhancer, ESS: exonic splicing silencer) were
downloaded from two independent sources: RegRNA 2.033 (http://regrna2.mbc.
nctu.edu.tw/AEDB/AEdbMotif_all.html) and SpliceAidF34 (http://srv00.recas.ba.
infn.it/SpliceAidF/). Exonic motifs for the species Homo sapiens were selected and
duplicates removed. For the motifs listed multiple times in SpliceAidF, the
information for each appearance was concatenated (Supplementary Data 4).
Notably, 23 motifs were listed as ESE, as well as ESS (marked in red). Then, gains
or losses of the 187 motifs were determined comparing the wildtype and
synonymous mutant sequences (Supplementary Data 5–7).

To analyze individual studies, the ten largest studies incorporated into the
SynMICdb dataset have been selected, i.e., the five studies reporting the largest
number of synonymous mutations plus the five studies with the largest numbers of
individual samples (study ID & tumor entity: ID540 skin malignant melanoma;
ID376 colon adenocarcinoma; ID419 endometrium carcinoma; ID541 stomach
adenocarcinoma; ID417 lung adenocarcinoma; ID414 breast carcinoma; ID331
ovary serous carcinoma; ID323 liver hepatocellular carcinoma; ID416 kidney renal
clear cell carcinoma; ID328 pancreas ductal adenocarcinoma). Hence, any study
bias due to different number of synonymous mutations per sample could be
avoided since the ten selected studies included studies with high and low numbers
of synonymous mutations per sample.

SynMICdb score. To rank the compiled list of synonymous mutations, a heuristic
score was developed based on the following assumptions: a high frequency of the
mutation (normalized for mutation bias), a low mutation load in the affected
samples, a mutation in a known cancer gene, a mutation not previously listed as
SNP, a high conservation of the affected locus, high FATHMM-MKL and CADD
scores35 and a high predicted impact on the RNA secondary structure would be
positively indicating a higher likelihood of a functional impact of the mutation. All
these parameters were included into the SynMICdb score, which was calculated as
follows: (log2 (Frequency)+ 1) × Signature Normalization factor (1−p))−log10
(average mutation load)+ Cancer Gene Census Score ([0;2])+ PhastCons Con-
servation ([0;1])+ SNP score ([0;1])+ FATHMM-MKL Score ([0;1])+CADD
Score Quantile Rank ([0;1])+ Structural Impact remuRNA Score Quantile Rank
([0;1])= SynMICdb Score.
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The parameters included into the score were largely independent of each other,
hence little redundant information was included (Supplementary Fig. 3a). The
score was successfully tested for the enrichment of synonymous mutations in
cancer genes, as well as on recently published synonymous mutations altering
splicing. A leave-one-out analysis documented that the different parameters were
balanced in their representation in the score with a desired slightly stronger impact
of bias-normalized frequency, mutation load and cancer gene association.

SynMICdb. SynMICdb has been designed using GNU R/shiny (https://CRAN.R-
project.org/package= shiny)66. It contains 659,194 synonymous mutations, inte-
grates various of their properties and orthogonal information, as well as provides
multiple different search options. A detailed User Guide can be found in the
Supplementary Note 1.

Sequence extraction for RNA structural prediction. Transcript IDs from the
database were used to extract sequences. In the first step, transcript versions
matching the transcript IDs were extracted from the ENSEMBL annotation of
Genome Reference Consortium human genome (GRCh38, ENSEMBL release 83,
ENSEMBL annotation file Homo_sapiens.GRCh38.83.gtf) using an implemented
Python script. For a small portion of transcripts IDs, no match could be found in
the GTF file. For those, gene names from the mutation database were used to
retrieve transcript IDs and versions from the GTF file. We then used the UCSC
table browser67 to generate the exonic genomic intervals from the transcript ID and
version in one line per transcript BED12 format (settings for UCSC table browser:
group: Genes and Gene predictions, track: ALL_GENCODE_V24, table: Compre-
hensive and Pseudogenes). Afterwards, the associated transcript sequences were
extracted from the genome sequence (UCSC whole genome binary file) with
UCSC’s twobittofa program, passing the transcripts interval file with the default
parameters. To retrieve the relative location of mutations on the corresponding
transcript sequence and to ensure consistency, a BED6 file with transcript start and
the mutation coordinate was intersected with the corresponding transcript genomic
interval (BED12 format) for each mutation using the Bedtools Python library68

intersect method (version 0.7.9; options “-s –wao -split”), to extract the prefix and
its length. From the relative mutation position, 200 bases upstream, as well as
downstream of the transcript were extracted (limited to transcript boundaries).
These extended mutation sequences were used for the following structure aber-
ration prediction.

RNA structure aberration prediction. Various methods for predicting RNA
secondary structure aberration based on thermodynamic free-energy models exist.
The two methods RNAsnp44 and remuRNA43 have been shown to possess good
prediction performance on independent benchmark sets. In brief, RNAsnp com-
puted, for a given sequence and SNV tag, the base-pair probability matrices, for
both mutant and wildtype sequences. For evaluating the structure aberration, the
matrices are compared using Euclidean distance of base-pairing probabilities. The
empirical p-value of the mutation effect on RNA structure is computed against a
background model of the mutations with similar GC context and length. We
computed structure aberrations for all synonymous mutations in the SynMICdb
using both RNAsnp (version 1.2) and remuRNA (version 2.0). A workflow with
grid computing support was applied to efficiently parallelize the computations in a
reasonable time. Utilizing the workflow on our cluster, computation and analysis of
around 550,000 individual mutations was completed in about three days.

For Fig. 5a, b, remuRNA relative entropies and RNAsnp empirical p-values
normalized to GC-content and length were calculated for −/+ 100 or 200 nt
windows. Spearman’s rank correlations were calculated by pandas Python library.
For Fig. 5c, interval ranges were collected from the first interval column of RNAsnp
results and plotted in Python. For Fig. 5d, e, f, sequences that could not be fully
extended (length less than 201 nt) were discarded to avoid length biases. For
Fig. 5d, base-pairing Euclidean distance and associated GC-normalized p-value
were obtained from RNAsnp (columns d_max and p_value). For Fig. 5e, f, relative
entropy, minimum free energies and GC-content were obtained from remuRNA
results. For both panels, mutations were ranked separately by these measures to
obtain the 5th percentile of mutations with the strongest impact on RNA structure.
For each binned CDS region, the fraction was computed by dividing the number of
mutations in the 5th percentile to the total number of the synonymous mutations
located in that region. For Fig. 5f, minimum free energies and GC-contents were
averaged for each bin along the coding sequence.

In silico structure prediction and visualization. For the selected KRAS c.30 A > C
mutation, sequences were folded using the Vienna package (version 2.3.3) with
partition function mode enabled for base-pair probability calculations of each. Base-
pair probabilities and accessibilities were extracted from Vienna RNAfold and
RNAplfold dotplots and accessibility outputs (parameter -u= 1, W= seq-length)51.
The heatmap vertical scale (Fig. 6e) was manually adjusted to roughly match the
corresponding non-linear scale of the SHAPE profiles. For visualizing accessibilities
and base-pair probabilities, Circos69 and custom Python scripts were used. Asso-
ciated bioinformatics scripts and reproducible interactive Notebooks are available
under the GitHub repository https://github.com/BackofenLab/MutARNA/. The

minimum free energy structures were computed using RNAfold and drawn with
forna70.

In vitro chemical probing of RNA secondary structure using SHAPE. The
Selective 2´-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) protocol
was used including chemical modification of RNA by 1-methyl-7-nitroisatoic
anhydride (1M7)52,53, converting and labeling the RNA by reverse transcription
and running the cDNA on a sequencing gel.

To analyze the structure of KRAS transcripts extending by SHAPE, we first
constructed a cassette in a pCRII-TOPO vector within two EcoRI cleavage sites
which consisted of the T7 promoter (underlined) followed by the KRAS transcript
from the nucleotide position 1 until position 75 (either wildtype or synonymous
KRAS mutant c.30 A > C) and a subsequent RT primer binding site (italicized) for
probing the structure with a universal primer.

KRAS WT:
(5'GAATTCGCCCTTTAATACGACTCACTATAGGGATGACTGAATATAA

ACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATA
CAGCTAATTCAGAAATCGGGCTTCGGTCCGGTTCAAGGGCGAATTC3')

KRAS c.30 A > C:
(5'GAATTCGCCCTTTAATACGACTCACTATAGGGATGACTGAATATAA

ACTTGTGGTAGTTGGCGCTGGTGGCGTAGGCAAGAGTGCCTTGACGATA
CAGCTAATTCAGAAATCGGGCTTCGGTCCGGTTCAAGGGCGAATTC3')

The plasmids containing the KRAS fragments were digested using EcoRI and
the digested product was used as a template for in vitro transcription overnight
according to the manufacturer's recommendation with the MEGAscript T7
Transcription Kit (Life Technologies). The transcribed RNA was further extracted
using the phenol-chloroform method.

For chemical modification of the RNA, 8 µg of KRAS transcript in 4 µl RNase-
free water was denatured at 95 °C for 3 min and snap-cooled on ice for 1 min. 36 µl
of 1.1× folding buffer (1.1 mM MgCl2, 111 mM NaCl and 111 mM HEPES, pH 8.0)
was added before incubating at 37 °C for 20 min. From the resulting 40 µl, three
aliquots of 10 µl each were treated either with DMSO at room temperature for 10
min or with 1M7 (4 mM final concentration) and incubated at room temperature
for 2 min or 10 min. Under single-hit kinetics, a single modification per transcript
will occur by the SHAPE reagent, which preferentially modifies the ribose 2'-
hydroxyl groups of unpaired, conformationally flexible nucleotides. Chemically
modified KRAS transcripts were then ethanol precipitated and dissolved in 10 µl
RNase-free water.

One hundred nanogram of the chemically modified RNA was reverse
transcribed as per the manufacturer’s protocol (SuperScript® IV Reverse
Transcriptase, Thermo Scientific) using the SHAPE RT primer (5'-GAACCGGAC
CGAAGCCCG-3') 5´-end labeled using the T4 polynucleotide kinase according to
the manufacturer's protocol (T4 Polynucleotide Kinase, New England Biolabs) and
γ-[32P]ATP. Reverse transcription is blocked by the chemical modification by 1M7
leading to a pool of cDNAs whose length distribution on the gel is an indicator of
the distribution of modifications across the RNA. The size marker for the
sequencing gel was prepared using the KRAS DNA as template and [32P]-labeled
SHAPE RT Primer in the presence of ddNTPs (USB® Thermo Sequenase Cycle
Sequencing Kit, Thermo Scientific). This led to the generation of fragments
terminated at the site of ddNTP incorporation, which was reflecting the sequence
of the fragment. cDNAs are then resolved according to length on a 7.5 M Urea-
PAGE sequencing gel (7.5%). The gel was heat-dried under vacuum and visualized
using a phosphorimager. All probing experiments were performed in triplicates.

Plasmid construction for expression analysis. KRAS expression constructs were
generated using the Gateway recombination cloning technology (Thermo Scien-
tific). Briefly, an entry clone consisting of the human KRAS 4B coding sequence
without a stop codon (a generous gift of Dr. Christopher Oakes, DKFZ Heidelberg)
was used as a template for PCR-based site-directed mutagenesis (KRAS G34T For:
5'-GAGCTTGTGGCGTAGGCAAGA-3', KRAS G34T Rev: 5'-GCCACAAGCTC
CAACTACCAC-3', KRAS G35A For: 5'-AGCTGATGGCGTAGGCAAGAG-3',
KRAS G35A Rev: 5'-CGCCATCAGCTCCAACTACCA-3', KRAS G35T For: 5'-AG
CTGTTGGCGTAGGCAAGAG-3', KRAS G35T Rev: 5'-CGCCAACAGCTCCAA
CTACCA-3', KRAS T36A For: 5'-GCTGGAGGCGTAGGCAAGAGT-3', KRAS
T36A Rev: 5'-ACGCCTCCAGCTCCAACTACC-3', KRAS T36C For: 5'-GCTGGC
GGCGTAGGCAAGAGT-3', KRAS T36C Rev: 5'-ACGCCGCCAGCTCCAACTA
CC-3', KRAS T36G For: 5'-GCTGGGGGCGTAGGCAAGAGT-3', KRAS T36G
Rev: 5'-ACGCCCCCAGCTCCAACTACC-3', KRAS G37T For: 5'-CTGGTTGCG
TAGGCAAGAG-3', KRAS G37T Rev: 5'-TACGCAACCAGCTCCAACT-3', KRAS
G38A For: 5'-TGGTGACGTAGGCAAGAGT -3', KRAS G38A Rev: 5'-CTACGT
CACCAGCTCCAAC-3', KRAS C39A For: 5'-GGTGGAGTAGGCAAGAGTGC-3',
KRAS C39A Rev: 5'-CCTACTCCACCAGCTCCAA-3', KRAS C39G For: 5'-GGTG
GGGTAGGCAAGAGTGC-3', KRAS C39G Rev: 5'-CCTACCCCACCAGCTCC
AA-3', KRAS C39T For: 5'-GGTGGTGTAGGCAAGAGTGC-3', KRAS C39T Rev:
5'-CCTACACCACCAGCTCCAA-3'). Mutation of the entry clones was confirmed
by DNA sequencing. Then, wild-type or mutant KRAS entry clones were recom-
bined into the pEF-DEST51 Gateway expression vector (Thermo Scientific) using
the LR Clonase II enzyme mix (Thermo Scientific) according to the manufacturer’s
instructions. To generate the empty vector control, the pEF-DEST51 expression
vector was PCR-amplified to delete the chloroamphenicol resistance and the ccdB
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genes while adding a Kozak sequence followed by a start codon in frame with the
V5-6xHis tag. The following primers were used: Forward 5‘-GCCACCATGGCTT
TCTTGTACAAAGTGGT-3‘ and Reverse 5‘-AGCTTTTTTGTACAAACTTG
TTG-3‘. The PCR reaction was DpnI-digested for 30 min at 37 °C and the PCR
product was purified on a gel, before being ligated.

Cell culture and transfections. HEK293 cells (identity confirmed via finger-
printing by Multiplexion, Friedrichshafen, Germany; matching ATCC CRL-1573)
were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich)
supplemented with 10% fetal bovine serum (FBS, Thermo Scientific) and 2 mM L-
glutamine (Sigma-Aldrich). Cells were maintained at 37 °C under a 5% CO2

atmosphere. For transient expression, cells were transfected with TransIT-LT1
(Mirus Bio LLC) according to the manufacturer's instructions. 60 h post trans-
fection, cells were washed twice and harvested in ice-cold PBS. Each cell sample
was split into two and further processed for protein and mRNA levels analysis.

Western blot analysis. For protein level analysis, cell extracts were prepared in
lysis buffer (25 mM Tris-Cl pH 7.4, 150 mM NaCl, 5 mM EDTA, 1 mM DTT, 1%
Triton X-100 and complete EDTA-free protease inhibitor cocktail [Roche Applied
Science]). Cell lysates were centrifuged at 16,000 × g for 15 min and the protein
concentrations of the cleared samples were determined with a BCA assay. Cell
extracts (10 μg) were separated via SDS–PAGE and transferred to nitrocellulose
membranes (GE Healthcare). Protein expression was analyzed by western blotting
using the following primary antibodies: β-actin (A2228, Sigma-Aldrich, 1:20000)
and anti-V5 (1:1000-1:2500, R96025, Thermo Scientific). The Western blot signals
were acquired with an Intas ECL ChemoCam Imager (Intas) and quantified using
the LabImage 1D software (Kapelan Bio-imaging). Expression values were com-
pared by unpaired two-sided T-tests after scedasticity was determined using the F-
test.

RNA extraction, reverse transcription and qPCR. For steady-state RNA levels
quantification, cells were lysed in TRI Reagent (Sigma-Aldrich) according to the
manufacturer's instructions and samples were subsequently digested with DNase I
(Roche) for 30 min at 37 °C. Reverse transcription reactions were performed with 1
µg of DNase-treated RNA using the RevertAid Reverse Transcriptase (Thermo
Scientific) and random hexamer primers (Thermo Scientific). cDNAs were
amplified by real-time quantitative PCR using 2x Power SybrGreen Master Mix
(Applied Biosystems) and the following specific primer pairs: β-Actin Forward: 5’-
TCAAGATCATTGCTCCTCCTGAG-3’, β-Actin Reverse: 5’-ACATCTGCTGGA
AGGTGGAC-3’, pEF-DEST51 Forward: 5’-CGCCAGAACACAGGTGTCG-3’,
pEF-DEST51 Reverse: 5’-TTGTTGATCAAGCTTACCTAGCC-3’. Reactions were
run in technical triplicates in an Applied Biosystems StepOnePlus cycler using the
following program: 10 min incubation at 95 °C prior to 40 cycles of 15 s at 95 °C
and 30 s at 60 °C. Relative expression of target genes was determined by the 2-ΔΔCt
method using average Ct values. Experiments were performed in three biological
replicates. Expression values were compared by unpaired two-sided T-tests after
scedasticity had been determined using the F-test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Datasets referenced during the study are available from COSMIC, Biomart and UCSC
[http://www.genome.ucsc.edu/cgi-bin/hgTables] websites. All the other data supporting
the findings of this study are available within the article, its supplementary information
files, the SynMICdb database [http://SynMICdb.dkfz.de] and from the corresponding
author upon reasonable request. The source data underlying Figs. 6a, 7b, c and
Supplementary Fig. 8a, 8c and 8d are provided as a Source Data File. The replicates for
Fig. 6d are provided in Supplementary Fig. 7. The SynMICdb can be found at http://
SynMICdb.dkfz.de.
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